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Cornelius Lanczos (1893 – 1974) was indeed one of the greatly
inspired scholars in theoretical  physics and applied mathematics in the
twentieth century. It is not only his voluminous outpouring of excellent and
challenging research on diverse subjects in these fields; it was perhaps more
importantly his open spirit that must influence his peers and generations of
physicists and mathematicians. Thus, it is highly commendable that
Lanczos’ collected papers and commentaries on them have been published
in &RUQHOLXV� /DQF]RV�� &ROOHFWHG� 3XEOLVKHG 3DSHUV� DQG� &RPPHQWDULHV,
editors: W.R. Davis, M. Chu, P. Dolan, J. R. McConnell, L. K. Norris, E.
Ortiz, R. J. Plemmons, D. Ridgeway, B. K. P. Scaife, W. J. Stewart, J. W.
York, Jr., W. O. Doggett, B. M. Gellai, A. A. Gsponer, C. A. Prioli (North
Carolina State University, Raleigh, 1998). Henceforth this collection will be
referred to as CLCPPC.

Because of our mutual research interests in the quantum and general
relativity theories, and questions concerned with (nonrelativistic and
relativistic) quantum theory, I started a correspondence with Cornelius when
he was in Dublin, in the 1960s. He kindly invited me to spend some time
with him at the Dublin Institute for Advanced Studies. I enjoyed the
opportunity to visit (in 1964 and 1973), to discuss questions of interest of
both of us and to have discussions with his colleagues at the Institute, J.
Singh, J. McConnell and L. O’Raifertaigh.

In this note, I would like to briefly discuss two of Lanczos’ investigations
that are not generally known about in the physics community and to
comment on them.

� $�'LVFRYHU\�LQ�WKH�4XDQWXP�7KHRU\
In 1926, at the onset of the development of the formal expressions of

quantum mechanics, Lanczos discovered that Heisenberg’s (discrete) matrix
representation and Schrodinger's (continuous) wave representation are
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mathematically equivalent – since each can be transformed into the other.
[Schrodinger also discovered this fact independently, in the same year.]

What it was that Lanczos saw was that the equations of motion and the
quantum condition could be expressed in the form of integral equations.
Thus he said: “A conception of the continuum exists side by side with equal
validity with the conception of the discrete, because there is a unique
relationship between them.”

The form of the Schrodinger wave equation is :

Hψ ≡ i∂ψ/∂t  =   -∇2ψ +  Vψ =  Eψ (1)

where H is the Hamiltonian operator (as defined by Schrodinger in terms of
the operator equivalents of the momentum and position variables of a
particle of matter), and E  is the particle’s  energy eigenvalue of H  (units
chosen above with h/2π = 1, where h is Planck’s constant).

To derive the integral form of this equation, Lanczos considered the
solution of the mathematical problem

-∇2ψ + Vψ =  u,     ψ(boundary) = 0

He found that the boundary value problem may be solved by means of the
Green’s function K(P, Q) for this inhomogeneous differential equation, with
the solution

ψ(P)  = ∫K(P, Q)u(Q) dQ

Replacing u(Q) with Eψ(Q), and dividing by E, one has the integral
equation:

∫K(P, Q) ψ(Q) dQ  =  (1/E) ψ(P) (2)

Thus, the eigenvalues of the kernel K(P, Q) are the reciprocals of the
energy values, 1/E.

The correspondence between equations (1) and (2) then leads to the
Heisenberg equation of motion for quantum mechanics,

[H,O]ψ ≡ (HO  -  OH)ψ = i(∂O/∂t)ψ (3)

This equation, in turn, yields the matrix representation of quantum
mechanics, where H is the Hamiltonian operator for the dynamical system
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and O is an operator that corresponds with some particular observable
physical property of the microsystem.

Thus Lanczos showed, unequivocally, that Heisenberg’s equation of
motion for quantum mechanics, (3), is equivalent to Schrodinger’s wave
mechanical form (1). The details of this correspondence are spelled out in
Lanczos’ paper: “Uber eine maissige Darstellung der neuen
Quantenmechanik” (“On a Field Theoretical Representation of the New
Quantum Mechanics”), Zeitschrift fur Physik ��� 812 (1926). Its English
translation is in CLCPPC, Volume III, p. 2-858.

There has been a controversy on the question of who first discovered this
equivalence of the Heisenberg and Schrodinger representations of quantum
mechanics – was it Schrodinger, Pauli or Lanczos? (from their respective
points of view). There is an interesting dialogue and discussion on this by B.
L. van der Waerden, “From Matrix Mechanics and Wave Mechanics to a
Unified Quantum Mechanics”, CLCPPC, Volume III, p. 2-896, including a
letter written by Pauli to Jordan on this subject. Another interesting article
on this subject is by J. R. McConnell, “Commentary on Lanczos’ “On a
Field Theoretical Representation of the New Quantum
Mechanics””CLCPPC, Volume III, p. 2-950. Van der Waerden, in his
dialogue, favors Lanczos as the actual discoverer of the equivalence of these
two representations of quantum mechanics.

I might add the following comment: While the differential form of
Schrodinger’s wave mechanics (1) is equivalent to Lanczos’ integral
equation (2) – which in turn leads to the Heisenberg representation (3) - the
latter integral equation form cannot be extended to an expression of wave
mechanics in a curved spacetime, as required in general relativity. This is
because the Green’s function is GHILQHG in terms of a linear mathematical
formalism at the outset. Thus, in the (necessarily) nonlinear, curved
spacetime of general relativity, a Green’s function for this problem does not
exist. On the other hand, Schrodinger’s differential equation form (1) for
wave mechanics can be extended to the nonlinear, curved spacetime. This is
achieved by going (smoothly) to a spinor-quaternion formalism, where the
solutions of the equations are now VSLQRU� YDULDEOHV in a curved spacetime
rather than the scalar functions of Schrodinger’s nonrelativistic wave
mechanics. In this extended formalism, ordinary derivatives are replaced
with covariant derivatives. [This extension is indicated by the irreducible
representations of the (LQVWHLQ� JURXS – the symmetry group that underlies
the general covariance requirement of general relativity theory.] The
covariant derivative of a spinor field is the sum of the ordinary derivative
and a spin-affine connection term. The spinor solutions themselves, for the
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matter fields, are then the basis functions of quaternion differential
operators. This generalized nonlinear expression of wave mechanics in
general relativity cannot then be interpreted in terms of a probability
calculus, since the latter, E\�GHILQLWLRQ, requires a linear calculus.

This advantage of the differential equation form of quantum mechanics
over the integral equation form is a significant point since the integral
equation form of nonrelativistic quantum mechanics, which Lanczos
addresses in this problem, does not extend to the nonlinear curved
spacetime. But the latter extension is necessary since nonrelativistic quantum
mechanics is supposed to be not more than an DSSUR[LPDWLRQ for a generally
relativistic theory of matter in the microscopic domain. The latter
generalization of quantum mechanics to a nonlinear form cannot then be
interpreted as the Copenhagen school does in terms of a probability calculus.

Lanczos himself indicated in his writings since the 1920s that a nonlinear
extension of wave mechanics must follow.

I have spelled out the details of this extension of the formal expression of
quantum mechanics to general relativity in my book: M. Sachs, *HQHUDO5HODWLYLW\� DQG�0DWWHU (Reidel, 1982) and its sequel, M. Sachs, 4XDQWXP0HFKDQLFV�IURP�*HQHUDO�5HODWLYLW\ (Reidel, 1986). I have shown in the latter
book that the formal expression of quantum mechanics, in terms of the linear
Hilbert space, emerges as a linear approximation for a generally covariant,
nonlinear field theory of the inertia of matter.

� $�'LVFRYHU\�LQ�*HQHUDO�5HODWLYLW\
A second very important discovery of Lanczos had to do with the

problem of equations of motion of material particles in the theory of general
relativity. Without resorting to approximation methods [as in A. Einstein, L.
Infeld and B. Hoffmann, “Gravitational Equation and the Problem of
Motion”, $QQDOV�RI�0DWKHPDWLFV ��, 65 (1938)] Lanczos discovered that the
equation of motion of a gravitational body is implicit in Einstein’s tensor
field equation itself. That is, there is no need to add extra equations of
motion to the field equations.  This is in contrast with the standard
electromagnetic field theory. In the latter case, the field equations are in
terms of Maxwell’s equations while the equations of motion of a charged
body, subjected to an electromagnetic field, must be added, in the form of
the Lorentz equation of motion.  The latter difference is due, in part, to the
fact that the Einstein field theory is explicitly nonlinear while the Maxwell
field theory is explicitly linear. Thus, the Einstein field theory of gravitation
is more complete than the Maxwell field theory of electromagnetism. This is
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because Einstein’s theory is a ‘closed form’ theory of matter while the
Maxwell theory is not so.

In his paper, “The Dynamics of a Particle in General Relativity”, 3K\VLFDO5HYLHZ ��, 813 (1941), duplicated in CLCPPC, Volume IV, p. 2-1650,
Lanczos discusses this problem. He starts out by explaining that, in his view,
“the moving force [that accelerates a material body] comes out in terms of a
volume integral, extended over the matter-occupied central field of the
particle.” He points out that no matter how one might modify the spacetime
metric LQVLGH� RI� WKH� SDUWLFOH, no motion is predicted. [This is a difficulty
emphasized by Einstein in his correspondences with Lanczos.] Thus, one
needs a force H[WHUQDO to the body acted upon that would cause it to
accelerate – as one has with Newton’s second law of motion.

What Lanczos did to overcome this difficulty was to show that “the
volume integral of the moving force [can be transformed] into a boundary
integral, extended over the border of the particle, or any closed surface that
includes this particle.” He then concluded that the motion law is established
rigorously, without the need for approximation methods. The law that he
derived had the form of Newton’s second law of motion, ZKHQ�RQH WUHDWV�WKHVWDWLF�FRQGLWLRQ�RQO\�(that is, for a particle initially at rest). Lanczos’ law of
motion in general relativity then takes the form:

d2ξi/dx4
2 =  -Γ(e)

44,i (4)

where i = 1, 2 or 3 denote the three spatial directions, x4 is the time
coordinate , ξi are the spatial coordinates of the particle and Γ(e)

44,i are the ith
derivatives of the ‘44’ component of the affine connection of the curved
spacetime field H[WHUQDO�WR�WKH SDUWLFOH�

It is important to note that the particle’s mass P does not appear in this
equation of motion of a body in a gravitational field. (It is a generalization of
Galileo’s discovery that the gravitational acceleration of a body is
independent of its inertial mass.) Lanczos calls this “equivalent to the law of
the geodesic line”.

Lanczos’ imposed “static condition” to derive the law of motion (4) is
perhaps too restrictive to conclude from it a general law of motion. In my
own analysis of this problem in general relativity, I have concluded that
there can be no discrete particle of matter in the first place, in the context of
this theory. The geodesics of the spacetime are the solutions of the
dynamical problem for a ‘field concentration’ that we identify empirically
with a ‘thing’ – e.g. an electron, a planet or a galaxy. The metric solutions of
general relativity are the regular (i.e. nonsingular and analytic HYHU\ZKHUH)
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functions of the space and time coordinates. Thus, there is no ‘inside’ and
‘outside’ of a discrete material particle, in the context of the continuous field
theory implicit in general relativity. What is “seen” as a particle is, rather, a
continuous (though peaked) mode of a (regular) matter field. Thus, Lanczos
had no need, in the framework of the theory of general relativity, to
transform the continuous volume integral – a natural expression of a mode of
the continuum – into a surface integral. For the volume integral itself is
intimately related to the entire continuum; there is in reality no surface
within the continuum, separated from it. This conclusion of the holism
(essential connectivity) of a material system expresses the essence of Mach’s
principle, which I have found in my studies is an implication of Einstein’s
theory of general relativity, as a general theory of matter.

These conclusions are in accord with Lanczos’ assertion that  (real)
singularities are to be excluded from the solutions of the generally covariant
field equations of matter. His position, rather, is that “matter is no more a
singularity of the field, but an HLJHQVROXWLRQ of the field equations.” [“Die
neue Feldtheorie Einsteins”(The New Field Theory of Einstein),  (LJHEQLVVHGHU� H[DNWHQ 1DWXUZLVVHQVFKDIWHQ �� (1931), 97 – 132. Duplicated in:
CLCPPC, Volume IV, p. 2-1443].

While I agree with the exclusion of singularities from the solutions of a
generally covariant field theory of matter, it is my position that the
eigenvalue structure of the field equations is an asymptotic, but QRW an exact
feature of the field laws. One may see this difference, for example, on the
one hand in Lanczos’ comments that it is “all the same whether we work
with the homogeneous equations and admit singularities, or with the
inhomogeneous one excluding singularities” (LELG., CLCPPC, Volume IV, p.
2-1439). On the other hand, it is my view, that, physically, there are no
meaningful homogeneous equations in the first place. It is because we start
in general relativity with a closed system at the outset, wherein the left hand
side of the field equations (where the field intensities appear) is a
representation of the right hand side (sources), DQG�YLFH�YHUVD. Still, one may
approximate the right hand side, XQGHU� VSHFLDO� FLUFXPVWDQFHV, to be
asymptotically small, replacing these terms with zero for practical purposes
of calculation.

The difference between Lanczos’ and my position here is related to the
features of nonlinear differential equations. The solutions of the
corresponding inhomogeneous and homogeneous nonlinear equations do not
go smoothly into one another, under any conditions. That is, it is my position
that, even asymptotically, so long as the right hand side is close to, but not
exactly equal to zero, the solutions of one of the respective nonhomogeneous
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or homogeneous  differential equations have features, related to physical
properties, that are not duplicated in the solutions of the other.

One may compare this, as Lanczos does, with Newton’s theory of
gravitation, wherein we have Laplace’s equation  ∇2ϕ = 0 outside of the
boundary of a gravitational body, and Poisson’s equation, ∇2ϕ = ρ inside of
this boundary, where ϕ is the gravitational potential of the body and ρ is its
density.  If these would be nonlinear equations, as they would in a curved
spacetime, then the solutions of Poisson’s equation would not be a linear
superposition of the solutions of Laplace’s equation. Indeed, in general
relativity there could not be any discrete boundary; there is only a (variable)
continuum in space and time. Only in the linear limit (of a flat spacetime), as
in Newton’s theory of gravitation, can one assume a discrete boundary for a
quantity of matter.  But the latter limit is not true in an exact sense in general
relativity theory.

Cornelius Lanczos was a good friend and colleague of mine. From our
personal correspondences and contacts I know that whatever criticism I have
mentioned in this note would have been accepted in the spirit of the essential
role of controversy in science, to ensure its progress. For this attitude as well
as his contributions, he was indeed one of the great scientists of the twentieth
century.
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