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ABSTRACT. In a few previous papers, we developed a so-called classi-
cal fluctuation model providing (generalized) ”symmetrization rules ”
- these make the classical expressions for energy transfer probabilities
compliant with the detailed balance principle. For various physical pro-
cesses, the symmetrized expressions of the transfer probabilities were
shown to be remarkably improved - with respect to the performances
of standard semiclassical models - in view of approaching quantum-
mechanical results. Therefore, the possibility that a still undiscovered
classical physics potential to describe quantum effects may be revealed
by the model must be investigated. In this and a few next papers,
we introduce some conceptual developments of the model and discuss
the fundamental properties of the so-called Bernoulli oscillators (in
the present paper I, the thermodynamic properties), whose behavior is
analyzed in the light of the assumed existence of a ”hidden” degree of
freedom. The displayed properties are taken as a basis for a (proposed)
classical interpretation of some quantum effects. As a final result, to
be deployed in a last paper, a Newtonian-like equation of motion for
”quantum” particles (uni-dimensional case) will be introduced, seeming
to us the good candidate to set a bridge between classical and quan-
tum physics. By these means - although we remain sometimes within
the boundary of a conjectural framework, and limited to the case of
translational motion - the possibility to approach a solution to the old
problem of inconsistency between classical and quantum mechanics is
displayed, and discussed as a proposal.

1 Introduction

In a few previous papers [1 − 3] we developed a so-called classical fluc-
tuation model, able to account for the inelastic effects occurring in
vibro-translational molecular energy transfers induced by collisions. The
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model resulted in some (improved) ”symmetrization rules” [4− 5] which
have to be applied to the classical expressions for energy transfer prob-
abilities, so that the detailed balance principle is satisfied. Operating
with these rules brought the classical expressions to perform similarly
to their quantum-mechanical correspondents; thus we developed, in a
few interesting cases, detailed comparisons between the former and the
latter ones. By this means, we showed that ameliorations are achieved in
view of approaching quantum-mechanical results with a classical model.
Since the model revealed some generality, we extended the application
domain of the rules to different other topics in physics [6−8], and showed
that they have a generalized capability to make the classical expressions
considerably approach the corresponding quantum-mechanical results.

The quoted analyses appeared to enlighten a till now undiscovered
path towards the development of a theoretical framework able to provide
a classical interpretation of quantum-mechanical effects, so that further
investigation will be carried on throughout the present work.

In order to enlighten a few key concepts, we make here a specific
point out and report a couple of statements describing a few important
results we were able to obtain :

i) the application of our ”symmetrization rules” to the classical ex-
pression of the thermodynamic entropy (or, equivalently, to the ”sum-
over-states ”) corresponding to the case of a harmonic oscillators assem-
bly produces exactly the quantum-mechanical result [6]. This fact has
been shown to be consistent with a standard classical thermodynamics
apparatus where energy fluctuations are invoked in order to overcome
the so−called ultraviolet catastrophe problem. The overall framework
in reference [6] results indeed in the correct (uni-modal) Planck/Bose-
Einstein distribution for the thermodynamic oscillators energy. The en-
ergy fluctuations are interpreted to originate from the interaction of the
oscillators with the so-called fluctuation field via the action of a ” hidden
degree of freedom ” (HDF), whose nature and properties will be better
explained in this work.

ii) a classical model of tunnelling phenomena has been set up and
interpreted, as well, in the light of the assumption of existence of the
fluctuation field [8]. This last is able to provide - within the limits allowed
by the Heisenberg indetermination principle - to the physical system the
extra-energy which it needs to perform the ”classical” barrier jump.

These results can be considered representatives of our previous inves-
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tigations as concerns a few basic concepts, and are important because
they open the way to a well-defined research strategy to the purpose of
developing classical models and interpretation for quantum effects. We
are especially concerned with the possibility to set up competitive cal-
culus and physical models based on classical mechanics. It is obvious
that solving the old problem of inconsistency between the Newtonian
concept of particle motion and modern probabilistic/dualistic physics
originated by the dominant wave-mechanics is a very big challenge to
pursue. Having available even a partial - provided consistent - solution
to this problem might give strong impulse to scientific developments with
associated consequences.

Our overall work is constituted by four papers where a few develop-
ments of our model for physical interactions will be discussed, up to the
end where a possible (propositional) solution to the mentioned problem
is given.

In the present paper (denoted I), we will first discuss generalities,
and will point out the limits of our proposed framework. We will, after-
wards, deploy our developments for the thermodynamic model of the os-
cillators (called the Bernoulli oscillators) interacting with the fluctuation
field, and will be introduced to the existence and basic (thermodynamic)
properties of the hidden degree of freedom HDF.

In a forthcoming publication (denoted paper II) we will investigate
the mechanical counterpart of the thermodynamic model, displaying fea-
tures of the interaction and giving physical identity to HDF and to its
effect on the classical motion equation and energy theorem. A classical-
like, propositional interpretation of Heisenberg’s incertitude relations
will be given and discussed within the same framework.

In another publication (denoted paper III) we will use a simple clas-
sical, statistical ensemble model as a reference to understand the cor-
relations between the mechanical and thermodynamic properties. We
will find out the state equations governing this (microcanonical) system
statistics, both for the reference system and - using some induction -
for the generalized case. We will finally write down the appropriate ex-
pressions of the sum-over-states and mass-flow-theorem for the Bernoulli
oscillators.

Finally in a last publication (denoted paper IV), we will use the
previous results for the sake of comparison with the fundamental wave-
mechanical equation (taken in the hydrodynamic form). By this means,
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we will be able to excerpt an expression for the potential effective on
a single particle within the frame of the corresponding classical energy
theorem. In this way, a Newtonian-like motion equation (limited to the
uni-dimensional case) for the quantum particles in a pure quantum state
will be established and discussed.

Conclusive remarks and demonstrations will also be deferred to this
final paper.

Here we are first brought to the following considerations.

2 Generalities

First of all, we remark that our demonstrations in this domain are
affected by (assessed) approximations. In practice, while developing
our calculations in the previously quoted references, we generally work
within the limits of first order perturbation theory and saddle-point-
approximation for integrals evaluation. The WKB or quasi-classical
case is generally taken as the reference to discuss the results (as is,
for instance, the case for point (ii)). Full coincidence with the exact
quantum-mechanical result (which we find indeed in the reported case
(i)) must be considered at the present investigation stage only a rather
fortunate case, but the important matter is that our results strongly
indicate an improvement of the classical equations to the purpose of de-
scribing quantum-mechanical reality. An effort must therefore be done
to overcome the approximations indicated in our theoretical frame.

This target can be approached in different ways. The most rational
investigation strategy is likely to consist in operating to give our the-
oretical model and procedures higher descriptive and/or computative
capability. For instance, we note that the symmetrization rules which
we found in previous work can be considered as the specification of gen-
eralized rules of the form

P
CC

if (Ei,Ef ) = exp
∫ Ef

Ei

[ln P
C

(E)] P(E)dE (1)

Here P
CC

if (Ei,Ef ) must be intended as an improved expression of
the fluctuation probability for an energy transfer process, holding in the
framework of a generalized, upgraded ” Classical Continuum fluctuation
model ” which might be developed. In equation (1) P

C
(E) is the purely
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classical expression corresponding to the investigated process and P(E)
is some (normalized) energy distribution describing the effective energy
level density to be accounted for within the framework. Taking P(E) as
a constant over the integration domain gives back our previously quoted
symmetrization rules. Equation (1) clearly shows that improvements
of the fluctuation model can be obtained by investigating the effect of
generalized forms for P(E), and is a good starting point to exercise our
conjectural attitudes towards the model development. In this work, how-
ever, we will follow a different investigation strategy, so that equation
(1) has actually been quoted here for later reference.

A conjectural attitude, indeed, can also be exercised straight towards
the development of a comprehensive interpretation of quantum mechan-
ics in the light of the assumed existence of energy fluctuations as origi-
nated by the hidden degree of freedom. Taking this way may introduce
us to a challenging and useful insight into new interpretative ideas in
physics. In our papers, we are going indeed to propose and discuss
conceptual developments of our model for physical interactions, with
specific emphasis to the consequences stemming from the assumption of
a classical point of view. Following this path, we will become able to
introduce an interpretation of quantum mechanics as the fluid-dynamic
appearance of a Newtonian substrate for particle motion, in the known
expression of a Bernoulli or mass-flow theorem - although the standard
classical expression will be found modified to account for the effect of the
hidden degree of freedom. As a result of this analysis, a single-particle
motion equation for the uni-dimensional case will be finally identified.
It seems to us worthy to be examined as the candidate equation able
to fill - although partially, because it is limited to the description of
uni−dimensional, translational motion - the gap existing between the
classical description of particle motion and the quantum-mechanical de-
scription.

Although we cannot afford a description of rotational motion - which
would be a major point in the debate - at all in this work, this last will
possibly be recognized to display a potential for a discussion about a cou-
ple of the most subtle and controversial points of modern physics. The
first one concerns the old controversy between the wave or particle nature
and behavior of matter, thus involving discussion of the complementarity
principle. The second one concerns the two main different interpretations
that Heisenberg’s indetermination principle has, since long time already,
originated amongst the physicists community - whether indetermination
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only represents the practical boundary our measurements capability has
encountered by the effect of limited experimental tools available, or is an
absolute, intrinsic property of the physical reality [9]. As it will be clear
in the following, some definite interpretation about both the mentioned
points will be essentially promoted by our investigation. The discussion
being of some relevance, the present work will - of course - be found
unable to give exhaustive answers to the previous questions, or even to
provide meaningful forecasts to all the consequences stemming from our
model and equations. It is obvious that every new, proposed theoret-
ical frame or interpretation of physical reality must wait for validation
checks, all along its development. At present, therefore, our model will
only be discussed with reference to the primary properties we have to
show being satisfied - in order that it is not (not immediately, at least)
found contradictory of consolidated aspects pertaining to the quantum-
mechanical description of reality. Necessarily a number of problems,
either on the interpretative level or on the practical descriptive level,
will be left open or even untouched throughout this investigation.

However, a framework with some logical consistency seems to us be-
ing introduced in these papers as a contribute to the many efforts (see
f.i. [10− 22]) aimed to restore a causal interpretation of particle motion
and physical reality. The work being only a propositional one with re-
spect to the indicated challenges, it is obvious that further analyses will
be required before our arguments either consolidate and call for devel-
opments, or decay. We are conscious that external criticism might be
found disruptive to this effect. We believe, notwithstanding, that even
this negative case - by its consequences and assessments - can be useful
to our epistemological advancement.

3 Theoretical background

We start our present considerations by resuming the fundamental topic
exposed in reference [6] and mentioned already in the previous section
(i). This is necessary because we base our argument about the appear-
ance of the hidden degree of freedom on such a discussion. The argument
is essentially as is found in the next two subsections. Subsections are
introduced in our papers according to the general strategy to discuss
briefly a number of different topics deploying the analysis step-by-step.
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3.1 The classical thermodynamic potential

To be useful as a first reference, let us consider the expression for the
thermodynamic potential Ψ*

C
corresponding to an assembly of harmonic

oscillators with the same oscillation frequency νc = ωc/2π as is given in
classical thermodynamics:

Ψ*
C

= −lnZ*
C

=
F*
C

T
=

E*
C

T
− S*

C
(T) = −lnT = 1− S*

C
(T) (2)

Z*
C

=
∫ ∞

0

∫ ∞
0

exp (−H
C

(p,x)/T)dpdx ≡
∫ ∞

0

exp(−E′/T)dE′ = T = E*
C

(3)

H
C

(p,x) =
1

2m
p2 +

1
2

K*x2 (4)

In these equations, Z*
C

is the classical ”sum-over-continuum-states”,
E*
C

is the thermodynamic energy, F*
C

is the Helmholtz function and S*
C

is the entropy of our system. H
C

(p,x) is the classical Hamiltonian for
a harmonic oscillator, taken as a function of momentum p = mv and
space-coordinate x of a particle with mass m, velocity v. The elastic
constant K* is equal to mω2

c . Idler constants are dropped off in equations
(2), (3). As is clear, in these equations we used a unit value for the Boltz-
mann constant and for the constant-volume specific heat of the system.
With these conventions, the thermodynamic energy and absolute tem-
perature become coincident quantities for the two degrees of freedom
system. We find this choice comfortable to speed up mathematical han-
dling of our equations.

The relevant expression of the entropy function S*
C

(T) is therefore :

S*
C

(T) ≡ S*
C

(E*
C

) = 1 + ln(T) = 1 + ln(E*
C

) (5)
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3.2 The fluctuation entropy and the quantum-mechanical entropy

In reference [6] we introduced a thermodynamic model for an ensem-
ble of classical (harmonic) oscillators exchanging energy with a classical
electromagnetic field mode at the same oscillator frequency νc. Within
the proposed framework is shown that if we assume that the oscillators
thermodynamic energy fluctuates at constant entropy then, in the av-
erage, the Bose-Einstein (BE)/ Planck distribution is displayed by the
system. Then we advanced the hypothesis that, in a quite similar way,
the same oscillators can undergo stationary energy exchanges with an
external fluctuation field. This last is invoked in order to explain the
deviations of the oscillators physical behavior from the classical expec-
tation, and the appearance of quantum effects. By investigating the
fluctuation field effect on our oscillators we found indeed, again, a Bose-
Einstein energy distribution and could recover the Bohr-Sommerfeld rule
within the same framework. Details of this investigation are not to be
discussed here again but a few key arguments, necessary to the further
developments, will be technically reported in the sequel. We called the
fluctuating-energy oscillators the ”Bernoulli” oscillators. These last are
classical oscillators but the way they exchange energy with the fluc-
tuation field implies now recognizing the intermediation of a ”hidden”
degree of freedom HDF - this will be shown here with more details than
displayed in [6]. The properties of our oscillators will be seen to evolve
towards a more precise definition as far as our understanding of some
relevant physical effects will be brought to refinement. We will refer
to the model introduced in [6] as to the fluctuating-energy oscillators
model (FEOM) all throughout this work.

Let us now report from reference [6] the interesting, key remark, here
introduced as follows.

If we perform the integral mean of S*
C

(E*
C

) throughout an energy
variation interval E∗i ≤ E*

C
≤ E∗f (E∗f−E∗i = ∆E), this is found to

result into the quantum-mechanical expectation S
QM

:

<S*
C

(E*
C

)> =
1

∆E

∫ E*
f

E*
i

S
C

(E*
C

)dE*
C

=
1

∆E

∫ E*
f

E*
i

{
1 + ln(E*

C
)
}

dE*
C

(6)
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<S*
C

(E*
C

)> =
E∗f lnE∗f − E∗i lnE∗i

∆E
= S

QM
(T) (7)

Basing on a principle stated in [6] we have to take indeed, in equation
(7) :

E∗f
E∗i

= exp(∆E/T) (8)

E∗i =
∆E

exp(∆E/T)−1
= E

BE
(9)

Here we assume, to be definite, E∗f ≥E∗i so that ∆E has to be taken
equal to hωc and E

BE
is the Bose−Einstein distribution expression. Fur-

ther discussion and interpretation of these equations is given in the
quoted reference, but in this paper we have to understand more about the
correlation between equations (6),(7) and the thermodynamic behavior
described by the Bernoulli potential Ψ* in equation (11). Here we have to
note that introducing the integral mean of the classical entropy expres-
sion as shown in equation (6) is equivalent to assume a ”symmetrized
” expression both for the entropy and sum-over-states as is indicated
in the previous paper. We also note that equation (9) determines a
Bose-Einstein distribution for the system energy <E*

C
>:

<E*
C
> =

1
∆E

∫ E*
f

E*
i

E*
C

dE*
C

=
E∗f+E∗i

2
= E

BE
+

∆E
2

(10)

Equations (6)÷(10) are obtained in reference [6] by the means
of variational procedures applied to a modified classical potential Ψ* :

Ψ* = −lnZ* = −ln
Z*
C

(T)
V*

= −ln
T
V*

= −lnP* (11)

This last has been called the Bernoulli thermodynamic potential, or
the ”hydrodynamic” potential. It differs from the standard classical
one (2) by the factor lnV* where V* is the oscillators assembly volume.
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The origin of this potential will be discussed with a few details in the
next section. Here note that it takes an expression −lnP* (P* = pressure
modulus). As discussed in [6], the pressure P resulting from the Bernoulli
potential is found negative; but, in that same reference, the constitutive
equation for the pressure was taken opposite by sign to the standard
convention, because we found there more comfortable to operate with a
positive-definite pressure P* (this is because the expressions of entropy
and sum-over-states, as is clear in equations (11) and (30), can be more
easily written as functions of P*). Then with equation (11) we find a
perfect-gas-like state equation for the pressure modulus P* but we have
to take care - in [6] as well - that this is because of the convention we
used. However, unless we specifically refer to the case of reference [6]
which can be easily identified here by the use of asterisks affecting the
thermodynamic variables ( P*,E*,S* etc. ), in this work we find more
comfortable to come back to the standard convention, and will use the
orthodox definition of the pressure P as is clear, for instance, in equation
(29 ).

Here as a further essential comment to equations (6 )÷(11) we remark
that they indicate the possibility to set up improved classical models, to
the purpose of approaching quantum mechanical results, in the domain
of thermodynamics first. However, the big challenge to be pursued in
this work is finding the mechanical oscillator model corresponding to the
FEOM model, because this mechanical oscillator will exhibit quantum
properties while basing its behavior within a classical physics domain.

Moreover, on a more technical ground, the important remark is as
follows. Basing on the result (7) one is brought to the conclusion that
taking into account the effectiveness of an energy spectrum with val-
ues included in a defined interval is the statistical basis to understand
the transition from classical to quantum mechanics. In simple words,
we have to think that a purely classical system will start to exhibit a
quantum−mechanical behavior if energy fluctuations are superimposed
to it. The source of these fluctuations has been called in previous work
the fluctuation field, and the distinguished parts of the oscillator space
and momentum co-ordinates, able to accommodate the energy transfer
from it to the oscillator itself, will be identified in this paper as the
(so-called) hidden degree of freedom (HDF).
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3.3 The Bernoulli thermodynamic potential

We have to discuss the origin of the Bernoulli thermodynamic potential
(11) with more details, both because we want to give some definite inter-
pretation about it, and because it will be taken as a basis to introduce
some generalized expressions at the end of this paper.

It is well known that finding a proper expression for the classical os-
cillators sum-over-states or thermodynamic potential, able to result in
a correct description of effects in modern physics and to overcome the
Rayleigh-Jeans law, is a very hard matter to accomplish. The appar-
ent impossibility to avoid the so-called ultraviolet catastrophe by the
means of standard classical thermodynamics brought Planck to intro-
duce the revolutionary idea of the existence of energy quanta in physics.
A classical-like description of phenomena is, however, promoted by the
present and correlated papers. The thermodynamic potential (11) we
have assumed in [6] is, in our opinion, an interesting prototype to be
investigated to the purpose of assessing alternative procedures and in-
terpretation with respect to Planck’s discovery and associated quantum
physics framework. We will therefore discuss this subject here.

The potential (11) is representative of a peculiar property of linked
systems. If we look at them from the classical mechanics point of view,
we find that the oscillator maximum elongation x0 increases with the
total mechanical energy Em. For instance, in the harmonic oscillator
case we mainly refer to throughout this paper, we have

1
2

mv2 +
1
2

K*x2 = Em =
1
2

K*x2
0 (12)

If we take now a thermodynamic point of view, we can translate -
although somewhat ”abruptly” - this property into a thermodynamic
relation between temperature and volume, provided we assume to stay
in a situation as near as possible to mechanics. In order to satisfy this
last requirement, we note that the appearance of thermal effects is the
distinguishing aspect of thermodynamics compared to mechanics. Then
it is clear that importing mechanical properties into a thermodynamic
framework only might be allowed within the recognized limit where en-
tropy effects are neglected. The best way to introduce the next equations
from (17) to (24 ) is therefore advertising that they are written, to in-
vestigative purposes, neglecting the entropy - i.e. in some way assuming
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that the entropy is zero or a constant at least. To show our reasoning,
we basically start by using the equipartition principle and we find

<
1
2

mv2> =<
1
2

K*x2> =
T
2

(13)

Here the averages are clearly defined as thermodynamic ensemble ones.
Note that the classical potentials pertaining to each of the quadratic
degrees of freedom appearing in this equation can be written

Ψ*
C

2
= −1

2
ln Z*

C
= −1

2
ln T (14)

S*
C

2
=

1
2

(1 + ln T) (15)

We have also

<
1
2

mv2>+<
1
2

K*x2> = <Em> = E*(T) = T =
1
2

K*<x2
0> (16)

Here E*(T) is the thermodynamic energy. Now we set

1
2

K*<x2
0> ≈

1
8

K*V*2 (17)

We assume here the (squared) volume V* representative of the (squared)
mean value of twice the maximum elongation. As advertised, this can
be thought true only in the ”mechanical” limit, because the volume V*
is practically equal to <|2x0|> and in equation (17) we are neglecting
the variance due to the energy spread. In this context, the previous
equations suggest to us that if we neglect the entropy (then, in a sense,
an ”adiabatic transformation”along, Sm = const ), the volume V* will
be found to increase with the thermodynamic energy :

1
8

K*V*2 |Sm=const≈ T (18)

T
V*2

|Sm=const≈ const =
1
8

K* ⇒ T
V*2

= K(Sm) (19)
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Equations (18 ) and (19 ) show that, within the assessed limit and in-
terpretation, the quantity T/V*2 is essentially a function of the entropy
which can be written K(Sm). We call Sm (m=mechanical) the entropy
resulting from this intermediate analysis step, see equation (24). If this
entropy is taken constant, indeed, then the behavior is dominated by
mechanics and T/V*2 (for a harmonic oscillator) will take its ”mechani-
cal ”, constant value. The function K(S*), where S* is now a generalized
thermodynamic entropy, will be called the elastic thermodynamic func-
tion. At this stage, we recognize that neglecting entropy would also bring
us to the following rough expression for the system sum-over-states :

Zsl ≈ exp
(
−<Em>(V*)

T

)
= exp

(
−K*V*2

8T

)
= exp

(
−E*(V*)

T

)
(20)

This is just the same form we would have for a single mechanical energy
level (sl). From this equation we would find the system state equation

PmV* = TV*
∂

∂V*
ln Zsl = −TV*

∂

∂V*
<Em>(V*)

T
= −1

4
K*V*2 = −2T

(21)

With this procedure, we have deployed the negative pressure property
we attributed in [6] to our Bernoulli oscillators. In equation (21) as well
as in previous ones, the index m has been given to the concerned vari-
ables, because taking the energy <Em> proportional to the squared
volume essentially reproduces the purely mechanical property (18). To
go further, however, we have to save the thermal equipartition of en-
ergy; so we are interested to an expression for Z where E* is taken as a
function of the temperature only, while the state equation (21) is main-
tained. Therefore the more refined forms we will write down - at this
investigation stage - to represent our (harmonic) oscillator potentials are
as follows :

Zm =
T

V*2
(22)

Ψm = − ln Zm = −ln
T

V*2
(23)
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Sm = 1 + ln
T

V*2
(24)

These equations provide us indeed with the right constant-volume spe-
cific heat and state equation. We note that they can be obtained dividing
by a term V*2 the argument of the classical entropy S*

C
(T) ln-part as

given by equation (5). They can be considered as the brute, precursory
equations for the forms we actually used in reference [6]. The potential
T/V* appearing in the FEOM model is indeed just something more than
the prototype, simple form (22) used to accommodate the fundamental
concepts here introduced (elastic function and negative pressure). It
stems from further analysis applied - starting from (15) and (19). This
is as follows.

When we take the volume V* as an independent thermodynamic
variable in our potentials, we want to save the equipartition principle,
so that the thermodynamic energy E* expression always must be kept
equal to the temperature T. Then we have to recognize that introducing
the volume V* should only be done by perturbing the entropy expression
- more specifically, just that part of entropy which depends on the degree
of freedom associated with the mechanical potential 1

2K*x2. Now that
part of the entropy has the standard expression S*

C
/2 given in equation

(15), where the term 1
2 comes from the thermal equipartition of energy

and the logarithm argument T is the only part of the expression which
can be correlated with the elastic function. Then we identify as a pre-
cursory (p) expression of the entropy S*

C
/2 (15) the following

Sp =
1
2

+
1
2

ln
K*<x2

0>

2
(25)

Introducing now the volume V* action into this expression as previously
understood would bring us to write (idler constants dropped off):

Sp →
1
2

+
1
2

ln
K*<x2

0>

2V*2
≡ S*

m =
1
2

+
1
2

ln
T

V*2
≡ 1

2
+

1
2

ln K(S*
m) (26)

As discussed already, this is done in such a way that if a zero variance was
attributed to the distribution of elongation values, then our ”mechanical”
equation (18) would hold, and no (variable) entropy would be generated
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at all (ln part of it, as obvious). Now it is clear that the final expression
for the oscillators entropy becomes

S* =
1
2

(1 + ln T) + S*
m = 1 + ln

T
V*

(27)

and the thermodynamic potential, finally, comes out to be our FEOM
expression

Ψ* = − ln Z* = − ln
T
V*

= −ln
Z*
C

V*
(28)

From this expression, we find the state equation :

P = T
∂ ln Z*
∂V∗

= T
∂ ln T/V*
∂V∗

= − T
V*

= −P* =
Pm
2

(29)

By this procedure, we see that the resulting system pressure is reduced
by a half with respect to the ”brute” mechanical model, and this is be-
cause of a thermodynamic disorder effect. The kinetic degree of freedom
entropy is indeed left unperturbed by equation (26). As pointed out ear-
lier in this paper, the pressure P resulting from the Bernoulli potential
is negative, and the orthodox convention will be used throughout this
work as is clear from the same equation (29).

The entropy full expression in the FEOM model will then be given
by

S*(T,V*) =
E*
T

+ lnZ* = 1 + lnP* (30)

consistent with equation (11).

4 The FEOM model and the hidden degree of freedom

Investigations about a HDF possible existence are largely present in the
literature and were first developed by de Broglie and Bohm. By our
investigations, we are also brought to consider the possibility that HDF
and its excitation source (the fluctuation field) are responsible for the
deviations that physical systems exhibit from classical behavior. This
hypothesis is originated by reference [6] and enforced by the second (ii)
result we quoted in the previous section : assuming that the fluctua-
tion field is able to provide extra−energy to alpha particles leads to a
very simple explanation of tunnelling effects, while staying in a classical
physics frame. Now we want to take advantage of these considerations
in further analysis. To this end, the following arguments are introduced.
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4.1 The isobaric-isentropic transformation and the Bernoulli oscillators

Gibbs energy

Let us now analyze with some details the way thermodynamics works to
describe transformations for the system characterized by the potential
(11).

For this system, isobaric transformations are coincident with adia-
batic ones. Along the adiabatics the First Law will then be written
:

P*dV* = dE*− TdS* = dE* (31)

S* = 1+ln
T
V*

= 1 + ln P* = const (32)

In our FEOM model, the system interacts with a classical electro-
magnetic field mode (CEF) at pulsation ωc. The CEF mode exchanges
some heat

∫
TdS

CEF
with the system − within our framework this heat

is (reversibly) transformed into work, according to the equation

−
∫ f

i

TdS
CEF

=
∫ f

i

P*dV* =±∆E = ± hωc (33)

Equations (31)÷ (33) describe our fluctuation thermodynamics as re-
ported already in reference [6]. Equation (33), however, is a key equation
and has to be discussed more in the next section. Here we have to say -
as a comment not displayed in [6] - that the intermediation of HDF has
to be invoked to explain how this heat/work transformation occurs. If,
indeed, appropriate thermodynamic parameters f and ∆x associated to
HDF are introduced, the same equation can be written

−
∫ f

i

TdS
CEF

=
∫ f

i

TdS(∆x) =
∫ f

i

fd∆x =
∫ f

i

P*dV* = ±∆E

(34)

In this equation, S(∆x) and f are an entropy and a pressure associated
with the thermodynamic HDF ”volume” co-ordinate ∆x, respectively.
The equation shows that HDF is responsible for the heat absorption and
work transfer (and vice-versa) to the oscillator. Technically, this is the
first appearance of HDF in our framework.
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In order to describe the overall interaction process, we also used in
[6] an expression for the oscillators Gibbs free energy

G* = E* + P*V*− TS* (35)

This expression is not the one we would find using an orthodox definition.
It would be easy to show that in a standard framework where the total
volume available for N particles is equal to the volume available for each
of them - because they are assumed ”not to interact” - then the system
Gibbs free energy would be found equal to the Helmholtz free energy
and we would have :

G* = F* = E*− TS* (36)

Now the form we used

G* = E* + P*V*− TS* = E*− PV*− TS* ≡ E*− TS* + G(f,g,T)
(37)

is seen to display an extra term P*V*= −PV* = T. We attribute the
appearance of this term, too, to the action of HDF so that - as is clear
already from equation (37) - it takes an expression G(f,g,T), where a
second ”pressure” parameter g is introduced. Further discussion of these
equations will follow in the next section.

In order to make clear the sense of the equations used in reference [6],
therefore, we conclude resuming here the important remarks. Equation
(33) is meaningful only if we can identify a physical mechanism responsi-
ble for the invoked transformation of heat into work. On the other hand,
the quoted expression for G* will be found congruent with a standard
model and definition only if we assume that a complementary potential,
equal to −PV*, is added to it . These remarks mean that our overall
framework is congruent with the assumption of existence of a (hidden)
degree of freedom HDF, up to now introducing the parameters ∆x, f and
g. In the next section, this will be shown with greater detail. In the
following paper II, the HDF mechanical properties will be deployed and

discussed.
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4.2 The isobaric-isentropic transformation and the hidden degree of
freedom

Here we start again with the equations established in the previous section
:

−
∫ f

i

TdS
CEF

=
∫ f

i

TdS(∆x) =
∫ f

i

fd∆x =
∫ f

i

P*dV* = ±∆E

(38)

G* = E*− PV*− TS* = E*− TS* + G(f,g,T) (39)

These equations are interpreted in the light of existence of the degree of
freedom HDF. By inspection, we come to the conclusion that this last is
represented by two (generalized) thermodynamic co-ordinates, which we
will call ∆x and k, and their conjugate variables f and g, respectively.
These co-ordinates are submitted to the First Law as is clear from the
following equation:

−
∫ f

i

gdk −
∫ f

i

fd∆x = ∆U(T,∆x,k)−
∫ f

i

TdS(∆x)−
∫ f

i

TdS(k)

(40)

Here U(T,∆x,k) is the thermodynamic energy pertaining to HDF, which
is an unknown function at present - but we do not need to define it here,
because in the present framework HDF transforms heat into work totally
so that ∆U = 0. In the following, by the sake of simplicity, we will drop
off idler constants and will assume just the value zero for U(T,∆x,k0).

In order to display clearly the effect of these parameters and poten-
tials along the relevant transformation for our oscillators ensemble, we
can write again equation (38) as follows :

−
∫ f

i

TdS
CEF

=
∫ f

i

TdS* +
∫ f

i

TdS(∆x)+
∫ f

i

TdS(k) =
∫ f

i

TdS(∆x)+

+
∫ f

i

TdS(k) =
∫ f

i

gdk +
∫ f

i

fd∆x =
∫ f

i

P*dV* = ±∆E (41)
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This equation gives the First Law effect on our system, all the involved
parameters taken into account. By comparison of this equation with
equations (33), (40) we confirm that the following constraints have been
assumed to hold along the transformation:

U(T,∆x, k0) = 0 (42)

∫ f

i

TdS(k) =
∫ f

i

gdk = 0⇔ k = k0 = const⇔ S(k) = const = S(k0)

(43)

∫ f

i

fd∆x =
∫ f

i

P*dV*⇒ [P* = γf] ∧ [∆x = γV*] (44)

The previous equations describe clearly the energy transfer mechanism
between the different degrees of freedom involved. For the sake of con-
sistency of the present model with quantum physics, in the last equation
we have to take a (constant) coefficient γ in such a way that the HDF
characteristic action associated to ∆x, A = mω∆x2, is of the order of the
quantum action h (we associate a pulsation ω to ∆x - this will be made
clear in the following paper II. In the present context, ω is coincident
with ωc). The coefficient γ is able to describe the following limit cases :
if γ → 0 the incertitude ∆x and the pressure P* will be found negligi-
ble and the standard classical case is attained - conversely, if γ ≈ 1 the
particle position incertitude is of the order of the volume V* so that a
deep quantum limit (small quantum numbers represented) applies. Con-
jectural expressions for γ can easily be found, but they turn out not to
be relevant in the present context. By equation (44) it is seen that the
dimension of a [length] is attributed to ∆x so that this last is the ther-
modynamic appearance of the HDF space co-ordinate, whose mechanical
counterpart is a variable we will call xz (see paper II). To be practical,
∆x is the thermodynamic measure of the extension available for xz just
alike the volume V* ( remember this last is a [length] too, because the
model is uni-dimensional) is the measure of the space available for the os-
cillator. The mechanical correspondent of ∆x will be interpreted (paper
II) as the quantum incertitude on the particle position.

Now we find, using equation (39), that the Gibbs potential associated
with HDF can be written as follows

G(f,g,T) = G(f,T) + G(g,T) = −PV* (45)
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This result can be obtained in the easiest way if we assume

TS(k) = [−PV*−G(f,T)] ln k/k0 =⇒ S(k0) = 0 (46)

gk = −PV*−G(f,T) (47)

Equations (38)÷( 47) make clear that we correlate the isobaric-
isentropic transformation to the fact that HDF is perturbed - via
its co-ordinate elongation ∆x - by the interaction process. HDF is
able (reversibly) to absorb heat from the electromagnetic field, trans-
form this energy into work and inject it into the system. It is easily
seen, by inspection of our equations, that in order to match the require-
ments stemming from our FEOM model, we asked to the parameters and
potentials some definite behavior and properties. These last can be re-
sumed saying that the parameter ∆x is used to transform heat into work,
while the parameter k is taken constant and (concurrently) provides the
extra Gibbs potential −PV* as required.

4.3 Generalized formalism for the FEOM model and the isobaric-

isoelastic transformation

If we recognize that extra parameters have to be considered within the
description of the physical processes, then our thermodynamic frame-
work has to evolve towards a generalized formalism. The following
equations are therefore established in order to introduce a compact de-
scription of the fluctuation process at hand in reference [6]. We have
:

Z*(T,V*) → Z*(T,V*,∆x,k) = Z*(T,V*)Z(∆x,k) (48)

Z(∆x,k) = Z(∆x)Z(k) =
∆x
γ

[
k
k0

]−PV*+G(f,T)
T

(49)

Z(∆x) =
∆x
γ

(50)

ln Z(k) = −PV*+G(f,T)
T

ln
[

k
k0

]
(51)



Propositional bases for the physics of the Bernoulli oscillators . . . 133

G*(P,T) → G*(T,P,f,g) = G*(P,T) + G(f,g,T) ≡

≡ F*(T,V*) + G(f,T) + G(g,T) = E*− TS*− PV* (52)

G(f,T) = f∆x− TS(∆x) = f∆x− Tln
∆x
γ

(53)

G(g,T) = gk− TS(k) = gk − TlnZ(k) (54)

These equations show that the variables ∆x , f, k and g are introduced
into the thermodynamic equations by the means of appropriate additive
potentials.

Now, by congruence, we find that the thermodynamic framework
corresponding to our FEOM model in reference [6] is expressed by the
following equations :

Z*(T,V*,∆x,k) =
T
V*

∆x
γ

[
k
k0

]−PV*+G(f,T)
T

(55)

E*(T,V*,∆x,k) = T2 ∂ ln Z*(T,V*,∆x,k)
∂T

= E*(T) + U(T,∆x,k) (56)

U(T,∆x,k) = T2 ∂ ln Z(∆x,k)
∂T

(57)

S*(T,V*,∆x,k) =
E*
T

+
U(T,∆x,k)

T
+ lnZ*(T,V*,∆x,k) =

= 1 + lnZ*(T,V*)+S(∆x)+S(k) =

= 1 + ln
T
V*

+ ln
∆x
γ
− [PV* + G(f,T)] ln

k
k0

(58)

f = T
∂

∂∆x
lnZ*(T,V*,∆x,k) (59)
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g = T
∂

∂k
lnZ*(T,V*,∆x,k) (60)

Note here that k is just the homologous quantity of the function K(S∗m)
displayed in equation (26), i.e. is an elastic thermodynamic function
(pertaining to HDF), able to generate a further (log-part of) entropy in
our potential. Since k is kept constant in our framework, the transfor-
mation we are investigating is isoelastic as concerns HDF. On the other
hand, from equations (32) and (44) we see that the pressure f on the
co-ordinate ∆x is equal to P*/γ = const = f0 so that the transformation
is isobaric for HDF as well. The interpretation we give to this setting
is that we can look at HDF as to a harmonic oscillation superimposed
to the classical motion, as is suggested by the FEOM model. Its elon-
gation ∆x has been said to be the thermodynamic appearance of the
quantum incertitude on the particle position. The previous equation
(44) shows that, throughout this transformation, the space extension
∆x available for HDF behaves proportionally to the oscillator volume
V* so that we will also call this transformation ”perfect”. The elastic
function k - just alike the elongation ∆x - may in further developments
depend on the volume or other parameters, but is taken independent of
the temperature in order to let the constant-volume specific heat of our
system unperturbed. This means that the role of HDF is essentially as
a physical interface between the classical oscillator and the fluctuation
field and - within the present framework - it is not able to store ther-
modynamic energy. If we keep in mind that ”isoelastic” and ”perfect”
are referred to HDF and that the overall transformation investigated in
reference [6], the HDF entropy taken into account, is not isentropic, we
may refer to the ensemble of the classical oscillator + HDF as a physical
system undergoing a perfect-isobaric-isoelastic transformation. As a fur-
ther remark, we see that the potential G(f,T) taken along the isobaric
f0 turns out to be a function of the temperature only. Now equation
(47) is a form we will extrapolate down to the case when f becomes zero,
so that by simplicity we will write G(f,T) ≡Gf(T).Then taking into ac-
count the equality −PV* = T we see that the HDF elastic function is an
entropy source (log part) 2(1−Gf(T)/T) times stronger than its classical
counterpart K(S*

m) (see eq.(26)), and a chemical potential source able
to introduce the thrust potential gk0 = −PV*−Gf(T) into the classical
oscillators thermodynamic ensemble.
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Along our perfect-isobaric-isoelastic transformation we will find

E*(T) = T (61)

f =
P*
γ

=
−P
γ

=
−P0

γ
= f0 = const (62)

∆x = γV* =
γT
P∗0

(63)

k = k0 = const (64)

Z*(T,V*,γV*, k0) ≡ P*
0

∆x
γ
≡ Z*

C
≡ E*

C
≡ E* = T (65)

U(T,V*, k0) = T2 ∂ ln Z(∆x,k)
∂T

|V*,k0 = 0 (66)

S*(T,V*,γV*,k0) =
E*
T

+ lnZ*(T,V*,γV*,k0) =

= 1 + lnZ*(T,V*) + S(∆x) |V* +S(k0) =

= 1 + ln
[
P*

0

∆x
γ

]
≡ 1 + ln T ≡ 1 + ln E* ≡ S*

C
(E*) ≡ S*

C
(E*

C
) (67)

gk |k0≡ gk0 = −PV*−Gf(T) (68)

We have also

f ∆x = T ≡ E* (69)



136 G. Mastrocinque

4.4 The perfect-isobaric-isoelastic transformation and the fluctuation

entropy

Now from equation (41), always referring to the FEOM model, we see
that the system total entropy ( given by S* + S(∆x) + S(k) ) fluctuates
with the energy E*. Its mean value <S*(T,V*,γV*,k0)> , given by the
integral performed over the variational domain with extension ∆ E and
boundaries E∗i ,E

∗
f , is seen by the effect of equation (67) to be coincident

with an expression we have reported in a previous section already:

<S*(T,V*,γV*,k0)> ≡ <S*
C

(E*
C

)> =
1

∆E

∫ E*
f

E*
i

S
C

(E*
C

)dE*
C

=

=
1

∆E

∫ E*
f

E*
i

[
1 + ln(E*

C
)
]

dE*
C

=
E∗f lnE∗f − E∗i lnE∗i

∆E
= S

QM
(T) (70)

As remarked, due to the correlation between E∗i and E∗f , this mean
value is also found coincident with the quantum-mechanical expectation
S
QM

. We recall that the formalism expounded in reference [6] provides,
at the same time, the value of the mean thermodynamic energy <E∗c>
over the fluctuation (given in equation (10)), and the mean Helmholtz
energy of the system. The last quantity turns out to be expressed by
the arithmetic mean over the extreme values attained in the fluctuation.
All of these quantities are found to be coincident with the quantum-
mechanical expectations, in agreement with the following equation :

−T< lnZ*(T,V*,γV*,k0)> = −T
1
2

ln
(
E∗iE

∗
f

)
≡ −T ln Z

QM
(T) =

= <E*
C
>− T<S*

C
(E*

C
)> =

=
E∗f+E∗i

2
− T

E∗f lnE∗f − E∗i lnE∗i
∆E

≡ EBE +
∆E
2
− TS

QM
(T) (71)

Both the Helmholtz energy and the entropy shown in these equations
result from the application of symmetrizing equations of the form (1)
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taken with an energy distribution function P(E*
C

) = 1/
[
E∗f -E∗i

]
. If we

set, indeed

P
C

(E*
C

) ≡ exp

[
S*
C

(E*
C

)− E*
C

T

]
= Z*

C
(72)

then we have :

P
CC

if (E∗i ,E
∗
f ) ≡ exp

∫ E∗f

E∗i

[
ln P

C
(E*

C
)
]

P(E*
C

)dE*
C

=

= exp
1

∆E

∫ E*
f

E*
i

[
S*
C

(E*
C

)− E*
C

T

]
dE*

C
= exp

[
<S*

C
(E*

C
)>−

E∗f+E∗i
2T

]
(73)

so that

{
P
C

(E*
C

)→ P
CC

if (E∗i ,E
∗
f )
}
⇔

⇔
{[

S*
C

(E*
C

)→ <S*
C

(E*
C

)> ≡ S
QM

(T)
]
∧
[
E*
C
→

E∗f+E∗i
2T

]}
(74)

i.e.

Z*
C

(E*
C

)→ Z
QM

(T) (75)

and

−T ln Z*
C

(E*
C

)→ −T ln Z
QM

(T) (76)

These equations show that CC-symmetrization of the classical quan-
tities S*

C
(E*

C
), E*

C
, Z*

C
results into their quantum-mechanical correspon-

dents. On the other hand, we might also set

P
C

(E*
C

) ≡ Z*(T,V*,γV*,k0) ≡ Z*
C
≡ E*

C
(77)
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and use in this case the classical-discrete (CD) fluctuation model [2]. We
would obtain:

P
CD

if (E∗i ,E
∗
f ) =

√
P
C

(E*
i )PC

(E*
f ) =

√
E∗iE

∗
f (78)

Then we would find, as pointed out in [6] already,{
P
C

(E*
C

)→ P
CD

if (E∗i ,E
∗
f )
}
⇔
{

Z*
C
→
√

E∗iE
∗
f ≡ Z

QM
(T)
}

(79)

These last relationships have been found in the previous, quoted refer-
ence - they are reported here by the sake of completeness and clarity of
the overall framework proposed. In equations (72)÷ (79) idler normal-
ization constants for the probability distributions have been omitted.

5 Generalized framework

The previous equations (12)÷(79) give deeper congruence and interpre-
tative level to the equations used in reference [6]. As equations (65) and
(67) are concerned, it is interesting to note that the investigated perfect
isobaric-isoelastic transformation equations (61)÷(64) characterizing the
fluctuation make the expression of Z*(T,V*,∆x,k)|P,k0 coincident with
the purely classical expression Z*

C
:

Z*(T,V*,∆x,k) |P,k0= Z*(T,V*,γV*,k0) |P= T = Z*
C

(80)

This is because the functions ∆x/ (γV*) - which last can be named
z(∆x,V*) - and Z(k) are equal to 1 across our perfect-isoelastic trans-
formation. We may say that these functions are ”silent” or ” hidden ”
into the classical sum-over-states expression Z*

C
.We will use again this

concept later on in this section.
Also interesting, we see that the form

Z*(T,V*,∆x) =
T
V*

∆x
γ

(81)

can be obtained using the classical sum-over-continuum-states method
when the very simple variations one can appreciate from the following
equations are applied (two degrees of freedom reference case) :

Z*
C

=
∫ ∞

0

∫ ∞
0

exp (−H
C

(p,x)/T) dpdx ≡ T (82)
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Z*(T,V*,∆x) = Z*(T,V*)Z(∆x) = Z*
C

∆x
γV*

≡

≡
∫ ∞

0

∫ ∞
0

exp (−H
C

(p,x)/T)
dpdx
∆pV*

(83)

(idler constants h and γ now dropped off). This equation shows clearly
that our thermodynamic framework is correlated to a standard classical-
continuum formalism for the sum-over-states, from which it can be ob-
tained by normalizing the integral with a (variable) action ∆pV*. ∆p in
equation (83) is equal to h/∆x as given by Heisenberg’s indetermination
principle (note yet that this last will take in our frame an interpretation
different from the orthodox one, and the incertitudes ∆x and ∆p will as-
sume peculiar definitions to be given in the following paper II). However,
∆p is only an auxiliary, dependent (on ∆x) variable in the present frame.
For further investigation we will instead base our generalized expression,
displayed in the next equation (85), on extrapolating the constitutive
function ∆x/V* in equation (81) into the following form

∆x
V*
→
√

∆x∆p*(∆x)
mωV2

(84)

In this expression, the quantity ∆p* is a function which must be con-
sidered coincident with the quantum momentum incertitude only when
the Heisenberg’s principle is assumed as an effective, strict constraint -
i.e. in the full quantum limit. It is clear that in the quasi-classical limit,
instead, this constraint is relaxed, and we will take ∆p* just propor-
tional to ∆x when we want to approach the FEOM framework. In this
way, we see that ∆x∆p*(∆x) is an action varying between the values h
and A=mω∆x2 peculiar of the FEOM model (A being of the order of h
too, the asterisk in ∆p* just indicates that in the FEOM case ∆p* takes
indeed the functional expression ω∆x).

As a consequence of equation (84), in the full quantum limit the
sum-over-states expression will be found independent of ∆x so that (as
remarked already) the corresponding pressure f will be found de-coupled
from the pressure P* and takes a zero value. This setting is also due
to the fact that, in our papers, the full quantum case analysis is limited
to the case of stationary pure quantum n-states, with density ρn. The
specific volume V ≡ ρ−1

n then in the full quantum case will not be a
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fluctuating quantity (as it was in the FEOM model) any more, and
there is no work done by the pressure f to account for. It is therefore
understood, in our framework, that the pressure f originates from the
mixing of pure states.

5.1 The generalized thermodynamic potential and sum-over-states ex-

pressions

The generalized expression we are going to introduce by the means of
equation (85) is a silent expression (in the quantum limit where ∆p*
≡ ∆p≈h/∆x ; note also that k will just take the determination k0 along
the relevant transformation) in the HDF variables. This is noted in view
of further analysis to be developed in paper III. This analysis will con-
cern microcanonical ensembles of particles, so that the thermodynamic
variables will be referred to such cases. We advance therefore that a
”microcanonical temperature” Tm will be defined, and the relevant vol-
ume will be set equal to the inverse of density ρ and named V. We have
first :

ψ = −lnz(Tm,V,∆x,k) =

= − ln

√
∆x∆p*
{mωV2} + h(Tm)−

∫
P(V)dV

Tm
− {PV}+ Gf(Tm)

Tm
ln

k
k0
≡

≡ −lnz(V) ≡ ln V ≡ − ln ρ (85)

h(Tm) =
∫

P(V)dV
Tm

+
PV + Gf(Tm)

Tm
ln

k
k0

+
1
2

ln
∆x∆p*

mω
(86)

The function z(Tm,V,∆x,k) is a peculiar constitutive factor of the sum-
over-states we will introduce in the following. Its utility will indeed be
clear from the following equations (87)÷(90). It is expressed in equa-
tion (85) as a function of the appropriate (thermodynamic) independent
variables Tm,V,∆x,k; but note that the potential PV and the action
mωV2 must be considered only parametric functions in that expression
(the brackets indicate that we have not to take derivatives of {PV},{

mωV2
}

while setting up the constitutive equation for the pressure P).
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The function h(Tm) is a normalizing factor which can be calculated by
the same equation (85) taking care that - given a transformation of inter-
est - all the parameters have been expressed as a function of Tm. By the
effect of such normalization (i.e. by our definition), the sum-over-states
z is always equal to the particle density 1/V . The variable z displays its
utility when we express the statistical sum over (energy-bounded) micro-
canonical ensembles to set up the full system thermodynamic potential.
To see this, let us distinguish here the two relevant cases of the FEOM
quasi-classical limit and the full quantum limit. We have indeed easily

Z*
m(Hc,Tm,T,V,∆x,k) = z(Tm,V,∆x,k) exp (−H

C
(p,x)/T) ≡ Z*

m(H
C

,T,V) ≡

≡ 1
V

exp (−H
C

(p,x)/T) (87)

Here the index m means ”microcanonical ”, and idler constants are
dropped off. Then we have

Z*(T,V*,∆x,k0) =
∫ ∞

0

Z*
m(Hc,Tm,T,V,∆x,k0)dH

C
=

=
∫ ∞

0

z(Tm,V,∆x,k) exp (−H
C

(p,x)/T) dH
C
≡ Tz(Tm,V*,∆x,k0) ≡|∆x=V∗

≡ Z*(T,V*) ≡ T
V*

{ FEOM case} (88)

Z
QM

n (En,T,Vn) = z(Tm,Vn,∆xn,kn) exp (−En/T) =
exp (−En/T)

Vn

(89)

ZQM (T,V*) =
∑
n

Z
QM

n (En,T,Vn) =
∑
n

exp (−En/T)
Vn

=
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=
1

V*

∑
n

exp (−En/T) {Full quantum case} (90)

Here and in the previous equation (88) the volume V* appears, as is
obvious, as a mean value calculated over the energy states ensemble. By
these equations, we see that the FEOM case is the quasi-classical limit
of the full quantum case. The last equation can also be integrated in
the x-co-ordinate domain because we take in this case the volume Vn

as a function of x and equal to the inverse power of the (normalized)
quantum-mechanical particle density ρn(x), so that

ZQM (T) =
∫

ZQM (T,Vn)dx =
∑
n

∫
exp (−En/T)

Vn(x)
dx =

=
∑
n

∫
ρn(x) exp (−En/T) dx =

∑
n

exp (−En/T)

{Full quantum case} (91)

Integration of equation (88) over the x-co-ordinate domain also makes
the volume V* to disappear, and plainly brings to the standard classical
result.

These equations and remarks complete - as concerns the present con-
text - the correlation frame between our proposed theory and consol-
idated known results. They will also turn out useful for applications
to be shown in the following papers II and III. Note yet that both the
FEOM and the full quantum case as described by equations (87) and
(89) appear consistent with defining a Gibbs distribution [23] wn in the
form

wn = ρn(x) exp(F−En)/T (92)

This distribution displays extra entropy terms lnρn within it when com-
pared with the standard definition. We can interpret this difference as
a peculiar property expressed by the microcanonical ensembles pertain-
ing to the energy values En, meaning that some extra degeneration of
states with respect to the standard case should be accounted for when
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forming the statistical mixtures with particles submitted to the HDF
action. We are going indeed, in the following paper III, to set up a
statistical model able to account for this degeneration - as well as to
serve as a basis to characterize better the physical meaning of the HDF
parameters ∆x, ∆p, f, g, k and their influence on the overall physical
behavior of our system. Here, as a conclusive statement, we will give
the expression of the stationary mass-flow theorem consistent with the
thermodynamic framework we exposed in this paper, inclusive of the
effect of HDF, for a microcanonical particles ensemble characterized by
the partition function z(Tm,V,∆x,k)exp(−E/T).

5.2 The mass-flow and energy theorem expressions

To introduce this subject, let us first consider the following. The FEOM
model is set up with a thermodynamic assembly of classical oscillators
whose attractive centers are at rest in the same position of the space.
Their volume potential, defined as a function of the (linear) co-ordinate
x, is harmonic and, in the classical thermodynamic average, is responsi-
ble for half the constant volume specific heat of the system (cv = 1). The
volume V* of the system represents the total extension of space occupied
by the oscillating particles. The FEOM model, therefore, describes the
behavior of a thermalized system on a ”macroscopic” space scale. In the
following we want, instead, to have deeper insight into the system physi-
cal properties which are observable within a smaller scale region of space.
This means that we are interested into the local properties displayed by
the statistical ensemble of particles which can be found into every region
of space enclosed between the current co-ordinate values x and x+dx.
To this end, we have to introduce some ”local ” thermodynamics of the
system, and this will be based on the expressions of the distributions
(87) or (89) (depending on the case) and on the flow-of-mass theorem.

In the region of space enclosed between x and x+dx we will find
ρ(x)dx =(1/V)dx oscillating particles, i.e. ρ(x) is the (numerical) parti-
cle density at the space position x and V is the corresponding specific
volume. A drift velocity vD(x) of the ensemble has also to be considered
- it will depend on the mass-flow rate we define for the particles ensem-
ble. The x-dependent classical volume potential is centered in x = 0, is
equal for all the particles and will be called from now on Φ(x). It will be
taken into account as a mechanical quantity in our following equations,
so that the constant volume specific heat of the system will now be only
due to the kinetic degree of freedom (cv = κ/2). As we will see in paper
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III, indeed, our microcanonical energy distributions will also be charac-
terized by some degree of thermalization κ concerning the kinetic degree
of freedom and by their own ”microcanonical temperature” Tm, to be
introduced. Clearly, our FEOM model and associated considerations
on HDF in this paper will sometimes become obsolete because of the
thermalization of the potential degree of freedom having been removed;
but - the thermodynamic potentials pertaining to different degrees of
freedom being additive - we are allowed to use the previous results on
HDF as a strong reference. Moreover, we want since now evolve towards
a generalized analysis where our previous results will be - as is obvious
- used critically. Within this context, the peculiar entropy term -lnV
introduced in the FEOM model will be maintained within the general-
ized framework - we have seen already that it remains attached to the
microcanonical distribution as is clear from the expression of the statisti-
cal sum z(Tm,V,∆x,k)≡ 1/V introduced previously. At the same time,
taking the derivative with respect to V in the generalized equation for z,
we see easily that the pressure definition of the microcanonical ensemble
has been de-coupled from the entropy expression, so that the possibility
to have different state equations is provided. In these conditions, we can
even remove the constraint that the volume potential is harmonic and
evolve towards the general case - where Φ(x) is whatever and, in every
position x, HDF is still acting on the particles while they travel.

Within this framework, we are brought to write down the mass-flow
theorem for our ensemble of particles. The HDF action must be ac-
counted for into it and we write:

1
2

mv2
D

+ I
D

(ν(x),κ) + Φ(x) +<ΦHDF(x,ξi(x))> |x +
∫

∆xdf +
∫

kdg +

+
∫

VdP = Inv (93)

Here v
D

is the ensemble drift velocity, <ΦHDF(x,ξi(x))>|x is the (statisti-
cal ensemble mean) mechanical potential energy supplied by HDF (ΦHDF

will be supposed, as shown in the next papers, to depend on a statisti-
cal parametric function ξ(x) assuming a value ξi(x) for the ith particle).
The quantities

∫
∆xdf and

∫
kdg are the constant -temperature parts of

the HDF-dependent thermodynamic chemical potentials, while
∫

VdP
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is the standard classical, relevant (for mass-flow) part of the system
chemical potential or indicated work function. The term I

D
(ν(x),κ) is

a mechanical-statistical potential, determined by the microcanonical dis-
tribution broadening (ν(x) is the corresponding volume-flow of particles)
and ”thermalization level ” κ. This potential is assumed not to depend
explicitly on the pressures f and g, so that it has not to be discussed
within the present framework and will be introduced with details in pa-
per III. Note here finally that if we take the limit of equation (93) when
P→ 0, then we have a microcanonic-statistical expression for the energy
theorem in the form

[
1
2

mv2
D

+<ΦHDF(x,ξi(x))> |x +
∫

∆xdf +
∫

kdg
]
|P=0 +I

D
(ν(x),0) + Φ(x) =

= Inv |P=0 (94)

This equation will be exploited in the following papers.

According to a previous remark, when considering pure quantum n-
states the quantity

∫
∆xdf will be taken equal to zero.

6 Conclusion

In this paper, we analyzed the thermodynamic behavior of a classical
oscillators ensemble in the light of the assumed existence of the so-called
hidden degree of freedom. HDF behaves as an interface between the sys-
tem and the external environment, and is assumed responsible for the
appearance of quantum-like effects. A few thermodynamic properties
of this physical actor have been brought to evidence, using essentially
the requirement that the overall framework describing the relevant in-
teractions and behaviors is able to match standard thermodynamics. A
simple generalized apparatus including an expression of the mass-flow
theorem able to describe the evidenced properties has been also set up
for later use, to be displayed in the following papers II and III.
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