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ABSTRACT. It is shown that the well-known procedure for proving
the equivalence of the expressions for the electric field calculated using
the Lorentz and Coulomb gauges is incorrect. The difference between
the two gauges is due to the difference in the speed of propagation of
a disturbance of the scalar potential.

1. Introduction.

Recently, Tzontchev et al. [1] reported on an experiment in which they
detected a longitudinal component of the electric field propagating at
the speed of light in the near field of a radiator. This result seems to be
obvious because an electric field propagating with the speed of light can
easily be calculated, for example, by using Eq. 14.14 in [2]. However,
the problem is that Eq. 14.14 was derived using the Lorentz gauge in
which disturbances of the scalar potential propagate with the speed c.
Because it follows from the experiment described in [1] that 0.95 of the
total magnitude of the E field is created by the scalar potential, it can
be concluded that the scalar potential propagates at the speed of light.
However, this contradicts conventional electrodynamics. It has been
established in classical electrodynamics that the EM potential cannot be
treated as a physical quantity, but as a mathematical tool for calculating
EM fields [2, Ch. 6.5, 3]. Therefore, the solutions of the wave equation
can be chosen so that the speed of propagation u of the scalar potential
can vary from zero to infinity. By choosing such solutions, the gauge is
also determined [4].

The most used gauges in electrodynamics are the Coulomb ( u =∞)
and Lorentz (u = c) gauges. However, the infinite speed of propagation
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of the scalar potential in the Coulomb gauge seems to contradict the
theory of relativity. Despite this, references [3, 2 (p 291, problem 6.20)]
state that the issues of causality and of the finite speed of propagation of
electromagnetic disturbances are obscured by the choice of the Coulomb
gauge: the potentials ϕ(u) and A(u) are manifestly not causal, but the
fields can be shown to be. So it contradicts the conclusion given in [1]
that ”The proper inference from this experiment is that the Coulomb
interaction cannot be considered as so called ’instantaneous action at a
distance’”( i.e. the scalar potential in the Coulomb gauge). Actually,
since we are only able to measure the EM fields experimentally, we can-
not draw any conclusions about the speed of propagation of the scalar
potential, if two solutions for the scalar and vector potentials ϕ(u1),
A(u1) and ϕ(u2), A(u2), where ui is determined by the choice of gauge,
yield identical expressions for the electric field.

However, the results of the experiment described in [1] suggest that
these expressions are not identical. So, one can question whether or
not different gauges in electrodynamics are actually equivalent. In this
paper, we consider this problem. Because existing studies of the equiv-
alence of the gauges have dealt with the Coulomb and Lorentz gauges,
we will focus our analysis on these gauges as well.

The plan of this paper is as follows. In section 2, we will calculate the
electric field in both gauges for the simplest model of the experimental
setup of [1]. Also we will show that these calculations must be made by
means of the potentials but cannot be done by using the wave equation
for the E field derived from the Maxwell equations directly, i.e. without
introducing the potentials. Some explanation of the results of the Sec.
2 is given in the sections 3 and 4 where we will review the derivation of
the equivalence of the expressions for the electric field calculated in both
gauges and then we will show at what point this derivation is wrong, i.e.
the difference in the shapes of the elementary classical charges calculated
in both gauges is neglected. This difference follows unambiguously from
the expressions for the scalar potential in the Coulomb and Lorentz
gauges. Because its motion causes a change in the shape of the charge,
since the size of the charge contracts along its direction of motion, one
would expect that the greatest difference in the gauges should occur in
this direction as well. Finally, in section 5, we will draw some conclusion
about what physical effect is responsible for the difference in the gauges.
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2. An example of difference between the electric field calcu-
lated in these gauges.

It is quite impossible to process complete calculations of the E field de-
tected by the antenna in the experiment of [1]. So for analysis of the
fields in this system we should simplify the latter but in such a way
that its inherent features will be held. Therefore, we consider the follow-
ing simplification of the real experiment: a single charge moving at the
straight line which corresponds to the axis of symmetry of the experimen-
tal installation. We assume too that this charge moves uniformly which
allows us to consider the most general case; i.e., when the properties
of the system do not depend on their initial conditions, and, therefore,
when choosing the advanced and retarded solutions as well.

Now we state the question: is it possible that the longitudinal com-
ponent of the E field calculated in different gauges has different values?.
Similar calculations have not been made in [1] so we wish to make up
this gap.

It should be noted that all formulas for calculations of the longitudi-
nal fields of the moving charge (in near non-radiative zone) are made for
the Lorentz gauge. So while calculating the electric field in the Coulomb
gauge, we use the method given in [5].

Thus, the equation for the vector potential in the Coulomb gauge is
(the Eq. 6.46 of [2])

∇2AC −
∂2AC

∂t2
= −4π

c
JC +

1
c
∇∂ϕC

∂t

Because of independence of the current JC and the scalar potential
ϕ on each other, we are able to express the quantity AC in terms of
the sum of two quantities; the first of which is determined by one wave
equation and the second from the other wave equation, i.e.

AC = AL + Aϕ (2.1)

∇2AL −
∂2AL

c2∂t2
= −4π

c
JL (2.2)

∇2Aϕ −
∂2Aϕ

c2∂t2
=

1
c
∇∂ϕC

∂t
(2.3)



166 V. V. Onoochin

One can see from the Eq. 2.2 that AL is the vector potential in the
Lorentz gauge. Now we find the difference between the electric fields
calculated in the Coulomb EC and Lorentz EL gauges

EC −EL = ∇[ϕL − ϕC ] +
∂

c∂t
[AL −AC ] =

= ∇[ϕL − ϕC ]− ∂Aϕ

c∂t
+

∂

c∂

1
c

∫
JL(r1)
|r1 − r|dr1 −

∂

c∂

1
c

∫
JC(r1)
|r1 − r|dr1

(2.4)

Here we take into account that, as it will be shown in the Sec. 4,
the charges have different shapes in the Coulomb and Lorentz gauges so
the current densities JC and JL are different as well. But taking into
account the arguments in Ch. 4 and Appendix I, we can prove that the
sum of third and fourth terms of Eq. 2.4 is asymptotically equal to zero,
so we omit them from further consideration.

We use Eq. 2.4 to calculate the difference between the electric fields
in the system defined above, i.e.
the charge moves uniformly along the X -axis and the detector of the
electric field is on this axis as well.

X ——————–q → —————-Det——————————-

The first term on the rhs of Eq. 2.4 is the difference between the
retarded and instantaneous scalar potentials. The magnitude of the re-
tarded potential of a uniformly moving point charge (if we measure this
quantity at the axis of motion of the charge) is

ϕL = 1/ |x− vt| (2.5)

Eq. 2.5 is the reduced form of Eq. 21.39 in [6] for y = 0 , z = 0 ,
and the ‘current’ time, but not in terms of the retarded time. Eq. 2.5
coincides with the expression for the Coulomb potential of the charge,
when the charge is at the point x− vt, where t is an instantaneous
(’current’) time. Therefore, the sum in the brackets on the rhs of Eq.
2.4 is equal to zero. For the electric fields calculated in the Coulomb and
Lorentz gauges to be equivalent, it is necessary that the second term on
the rhs of the Eq. 2.4 be equal to zero. But this is impossible if the
terms, which are proportional to the gradients of the scalar potentials,
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eliminate each other. One term on the rhs of the Eq. 2.4 still remains
and it can be expressed in terms of the equation

EC −EL =
∂Aϕ

c∂t
(2.6)

where Aϕ is the solution of the wave equation with source ∇[∂ϕC/c∂t].
To obtain solution of the Eq. 2.6, we will use the Lorentz proce-

dure of solving the wave equation ([7] Ch 18.3); we do not refer to the
original work of Lorentz because he finds the solution for the fields and
not the potentials). In the Coulomb gauge, the distributed ’longitudinal
current’ (the term ∇[∂ϕC/c∂t] instantaneously follows the charge creat-
ing this current, therefore the Lorentz transformation of the coordinates
reduces a static case and, as a result, calculating the difference in the
fields belonging to different gauges reduces to solving a three dimensional
integral.

Thus, the wave equation for Aϕ is(
∂2

c2∂t2
− ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2

)
Aϕ(x, y, z, t) =

1
c
∇∂ϕC(x− vt, y, z)

∂t
(2.7)

where we take into account that the rhs of the Eq. 2.7 is formed from the
derivatives of scalar potential in the Coulomb gauge, where this potential
‘instantaneously’ follows the motion of the charge so that the x and t
variables enter in the rhs of the Eq. 2.7 in terms of the combination
(x− vt).

Because the EM fields created by uniformly moving source must move
with this source too, the time and spatial derivatives are not independent
of each other, but are linked by the relation (the Eq. 18.10 of [7])

∂

∂t
= −v ∂

∂x

Therefore, the Eq 2.7 reduces to((
1− v2

c2

)
∂2

∂(x′)2
+

∂2

∂y2
+

∂2

∂z2

)
Aϕ(x′, y, z, t′) = −v

c

∂2ϕC(x′, y, z)
∂(x′)2

(2.8)

where x′ = x−vt. Since the rhs of Eq. 2.8 does not depend on time, the
lhs does not depend on time either, which means that Eq. 2.8 reduces to
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the Poisson equation in elliptic coordinates. By changing the variables

x′/
√

1− v2

c2 = χ , Eq. 2.8 reduces to the ordinary Poisson equation with
the rhs containing a spatially distributed source. Its solution is:

Aϕ,X =
v

c(1− v2

c2 )

∫
∂2ϕ(χ, y, z)/∂χ2

|R1 − r(χ, y, z)| dχdydz (2.9)

where

R1 =
√

(1− v2/c2) (X − vt)2 + Y 2 + Z2

Inserting the expression for Aϕ,X (Eq. 2.9) into Eq. 2.6, we finally
obtain

EC(R, t)−EL(R, t) =
v

c(1− v2

c2 )
∂

c∂t

∫
∂2ϕ(χ, y, z)/∂χ2

|R1 − r(χ, y, z)| dχdydz

One can easily see that because the integrand is not a symmetric
expression, the integral over the whole space is not equal to zero (we do
not finish the calculation of this integral because its concrete form is not
essential). Therefore, we find that the field is actually different in the
different gauges.

Here, one can expect an objection that because the E field can be
calculated directly from Maxwell equations, the analysis of the difference
in the E fields calculated in both gauges loses its sense. However, it is
not so. We show that for this case, i.e. the case of longitudinal fields,
it is impossible to obtain the solution for the E field without using the
EM potentials.

To avoid any cumbersome calculations which can be caused by neces-
sity to describe radiation processes, we consider simplest electrodynam-
ical system which one is given above, i.e. the charge moves uniformly
along the X axis. In description of this system, we will be able to obtain
the expressions for the field in explicit form which allows to compare the
solutions for the E field obtained in two ways.

Firstly, we consider derivation of direct, i.e. made without introduc-
ing the potentials, wave equation (DWE) for E field. Using two Maxwell
equations (second and fourth Eqs. 6.28 of [2])

∇×E = −∂H
c∂t

(2.10)
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∇×H = +
∂E
c∂t

+
4πJ
c

(2.11)

Taking the curl of Eq. 2.10 and partial time derivative, divided by c,
of Eq. 2.11, we obtain

∇×∇×E = −∂∇×H
c∂t

∂∇×H
c∂t

= +
∂2E
c2∂t2

+
4π∂J
c2∂t

Eliminating the H field from the above equations, we have

∇×∇×E +
∂2E
c2∂t2

= −4π∂J
c2∂t

(2.12)

Substituting the vector identity

∇×∇×E = ∇ (∇ ·E)−∇2E

to the Eq. 2.12, we obtain

−∇2E +
∂2E
c2∂t2

= −4π∂J
c2∂t

−∇ (∇ ·E)

From the first of Eqs. 6.28 of [2], ∇ ·E = 4πρ, which gives

−∇2E +
∂2E
c2∂t2

= −4π∂J
c2∂t

+ 4π∇ρ (2.13)

Now we use the Eq. 14 for calculation of the electric fields created
by the elementary uniformly moving along the X axis.

Since the wave operator −∇2 +
(
∂2.../c2∂t2

)
is a scalar, direction of

the E vector is defined by direction of the vector of the source, i.e. of
−
(
4π∂J/c2∂t

)
− 4π∇ρ. Now we use the principle of superposition and

present the source as four separate sources directed along the axes (x,
y, z). (

−4π
c2
∂Jx
∂t

;−4π
∂ρ

∂x
;−4π

∂ρ

∂y
;−4π

∂ρ

∂z

)



170 V. V. Onoochin

The total E field can be presented as a sum of four independent fields,
each of them is a solution of the wave equation

−∇2Ex,J +
∂2Ex,J
c2∂t2

= −4π∂Jx
c2∂t

(2.14a)

−∇2Ex,ρ +
∂2Ex,ρ
c2∂t2

= −4π
∂ρ

∂x
(2.14b)

−∇2Ey,ρ +
∂2Ey,ρ
c2∂t2

= −4π
∂ρ

∂y
(2.14c)

−∇2Ez,ρ +
∂2Ez,ρ
c2∂t2

= −4π
∂ρ

∂z
(2.14d)

To obtain the solution of the Eq. 2.14b, we use the Green formula (the
Eq. 6.66 of [2] with the ‘source’

f(r′, t′) = (∂ρ/∂x′)

i.e.

Ex,ρ(r, t) =
∫

(∂ρ/∂x′)ret
|r− r′| dr′ (2.15)

where r is the radius vector of the point of detection of the fields and note
‘ret ’ means that the function (∂ρ/∂x′) should be calculated at retarded
time.

To calculate the integral 2.15 in the limit of point charge, we should
make integration by parts of the rhs of the above equation.

Ex,ρ (r, t) =
∫

(∂ρ/∂x′)ret
|r− r′| dr′ = −

∫
ρret

∂

∂x′
1

|r− r′|dr
′

=
∫
ρret

x− x′

|r− r′|3
dr′

(2.16)

Now, while calculating the integral 2.16, we should take into account
that the charge is a non-point object; so after going in integration over
the volume occupied by the elementary charge to integration over the
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charge itself, we have (all details of transition from dr′ integration to de
integration are given in Ch. 18.1 of [7])

Ex,ρ (r, t) =
∫

(x− x′)
|r− r′|3

ρretdr
′ =

∫
(x− x′)
|r− r′|3

de

[r − (r · v)/(cr)]
(2.17)

As a result, we obtain

Ex,ρ(r, t) =
qx

r3 [1− (r · v) /(cr)] ret

We will not calculate transversal terms because to show incorrectness
of the DWE solutions, it is sufficient to obtain for the only component of
the E field that this component obtained from the DWE and from the
LW potential is different.

However, the electric field is created not only by the charge but by
the current density too. So we take into account the solution of Eq.
2.14a. One can see that the rhs of Eq. 2.14a −

(
4π/c2

)
(∂jx/∂t) can be

changed by the term −
(
4πv2/c2

)
(∂ρ/∂x) in case of uniformly moving

charge. So the total Ex solution of the DWE is

Ex(r, t) =
(

1− v2

c2

)
qx

r3 (1− (r · v)) /(cr)) ret
(2.18)

and similar field calculated after the LW potential (in longitudinal di-
rection there is no radiated term) is

Ex(r, t) = −
(

1− v2

c2

)
∂

∂x

q

[r − (rv) /c] ret
(2.19)

Obviously, Eqs. 2.18 and 2.19 are different. So if we assume that the
Eq. 15 is correct we must assume that the Eq. 16 is incorrect. However,
the Eq. 16 is a part of general formula for the E fields of arbitrary
moving charge. So our assumption will require radical revising the basic
formulas of the classical electrodynamics, therefore, we must conclude
that the DWE for the electric field gives incorrect result.

But this strange result of difference in the E fields calculated via
the potentials but in different gauges must be explaned. So one can
suggest that there is a some error in the proof of equivalence of the
electrodynamical gauges. Below we will show that this suggestion has
some ground but before we review existing proof of this equivalence
within the classical electrodynamics.
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3. Derivation of the expressions for the E field calculated in
both gauges.

One can assume that a sufficient condition of equivalence for both gauges
is the identical form of the expressions for the electric field calculated
by both these gauges. Proof of this is well represented in the scientific
literature (see [3], [2] 2nd and 3rd editions, and [5]). In spite of this, we
recall that these derivations miss a critical point. Although our deriva-
tion does not coincide completely to those given in [2, 3, 5], we keep the
basic ideas used in the cited works.

Thus, we consider the wave equations for the vector and scalar po-
tentials in the Coulomb and Lorentz gauges, respectively. The wave
equations for the vector potential in the Coulomb (for AC) and Lorentz
(for AL) gauges are (Eqs. 3 and 6 of [5], where we use the same notation
used in [5]):

∇2AC −
∂2AC

c2∂t2
= −4π

c
J +

1
c
∇∂ϕC

∂t
(3.1)

∇2AL −
∂2AL

c2∂t2
= −4π

c
J (3.2)

Subtracting Eq. 3.2 from Eq. 3.1, we obtain (Eq. 11 of [5]):

∇2[AC −AL]− 1
c2
∂2[AC −AL]

∂t2
=

1
c
∇∂ϕC

∂t
(3.3)

The corresponding equations for the scalar potential in the Coulomb
(for ϕC) and Lorentz (for ϕL) gauges are (Eqs. 4 and 7 of [5]):

∇2ϕC = −4πρ (3.4)

∇2ϕL −
1
c2
∂2

∂t2
ϕL = −4πρ (3.5)

Using the above two equations, we take their difference and find
that the term on the rhs of the Eqs. 3.4 and 3.5, corresponding to the
charge density, is eliminated. However, another term appears, which
corresponds to the second time derivative of ϕL:

∇2[ϕC − ϕL]− 1
c2
∂2[ϕC − ϕL]

∂t2
= − 1

c2
∂2ϕC
∂t2

(3.6)
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Now we transform Eqs. 3.3 and 3.6 in such a way that their rhs’
will have the identical form. To do it, we apply the gradient operator
to Eq. 3.6 and operator [∂../c∂t] to Eq. 3.3. As a result, we find,
after commuting the gradient and the operator [∂../c∂t] with the wave
operator, that

∇2[∇(ϕL − ϕC)]− 1
c2
∂2[∇(ϕL − ϕC)]

∂t2
=

1
c2
∇∂

2ϕC
∂t2

(3.7)

∇2[∂(AC −AL)/c∂t]− 1
c2
∂2[∂(AC −AL)/c∂t]

∂t2
=

1
c2
∇∂

2ϕC
∂t2

(3.8)

which are similar to Eqs. 24 and 25 of [5]. From Equations (3.7) and
(3.8), both ∇(ϕL−ϕC) and ∂(AC−AL)/c∂t satisfy the same differential
equation. Therefore,

∇(ϕL − ϕC) =
∂(AC −AL)

c∂t
(3.9)

Transforming Eq. 3.9 and using the definition for the electric field,
we have

EC = −∇ϕC −
∂AC

c∂t
= −∇ϕL −

∂AL

c∂t
= EL (3.10)

i.e. the equivalence of the expressions for the E field in both gauges is
proven.

We note that Eq. 3.10 is a constructive method for calculating the
E field in the Coulomb gauge [5]: scalar Coulomb potential, entering in
Eq. 3.10, is calculated as a solution of the Poisson equation and that
part of the E field created by the vector potential is determined by using
the following form of Eq. 3.10

∂AC

c∂t
= ∇ϕL −∇ϕC +

∂AL

c∂t
(3.11)

Thus, the total electric field is presented as a superposition of ro-
tational and irrotational components which is important for analysis of
the fields near the radiator [5]. Equivalence of the magnetic field in both
gauges follow from the equation

∇×AC = ∇×AL

since AL differs from AC by only the gradient of some scalar function.
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4. Analysis of the derivation presented in the Sec. 4.

It is necessary to say that despite the obviousness of the proof presented
above, it contains a few mistakes. First, to prove equivalence in a math-
ematically strict way, one must analyze the expressions for the electric
fields and not the differential equations for these fields. If one focuses on
analysis of the latter, one must take into account the initial and bound-
ary conditions, because solutions of identical equations, but for different
boundary and initial conditions, are different. This point is missed in
the existing proof.

The second missing point is in the procedure of proof itself, i.e. when
rhs of equations 3.1, 3.2, 3.4 and 3.5 is eliminated, one does not consider
that the functions describing the current and charge densities in the
Coulomb and Lorentz gauges are different. This fact can be established
by using the idea of Lorentz to find that the sizes of uniformly moving
charge, which contract along their direction of motion (this procedure
developed by Lorentz is described with more clarity in [8]). Lorentz
found that the equipotential surfaces of the scalar Liennard-Wiechert
potential, expressed in terms of the coordinates of the frame of reference
where it is assumed that the observer is at rest and the charge is moving,
i.e. ϕ(r, t) = const, are ellipsoids of rotation contract along the axis of
motion of the charge. Since, as Lorentz concluded, the surface of the
charge is defined to be an equipotential surface, this surface must have
an ellipsoidal shape in this frame too.

Following Lorentz’s procedure, we will show that the functions ρ
and J, describing the charge and current densities of the elementary
charge, are different in these gauges. But first, we must define what an
elementary charge in the classical electrodynamics is.

It is a widespread opinion in classical electrodynamics, that we are
able to assume point charges only. At least, any calculations of electro-
dynamical quantities cannot be based on a specific distribution of the
charge inside the electron. However, from a physical point of view, it
is impossible to treat the classical electron as a point particle because
it leads to divergences in the theory (runaway solutions, etc., see, for
example, [9]). Therefore, according to the recommendations given in [7]
(beginning of Ch. 18.1), we assume that the radius of classical charge is
finite and we associate a physical meaning to those properties of the elec-
trodynamical system which do not depend on the radius of the charge.

Thus, we have Statement I:
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A surface of the elementary charge is the surface for which the condition

ϕ(x0, y0, z0) = const (4.1)

is fulfilled
(where, x0, y0, z0 are the coordinates of the surface of the charge). So,
this surface is an equipotential surface. We note that for a moving
charge, the lines of E field are not normal to the equipotential surface (
Eq. 4.1), since we must take into account not only the term

E = −∇ϕ

but rather the entire expression

E = −∇ϕ− ∂A
c∂t

(4.2)

Due to the last term in Eq. 4.2, the E field lines are no longer normal
to the ϕ surfaces.

For the Lorentz gauge, it is proven in [7], and for the Coulomb gauge,
we prove it in the Appendix II. We emphasize that the results presented
Appendix II, i.e. the spherical shape of a moving charge in the Coulomb
gauge changes, which contradicts to relativistic theory because according
to the latter, any charge should contract. But our ’strange result’ is
caused by using the Coulomb gauge which is essentially non-relativistic
so some quantities calculated in this gauge have no relativistic properties.

It is necessary to point out that the ‘relativistic suggestion’ that
a moving charge in the Coulomb gauge must contract also cannot be
checked experimentally. It results from the following:
1. the shape of the surface of the charge can be determined by measure-
ing the fields or by calculating the potentials since direct measurement
(not via field quantities) is impossible (there is no ’charge-charge’ inter-
action);
2. because the lines of E field are not normal to the surface of the
moving charge, one cannot use direct measurement of the EM fields to
reconstruct the shape of the surface.

So the only way to obtain information about the shape of this surface
is to do it via calculation of the ϕ potential, as it has been made by
Lorentz, and we will using his method.

Now we have Statement II
for both gauges, the equipotential surfaces, i.e. those ones meeting the
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condition

ϕ(r, t) = const

for different r and given instant t are the concentric surfaces converging
to the limiting point, which is the center of the elementary charge.
For the Coulomb gauge this Statement follows from rotational symmetry
of the expression for the scalar potential (Eq. 6.45 of [2]) and for the
Lorentz gauge, it follows from the Eq. 18.20, but in the latter case,
we must calculate the shapes of the surfaces separately when the point
of observation is outside the charge and when this point is inside the
elementary charge.

It follows from the Statement II that
Consequence I:
While r → 0 the set ϕ(r, t) = const forms a geometric sequence (the
sequence of converging surfaces).
Consequence II:
For different gauges, these surfaces are different and for any r

ϕC(r, t) = C1 (4.3)

ϕL(r, t) = C2 (4.4)

where C1 and C2 are constants; and for any C1 and C2

ϕC(r, t) 6= ϕL(r, t) (4.5)

The Eq. 4.5 can be easily proven. Because ϕC(r, t) and ϕL(r, t) are
solutions of different equations (Eqs. 3.5 and 3.5), (?) they must be
different too. Strictly speaking, the intersection of the two surfaces the
Eqs. 4.3 and 4.4, yields some curve but the coincidence of these surfaces
is never possible.
Consequence III:
For all gauges, the limiting point of converging sequences is unique, it is
the point of center of the elementary charge

Now we choose the parameter R0 as a ’radius’ of moving elementary
charge. In the Coulomb gauge, RC,0 =

√
(x0)2 + (y0)2 + (z0)2, and in

the Lorentz gauge RL,0 =
√

(x0)2/ (1− v2/c2) + (y0)2 + (z0)2, where
x0... are defined above. Actually, ϕL depends on the coordinates x0...
not via RL,0 but rahter via some other combination of the these variables,
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but since this specific dependence is not important for our procedure,
we schematically write this dependence via RL,0. We do not know the
exact values for RC,0 and RL,0, we only know that both R0 → 0 but
both R0 6= 0, which corresponds to the definition for the radius of the
elementary charge given in [7].

It follows from Statement I that the shape of the charge in the
Coulomb gauge is described by

ϕC(RC,0, t) = C3 (4.6)

and the shape of the charge in the Lorentz gauge is described by

ϕL(RL,0, t) = C4 (4.7)

where C3 and C4 are some constants; i.e. Eq. 4.6 belongs to the sequence
in Eq. 4.3 and Eq. 4.7 to the sequence in Eq. 4.4, respectively. However,
due to the inequality in Eq. 4.5, the equation

ϕC(RC,0, t) = ϕL(RL,0, t)

cannot be fulfilled for any RC,0 and RL,0. Physically it means that the
shapes of the charge in different gauges are different too and, therefore,
ρL(r) and ρC(r) are not identical and the mathematical operation of
subtracting one function from the other yields a non-zero result. Because
the above proof does not depend on specific values of R0, it is correct in
the limit of a point charge too.

A further consideration is trivial. Taking into account that the func-
tions J and ρ are different in different gauges, we obtain

∇2AC −
∂2AC

c2∂t2
= −4π

c
JC +

1
c
∇∂ϕC

∂t
(4.8)

∇2AL −
∂2AL

c2∂t2
= −4π

c
JL (4.9)

The analogue of Eq 3.3 is

∇2[AC −AL]− 1
c2
∂2[AC −AL]

∂t2
=

1
c
∇∂ϕC

∂t
+

4π
c

[JL − JC ] (4.10)

Applying the wave equation for the scalar potential in a similar way

∇2ϕC = −4πρC (4.11)
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∇2ϕL −
1
c2
∂2

∂t2
ϕL = −4πρL (4.12)

we obtain

∇2[ϕC − ϕL]− 1
c2
∂2[ϕC − ϕL]

∂t2
= − 1

c2
∂2ϕC
∂t2

− 4π[ρC − ρL] (4.13)

Thus, we find that the wave equations for the quantities ∇(ϕL−ϕC)
and ∂(AC −AL)/c∂t coincide, provided the condition

∂(JC − JL)
c2∂t

−∇(ρC − ρL) = 0 (4.14)

is satisfied. But in general, this is not the case and for uniformly moving
charge, the lhs of the Eq 4.14 reduces to

(1− v2/c2)∇(ρC − ρL) (4.15)

It seems, however, that there is one more way to prove the equivalence
of the expressions for the electric field, because the non-zero term on the
rhs of the wave equation is not equal to zero only in the area occupied
by the charge itself. So we can expect that, after integration of the wave
equation, the non-compensated term in Eq. 4.15 will tend to zero, while
receding the point of observation from the charge.

It is expressed in explicit form as (for simplicity we consider the case
of a uniformly moving charge, where all details of the calculations are
given in Appendix II):

EC(R)−EC(R) = 4π(1− v2/c2)
∫ ∇r[ρC(r)− ρL(r)]

|R− r| dr (4.16)

where the integral is calculated for the retarded time. Since the integral
of the charge density over the whole space is equal to the total charge in
both gauges, it is easy to show that the above expression rapidly tends
to zero when R >> a, where a is the radius of the elementary classi-
cal charge (Appendix II), i.e. the expressions for the electric field are
asymptotically equivalent in both gauges, and if one takes into account
the radius of the classical charge, the limiting area of integration in the
Eq. 4.16 should be set to zero, the gauges are equivalent in classical
electrodynamics.
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But one must take into account that the term −[∂2ϕC/c
2∂t2] is arti-

ficially added to the rhs and lhs of the wave equation ( Eq. 3.4). Since
this term is added to the both the right and the left sides of the equa-
tions, it is mathematically correct. But if this term is used on the lhs of
the equation to construct the Green’s function and the same term in the
rhs of the equation is used as a source for the Green’s function, which
means that the lhs and rhs of the equation are being treated differently,
it is absolutely incorrect. As a consequence of this incorrect procedure,
it leads to a difference in the expressions for the calculated fields.

5. Conclusion.

It would be interesting to do an analysis as to why such a microscopic ef-
fect as the changing the shape of electric charge (for a uniformly moving
electron, its surface becomes elliptical in the Lorentz gauge and remains
spherical in the Coulomb gauge) causes a macroscopic effect (difference
in the fields). It is especially strange since formally we are able to de-
crease the radius of the charge to zero. So from our point of view, the
macroscopic effect is not caused by the changing shape of the elemen-
tary classical charge, but rather by properties of the aether: finiteness
(of infiniteness) of the speed of the scalar EM interaction determines the
magnitude of both the EM fields and the shape of the charge creating
these fields.

Thus, just the act of defining the speed of propagation of the scalar
EM interaction in a medium (aether or vacuum) defines the correct gauge
for this system, as well as the shape of the elementary classical charge.
Because we have an example of the reverse influence of the medium
on the charge (in the case of uniform motion of the charge we have
some equilibrium process for converging and diverging EM waves), this
influence unambiguously determines the equilibrium shape of the moving
charge. The mechanism by which the medium influences the charge is
still unexplained, but within the framework of this effort, it is impossible
to find an explanation. It should be noted that in relativistic theory, the
term ’medium’ is not used, so we use the term ‘aether’ but we do not
make any claims about its reality.

It would be noted that one of the aims of this work is to turn the sci-
entific community’s attention to the fact that until now, some problems
of electrodynamics, which seemed to be absolutely irrefutable, cannot be
conclusively solved. So it would be interesting to re-examine some of the
ideas of Whittaker([11], also see [12]), especially regarding the formation
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of the Coulomb (or scalar) potential from convergent and divergent EM
waves. Finally, the difference in the properties of the scalar potential
calculated in the Coulomb and Lorentz gauges gives differences for all
other field quantities.

Thus, the final conclusion of this work is that in classical electro-
dynamics, the uniqueness of the description of some systems requires
setting not only the initial and boundary conditions but also the speed
of propagation of the scalar potential as well, where the latter unambigu-
ously determines the gauge which we must use while obtaining solutions
for the EM fields.
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Appendix I. Obtaining of the shape of the elementary charge
in the Coulomb gauge.

Here we analyze the following statement: if the moving charge acquires
a shape of contracted ellipsoid in the Lorentz gauge, will we observe
the same effect for the moving charge in the Coulomb gauge. It seems
it must be so because any physical quantity must transform according
to the Lorentz transformations while going from one inertial frame to
the other one. But without possibility to verify experimentally how
the shape of the charge actually changes, in the given gauge, the above
statement can be treated only as assumption.

However, a problem is just in this experimental verification since we
are not able to reconstruct the shape of the elementary charge directly
from the experimental data, i.e. from measured EM fields.

• For the moving charge, the lines of the E field are not normal to
the surface, which these lines outcome from (the example of such
a configuration of the lines of the E field and the moving charge is
given in the Fig. 26.4 of [6]), so we cannot use geometric methods

• Formally the shape of the uniformly moving charge may be deter-
mined as a solution of the integral equation for the electric and
magnetic fields, where the function r is a source for the Green
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function, but because we cannot fix the radius of the elementary
classical charge, the problem cannot have unambiguous solution.

It follows from the pp. 1 and 2, that the only way to determine the
shape of the elementary charge is after equipotential surfaces of ϕ, i.e.
the way used by Lorentz. One can object that because the EM potentials
are treated, within the classical electrodynamics, as some abstract but
not physical quantities, unambiguous determination of the shape of the
charge via the scalar potential is impossible. However, in the above
problem, just the properties of the EM potentials are under investigation,
therefore, for us it is not so important what is an origin of the potentials.
But what is important is the fact that ϕ and A are unambiguously
defined after the EM fields and the condition on a type of the gauge.
Therefore, the shape of the charge will be determined unambiguously
too because there is no ambiguity in the gauge condition.

Now we show by reductio ad absurdum that the uniformly moving
elementary charge cannot have, in the Coulomb gauge, a shape of con-
tracted ellipsoid.
Thus, in the frame with the charge at rest, the Poisson equation for the
elementary charge is (in Gauss units)

(
∂2

∂(x′)2
+

∂2

∂(y′)2
+

∂2

∂(z′)2

)
ϕ′ = 4πρ(x′, y′, z′) (AI.1)

and its solution is

ϕ′(R′) =
∫
ρ(x′, y′, z′)
|R′ − r′| dx

′dy′dz′ (AI.2)

We don’t know what is the shape of the uniformly moving elementary
charge but we exactly know the shape of the charge while it is at rest.
Due to rotational symmetry, its shape must be spherical.
For the ’point-like’ charge, i.e. for R′ >> r′ the Eq. 2 reduces to

ϕ′(R′) =
q

R′
(AI.3)

Now we go to the second frame where the charge moves uniformly.
According to the Lorentz transformations, the function ρ must transform
and the shape of the elementary charge becomes elliptic.
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But when we apply the Lorentz transformation to the physical quan-
tities, even they are treated as auxiliary ones, in some frame, we must
transform all quantities of this frame. So in the Eqs. AI.1, AI.2 and
AI.3, we must transform not only the potentials and the charge densities
but the coordinates too.
As a result, we have

ϕ′(R) =
q

[(x− vt)2 + (1− v2/c2)(y2 + z2)]

But this solution does not coincide to well known solution for the scalar
given in [2] (Eq. 6.45).

ϕ(R) =
∫
ρ(x, y, z, t)
|R− r| dxdydz

that is correct for any law of motion of the charge. So our suggestion
about the Lorentz contraction of moving elementary charge leads to in-
correct expression for the ϕ potentials and, therefore, any analysis of the
equivalence of the Coulomb and Lorentz gauges, which is presented in
Refs. 2, 3 and 4 too, loses its significance.
Thus, we are not able to conclude that the shape of the moving charge
in the Coulomb gauge is elliptic.

At the end, we prove that in the Coulomb gauge, the uniformly mov-
ing charge has spherical shape.

It is easily to see that the equation for the scalar potential in the
Coulomb gauge obeys the ’Lorentz transformations’ in the limiting case
when the speed of the scalar EM interaction tends to infinity (c→∞)
so the Lorentz transformations reduce to

x′ = (x− vt) /
√

1− v2/c2 → x− vt

Then the formula for transformation of the charge density becomes

ρ′ = ρ/
√

1− v2/c2 → ρ

and the spherical shape of the uniformly moving charge remains to be
spherical too
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Appendix II. Derivation of the Eq. 3.15

Taking the gradient of both sides of the Eq. 3.12 and partial time deriva-
tive (divided on c) of both sides of the Eq. 3.9., we obtain

∇2[∇(ϕC − ϕL)]− 1
c2
∂2[∇(ϕC − ϕL)]

∂t2
= − 1

c2
∇∂

2ϕC
∂t2

+∇4π[ρC − ρL]

(AII.1)

∇2[∂(AC −AL)/∂t]− 1
AL)/∂t]

∂t2

=
1
c2
∇∂

2ϕC
∂t2

− ∂

c∂t

4π
c

[JC − JL]
(AII.2)

Now we are able to form, using the sum of the Eqs. AII.1 and AII.2,
the wave equation for difference between the electric field EC and EL:

∇2[EC −EL]− 1
c2
∂2[EC −EL]

∂t2
= ∇4π[ρC − ρL]− ∂

c∂t

4π
c

[JC − JL]

(AII.3)

Using the expression 3.14, we have the solution of the wave equation
AII.3.

EC(R)−EL(R) = 4π(1− v2/c2)
∫ ∇r[ρC(r)− ρL(r)]

|R− r| dr (AII.4)

which coincides to the Eq. 3.15.
Now we prove that the rhs of Eq. AII.4 asymptotically tends to zero.

Because for two arbitrary functions it is fulfilled relation∫
F (R− r)∇rf(r)dr = ∇R

∫
F (R− r)f(r)dr

we have for Eq. AII.4

EC(R)−EL(R) = 4π(1− v2/c2)∇R
∫

[ρC(r)− ρL(r)]
|R− r| dr (AII.5)

Using the Eqs. 4.8 and 4.10 of [2], we obtain for Eq. AII.5

EC(R, t)−EL(R, t) =

4π
(

1− v2

c2

)
∇R

[
qC
R

+
(pCR)
R3

− qL
R
− (pLR)

R3
+O(1/R3)

]
(AII.6)
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where qC and qL, pC and pL are the charges and electric dipole mo-
ments in both gauges. Since the charges are identical in both gauges
and absolute value of dipole moment of the charge cannot be greater aq
, we have for Eq. AII.6

|EC(R, t)−EL(R, t)| < 4π
(

1− v2

c2

)
aq

R3

i.e. this term rapidly tends to zero from distances some times greater
the classical radius of the charge.
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