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ABSTRACT. According to Dirac, the definition of a magnetic charge
in Electrodynamics is related to a semi-infinite vector-potential singu-
lar string. Contrary to Wu and Yang interpretation, recent studies
have shown that a Dirac string is a physical observable if the magnetic
charge is nonzero in QED. In this work we propose that Dirac strings
naturally lead to space-time distortions, which can be interpreted as
the gravitational field of a point-mass located in the monopole. Thus a
Dirac string is observable: It can be detected as a source of gravitation.
The description of QED particles as structured by spinless charges and
monopoles leads to the interpretation that any QED particle is a source
of gravitation as well.

1 Introduction

The magnetic charge or monopole proposed by Dirac in 1931 [1] is based
on Maxwell Electromagnetic theory, so that the monopole magnetic field
B is described by a vector potential A, i.e., B = ∇×A. In order to
describe a source of magnetic field, Dirac defined this vector potential
as singular at some regions of space-time. The shape of the singularity
related to the vector-potential is like a semi-infinite string with its end
at the monopole position. The proper definition of the equations of
motion for charges and monopoles requires that charges never touch a
monopole’s string, [2].

In 1974 Wu and Yang [3] proposed that singular strings (Dirac
strings) are non-observable physical entities. Instead of deforming the
string in order to not cross any charge’s path, they introduced the notion
of sub-spaces. According to their model, a particular vector-potential is
defined for each sub-space (a sub-space is a place where particles can
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move freely without crossing with Dirac strings as it is smaller than the
entire space and does not cover the region where a Dirac string is posi-
tioned). The aim is to be able to freely distribute a particle at any point
of space-time around a monopole: if a particle is present at some point,
then the Dirac string is placed in a region not interfering with it. The
multiple sub-spaces overlap (two at least are required to map the entire
space-time). Since a special vector-potential is associated to each sub-
space, a test-particle moving from a region to another (from a sub-space
to another) has an associated quantum phase

∫
A ·dl for each sub-space.

For each overlapping region a gauge transformation connects the phases
associated to each sub-spaces. If Dirac quantization condition is valid,
then any closed path performed by a test-particle has no physical impact
due to Dirac strings.

However, twenty years later, He, Qiu and Tze [4] presented a different
result: if a monopole charge is non-zero, then a physical interpretation to
Dirac strings exists. According to them, Stokes theorem was misused in
previous works, treating Dirac strings as gauge artifacts (as in the case
with Wu and Yang’s view). More recently, Singleton [5] introduced (be-
yond the ordinary four-vector potential Aµ) a second pseudo-four-vector
while discussing eletrodynamics in the presence of magnetic charges. His
approach avoids the use of singular nonlocal variables, i.e., Dirac strings.
The outcome of the theory is a system in which two types of photon
co-exist (respectively associated to each four-potential). As in fact a sin-
gle photon is observed in Nature and the other one was never observed
(which is massive according to Singleton), the theory lacks confirmation.
According to the results of He et al, the important point to emphasize
is that a non-zeroed charge monopole implies in some physical conse-
quences. In Singleton model it is the new massive photon according to
our interpretation.

Therefore according to these works [4, 5] some new physics is involved
when the monopole charge is different from zero. The present work ad-
dresses an interpretation in which Dirac strings are related to gravita-
tion. The origin of this connection is based on the physical notion of
space-time deformation caused by singular strings with nonzero volume
(nonzero cross-section) since no particle or field are allowed to be defined
at the string region. The relation between monopoles or magnetic-flux-
based particles and gravitation also appears in other works: Davidson
and Karasik [6] recently presented the idea of cosmic solenoids where the
inclusion of gravity implies in the inexistence of infinitely small cross-



Dirac monopoles and gravitation 259

section magnetic flux tubes or strings. Also Israelit [7], with a modi-
fied Weyl-Dirac theory, presented a complete basis for deriving gravita-
tion and electromagnetism from geometry at once with the inclusion of
monopoles. Monopoles seem to be essential in this unifying picture.

2 The definition of a Dirac monopole

The definition of a particle in Electrodynamics involves a number of hy-
pothesis concerning electromagnetic fields. In the case of electric charges,
there is a minimum radius assigned to the elementary source. Let us con-
sider two electrically charged particles in the classical approach: Using
“1” and “2” to label the charges, the scalar potentials are V1 and V2.
The electric fields are E1 = −∇V1 and E2 = −∇V2 respectively. The
energy of the system is

ε0

2

∫
(E1 ·E1 + E2 ·E2 + 2E1 ·E2) dv, (1)

where dv is the differential volume of the observable universe. The first
two terms are easily calculated as (e2

1/a1 + e2
2/a2)/ (8πε0), where e1,2

is the charge of the particle 1, 2 and a1,2 its radius. Applying Green
theorem to the third term and defining a closed surface with an external
shell Se at infinity plus two inner shells Si1,2 around each particle (just
over their radii) one gets:

ε0

∫
∇V1 · ∇V2dv (2)

=
ε0

2

(∮
V1∇V2 · dSe −

∮
V1∇V2 · dSi2 −

∫
V1∇2V2dv

)
+
ε0

2

(∮
V2∇V1 · dSe −

∮
V2∇V1 · dSi1 −

∫
V2∇2V1dv

)
.

Let us consider the first parentheses on the right hand side of equation
(2): the first term vanishes because the external surface is placed at
infinity (and consequently the fields tend to zero). The third term also
vanishes as there are no source of field inside the region enclosed by the
surfaces. The second term is nonzero, and it is possible to approximate
the scalar potential of particle 1, V1, as its value at the second particle
position is almost constant given a2 → 0. Therefore a2/(|r1 − r2|)→ 0.
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The same observations are valid for the second parenthesis so that

ε0

2

(
V1 (r2)

∮
E1 · dSi2

)
+
ε0

2

(
V2 (r1)

∮
E2 · dSi1

)
(3)

=
V1 (r2) e2 + V2 (r1) e1

2
.

The results above are only valid if no fields are prescribed inside the
region delimited by the Si1,2 surfaces. In the complete theory of the elec-
tron this hypothesis is relevant [8] even if field quantization is assumed
both in the self-energy derivation as in the interaction energy among
particles.

Let us now consider the monopole proposed by Dirac. The simplest
definition of vector potential associated to it is

A = φ̂g
1 + cos θ

r sin θstep(θ − δ) , (4)

where spherical coordinates were used. The function step(x−x0) is equal
to 1 if x > x0, zero if x < x0 and 1/2 for x = x0. The parameter δ is an
arbitrary angle. The resulting magnetic field is

B = 2πg(1 + cos δ)r/r3, (θ > δ,∀φ), (5)

that is, it is not defined in the region of the string. When δ = 0 the
vector potential is singular on a semi - infinite line, while the magnetic
field remains well defined everywhere.

The interaction energy between two monopoles (“i” and “j”) is pro-
portional to

∫
Bi ·Bjdv. The same result for the general case, i.e., when

δ 6= 0, has no meaning since the monopole magnetic field is not defined
in the region of the string according to equation (5). A similar result is
also obtained from the momentum integral

∫
Ei × Bjdv, if now one of

the particles is an electric charge and the other a monopole. Again, if
δ 6= 0, no magnetic field is defined in the string region implying in no
momentum density definition for this region as well.

In order to have a finite interaction energy among particles no fields
should be defined inside the string region, i.e., the Dirac string of the
general case δ 6= 0 (as in the previous case of the electrically charged
particles, equations (1) to (3) where we assume no field is defined inside
the particle’s radii). On the other hand, a magnetic charge (the magnetic
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flux through a closed surface surrounding the monopole) has to be finite.
Taking into consideration equations (4) and (5) with δ 6= 0, it is clear
that it is not possible to take the integration

∫
B · ds over the entire

closed surface. The calculation must exclude the region where the Dirac
string crosses the surface (as the string cannot be removed by any gauge
transformation, [4]). This assumption implies that, for a given time and
distance R from the monopole, the flux should be measure over an area
smaller than 4πR2, i.e.,

√
area/4π < R, any R. The actual available

space was then reduced due to the presence of the string. In other words,
we are saying that the string induces a space-time distortion.

It is interesting to find a physical interpretation for the existence
of forbidden regions in space-time that serves here to solve both the
problem of energy interaction as the monopole charge definition.

The singular string has physical implication if δ 6= 0, i.e., if the Dirac
string has a non-null volume: let bus consider an elementary electric
charge described by a Schröedinger-type field ψ. If an external vector
potential A is such that it is infinite (A→∞) in some region of space,
then ψ = 0 in this region. Such observation follows as a physical solution
of Schröedinger equation, and not as an mere assumption. Now if the
external vector field potential is generated by a monopole, the charged
particle always interacts with the local finite potential. As a result, the
particle electromagnetic field cannot exist inside the Dirac string region
as well: as the potential acting upon the electric charge is finite since its
wave function ψ is zero in the singular region. If now the momentum
is calculated using the momentum density relation,

∫
E × Bdv, it is

clear that no electric field E by the charge is allowed inside the singular
string region, otherwise the result diverges. The same argument is valid
for two monopole particles described by Schröedinger wave functions.
In conclusion, if a particle wave function is zero in the singular region,
its electromagnetic fields cannot be defined in this region as a result of
solving Schroedinger equations and the equivalence between this and the
calculation via the electromagnetic fields.

Space-time reduction is a physical consequence of Schröedinger
equation solutions in a flat three-dimensional space containing Dirac
monopoles since neither particles nor fields are allowed in the string re-
gion. Electrodynamics is well defined in flat three-dimensional spaces.
In the presence of Dirac monopoles there is a physically induced reduc-
tion of space-time where particles and fields are found, that is, particles
and fields can exist only outside Dirac strings (in the general case with
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non-null volume).

3 Dirac string and space-time distortion

The definition of a volumetric Dirac string is to some extent a matter of
choice, i.e., one is free to choose the value of δ in equation (4). For some
fixed δ 6= 0, the magnetic charge is g(1 + cos δ)/2, which is a constant.
The magnetic field of the monopole follows the law 1/r2. In the next
lines of the present section two convergent ideas are presented in order
to show the physical effect of volumetric Dirac strings. The first one uses
the simple approach of a Dirac string represented by equation (4) and its
implication for the behavior of a test-particle with no magnetic or electric
charge close to the monopole. The second idea is the identification of
forbidden regions as due to a point-like mass as seen from a flat three-
dimensional world in Einstein theory, which is a volumetric string-like
singularity for particles and fields in the same way as volumetric Dirac
strings.

The time-rate of a clock was one of the most immutable aspects of
nature before Einstein. It is the simplest and most direct aspect to be
observed when one searches for space-time distortions. In order to es-
timate the physical effects due to Dirac strings, we place a clock close
to a monopole and study its behavior. The most suitable clock has a
time-rate depending solely upon the fundamental constants of nature.
Such a clock was first designed by Marzke and Wheeler [9], the so called
geometrodynamic clock. It is composed of a pair of parallel mirrors be-
tween which a free photon bounces back and forth determining the clock
period. Any local time-rate variation can only be due to a local space-
time distortion.

Although the image of a Dirac string is limited to a cone region
as seen from a flat three dimensional space, it affects the entire space
surronding it. Geometric aspects related to space-time reveals the dis-
tortion: as we have seen, the definition of a magnetic charge from a
volumetric Dirac string requires that, for a given distance r from the
monopole

√
area/4π < r for any r. To get a geometrical image of the

space-time distortion caused by a Dirac string from the point of view
of a flat three-dimensional space, we imagine the string divided in in-
finite sub-parts equally spread in space and creating a infinite set of
tiny strings emanating from the monopole. As a result, closed spherical
surfaces enclosing the monopole have infinite ”holes” equally spread as
elementary forbidden regions. The distance covered by any particle on
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this closed surface as seen from the flat three-dimensional space is then
reduced by the amount of holes times their diameters. Such geometri-
cal view helps to understand the working of a geometrodynamic clock
placed near a monopole.

Let us consider a geometrodynamic clock near a monopole so that
the string is placed between the parallel mirrors (the clock is at distance
r from the monopole center). A photon moves in a trajectory perpen-
dicular to the line formed by the string. The distance between mirrors
is L. Now let us consider the monopole described by equation (4) with
δ 6= 0. The path covered by the photon between the walls is then re-
duced by 2rδ. If the clock natural frequency (without the Dirac string)
is ω0 = c/L (c the velocity of light) the same frequency becomes

ω =
c

L(1− 2δr/L)
. (6)

Taking δ → 0 the frequency may be approximated by

ω ' ω0(1 + 2δr/L). (7)

In this calculation the mirror walls completely cover the string.
The density of elementary strings (with the geometrical view presented
above) may be obtained by multiplying 2rδ by 2π(1− cos δ)/4π. For the
sake of simplicity we omit this factor.

If the clock moves with velocity v, the relativistic correction to the
frequency relative to the laboratory (where the monopole is at rest) is

ω = ω0
√

1− v2/c2, (8)

with v = |v|. For v << c the last expression is approximated by

ω ' ω0(1− v2/2c2). (9)

If the time-interval of a resting clock is dt (in the absence of monopoles),
the same quantity becomes

dt
{
1 + 2δr/L− v2/2c2

}
(10)

in the presence of the monopole. The total time interval along a trajec-
tory performed by the clock is then∫ (

2δr/L− v2/2c2
)
dt, (11)
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which multiplied by the constant −mc2 (where m is the inertial mass of
a test particle at rest relative to the clock) results∫ (

−c2(2δ/L)mr +
mv2

2

)
dt. (12)

Using the principle of minimum action, the test particle will behave as
if under the action of a potential proportional to the distance from the
monopole. Therefore, the non-charged test particle performs a parabolic
trajectory given an initial impulse as induced by an attractive potential
towards the monopole. Also, this result is equivalent to the existence of
a gravitational field generated by a point-like particle at the monopole
position provided that variations in r are small compared to changes in
the gravitational field.

We are now going to study the second approach, i.e., we are looking
for string-like forbidden structures in space-time as due to a point-like
mass. Let us consider a spherical distribution of mass m at the center
of the coordinate system with a given radial distribution function. Then
the metric interval for r > 2m is:

ds2 = (1− 2m
r

)dt2 − (1− 2m
r

)−1dr2 − r2dθ2 − r2 sin2 θdφ2 (13)

according to Schwarzschild.
As seen from the three-dimensional flat world the metric can be es-

timated by the measure of geometric constants like the ratio between
the spherical surface area and its corresponding radius. For r = R, the
physical area ∆ is 4πR2, while the physical radius Λ will be

Λ =
∫ R

R0

r/
√
r2 − 2mrdr

=
[√

(r2 − 2mr) +m ln
(
r −m+

√
(r2 − 2mr)

)]R
R0

,

(14)

where R0 is an internal radius (R0 < R) in the region of the matter
distribution. The expression above is assumed to be vanishingly small
for the parameter R0 (of the order of 2m) if compared to the same
expression for R, so that the physical radius becomes

Λ =
√

(R2 − 2mR) +m ln
(
R−m+

√
(R2 − 2mR)

)
, (15)
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and for R >> 2m,

Λ = R+m ln (2R− 2m) , (16)

i.e., the actual physical distance Λ > R.
Therefore, for a given physical distance Λ, the available area to cover

the shell of radius R is 4πR2, that is, it is not possible to fill the entire
surface of radius Λ in the flat three-dimensional space. For particles
and fields surrounding the mass, there is no discontinuity in space-time,
but as seen from flat R3, a forbidden region appears (with the shape
similar to a cone in R3). On the other hand it is very well known that
an average curvature can be assigned to a spherical region of radius r
in R3 with area 4πr2 by means of a defect. The connection of this idea
to the theory of gravitation is done by the conceptual significance of
the stress-energy tensor component G4

4. The average curvature R12
12 +

R23
23 +R13

13 of the three-space is perpendicular to time as dictates a well
known interpretation of gravitation, [10]. Such result is equivalent to the
previous one (conic string measured by geometridynamic clock) for m→
0 and small variations of R (where the mass is the source of gravitation).

In the analysis above using the geometrodynamic clock, the space-
time defect has the shape of a cone (equation (4), δ 6= 0) which means
that, for a given R, the avaliable physical area is not 4πR2 but 2πR2(1+
cos δ) instead, i.e., it is still proportional to R2 due to to the conic
shape of the string. Assuming Einstein theory as seen from the flat
three-dimensional world the avaliable physical area will be 4π(Λ2−R2),
which is similar to the conic-like string if Λ is proportional to R. Taking
equation (15) with small variations of R around km (where k is a positive
constant, k > 2) we have

Λ = m
√
k2 − 2k +

k − 1√
k2 − 2k

(R−mk),

and for m → 0, Λ ≈ ((k − 1)/
√
k2 − 2k)R, i.e., Λ is proportional to R,

showing that under this approximation, the previous results obtained
with volumetric Dirac strings agree with the behavior predicted starting
from Einstein gravitational theory for point-like masses.

4 Electrons and Photons

The electric charge and spin distribution associated to a particle in Dirac
electron theory can be calculated. The approach also allows to find the
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energy associated to the magnetic field. By taking averages over all
possible spin orientations we find

1
2π

lim
a→0

e2~2

3m2c2a3
, (17)

in the case of a single electron. This corresponds to the field energy of a
magnetic dipole density concentrated in a sphere of radius a.

If the single electron self-energy e2/a is to be finite and equal to mc2,
we obtain a radius a = e2/mc2 for a net charge e. The spin is ~/2 and the
magnetic moment e~/2mc. The elementary particle (or single electron)
in Dirac theory is an object containing such characteristics. The physical
image is that of a small sphere of radius a with electric charge, magnetic
moment and angular momentum. The minimum physically significant
distance from such a particle is defined to be e2/mc2, which means that
any measure of field flux is made by the use of a surface that completely
contains the sphere of radius a. The net electric flux is equal to e and the
magnetic equivalent is identically zero since the magnetic poles or electric
currents (composing a dipole-like magnetic field) exist only within the
particle internal region.

We expose here the idea of representing the electron as composed of
a spinless electric charge plus two spinless Dirac monopoles of opposite
charges inside the structure (defined by radius a). This representation
is possible if the hyper-fine energy structure of the s-states of Hydrogen
is contemplated. The origin of this hyper-fine energy structure is due
to the association of magnetic moments and electric currents in elec-
trons and not to static magnetic poles in its internal structure, [11]. The
model (Dirac monopoles inside the electron internal structure as source
of magnetic moments) is still valid since a Dirac monopole may be rep-
resented in two ways: a semi-infinite line composed of magnetic dipoles
or a semi-infinite solenoid carrying an electric current ([11], Chapter 6).
The representation of a single electron with electric charge and magnetic
moment is then valid since Dirac monopoles can be viewed as originating
from electric currents. In order to give a proper mathematical definition
for the proposed structure, it is necessary to write down the general
equations for charges and monopoles as single entities as well as the
conditions involved in the variational principle from which the field and
particle equations of motion are derived.

Let us consider the general case of electric charges and Dirac poles
in a system. The g > 0 monopole is defined as a source of magnetic field
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while for g < 0 the monopole is a sink for the field. This assumption
allows to construct a magnetic dipole as a combination of a positive
and a negative monopole. According to this definition, the generalized
Maxwell equations including electric and magnetic currents, are

∂µF
µν = −jνe , (18)

∂µF
µν
∗ = jνg ,

where Fµν is the electromagnetic field tensor connected to the four-
vector jνe formed by the electric charge and current densities, Fµν∗ is the
dual of Fµν (which is connected to the four-vector jνg formed by the
magnetic charge and current densities)

Fµν∗ =
1
2
εµνσδFσδ, (19)

and εµνσδ is the four-dimensional Levi-Civita tensor (ε0123 = −ε0123 = 1,
completely anti-symmetric).

Each charge and monopole can be described by a corresponding
Lorentz equation

me
d2zµ

ds2
= e

dzν
ds

Fµν(z), (20)

mg
d2xµ

ds′2
= −g dxν

ds′
Fµν∗ (x),

where me and mg are the electric and magnetic particle inertial masses,
zµ(s) is the charge world-line as a function of the proper time s and
xµ(s′) is a corresponding four-coordinate system defining the monopole
position.

The local action principle depends on the fundamental interaction
between an electric charge and a magnetic monopole. Considering a
system formed by a single charge and monopole, the fields appearing
in the equations of motion represent radiative reaction terms and the
retarded fields of their mutual interaction.

It is possible to define two four-vectors very similar to those defined
by Singleton, [5], Wµ and V µ such that Fµν = Wµν − V µν∗ ; Fµν∗ =
Wµν
∗ + V µν , with Wµν = ∂µW ν − ∂νWµ, V µν = ∂µV ν − ∂νV µ. By the

use of Lorentz condition, ∂µWµ = 0 and ∂µV µ = 0, we get

∂2Wµ = −jµe ; ∂2V µ = jµg . (21)
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In order to obtain the term −eV µν∗ dzν/ds on the right side of the charge
equation, the action integral should have a term like

−e
∫
dzµ
dτ

V µ∗ (z)dτ, (22)

which is only possible if ∂µV ν∗ −∂νV µ∗ = V µν∗ . Lets consider the non-local
potential as a consequence of jµg 6= 0:

V µ∗ (z) =
∫ 0

−∞
V αβ∗ (ξ)

∂ξβ
∂zµ

∂ξα
∂τ

dτ, (23)

where the four-vector ξµ(z, τ) is defined by

ξµ(z, 0) = zµ, (24)
lim

τ→−∞
ξµ(z, τ) = space− like− infinity,

where“space-like infinity” means relative to the monopole position, the
charge position in the infinite past. The path from the distant point to
z is given by ξ as τ varies from −∞ to 0 and then

∂µV ν∗ − ∂νV µ∗ = V µν∗ +
∫ 0

−∞

∂ξβ
∂zν

∂ξγ
∂zµ

∂ξα
∂τ

(∂γV αβ∗ + ∂αV βγ∗ + ∂βV γα∗ )dτ,

(25)

with (∂γV αβ∗ + ∂αV βγ∗ + ∂βV γα∗ ) = εαβγσ [jg]σ (ξ). In order to keep
∂µV ν∗ − ∂νV µ∗ = V µν∗ in the last equation, the action will be non-local
provided the charge world-line never cross a monopole world-line at a
given space-time point.

Considering now the general case of charge and monopole line cross-
ing at some space-time point. The contribution for Fµν as given by the
second term on the right side of equation (26) will be

lim
τ→0
−
[
∂ξα
∂τ

]
τ=0

εαµνσ
∫ 0

τ

[jg]σ (ξ)e
dzν
ds

dτ. (26)

This contribution will vanish provided ([jg]σ written in terms of dxσ/ds)

dzν
ds

=
dxν
ds

, (27)
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as in this case εανµσ(dzσ/ds)(dxν/ds) = 0 with ν = σ. Therefore the lo-
cal character of the action principle, from which the equations of motion
can be derived, is guaranteed as long as the world-line paths of charges
and monopoles never cross and charges and monopoles have identical
four-velocities if they are located at the same point. In addition, in or-
der to have a general variational principle from which both particle and
field equations are simultaneously derived in a system of distinct parti-
cles, jµg = 0 is valid everywhere [12]. Therefore, there is no new photon
predicted by Singleton model [5] as no free monopole is allowed by the
present approach.

The base of the model is then established, i.e., spinless particles (elec-
tric charge plus a pair of monopoles) can be considered as structuring
an electron. Lets define an elementary particle as composed of a point
electric charge and a magnetic dipole: in a Cartesian coordinate system,
consider a positive monopole g at (0, 0, z0) with (z0 > 0, z0 a real num-
ber), a negative monopole −g at (0, 0,−z0) and an electric charge e at
the origin. Now z0 is the particle radius. The angular and magnetic
momenta of the system is contained in the electromagnetic field angular
momentum, Lem, i.e., Lem = 1

4πc

∫
r× (E×B) dv where r is the dis-

tance, E and B the electric and magnetic fields produced by the system
(at rest in the laboratory frame), and dv the volume integration element.
The angular momentum is

Lem =
(2g) e
c

ẑ, (28)

with ẑ an unary vector toward the z axis. The result does not depen-
dent on z0 but only on e and g. Monopoles can then be placed arbitrarily
close to the charge resulting in systems with invariant angular momen-
tum. The magnetic charge, g, represents here the net magnetic flux of a
monopole (which appears in equation (5) multiplied by (1 + cos δ)).

Since any charge-monopole pair has an associated angular momen-
tum, the simplest momentum quantization (as pointed out by Saha and
Wilson [13]) leads to the condition Lem = n~/2 or n~ with n an integer.
Such quantization condition implies (2g) e/c = n~/2 (or n~) for the sys-
tem. If the magnetic moment of a particle is e~/(2mc), (in terms of the
present description, 2gz0) we therefore obtain

z0 =
e2

mc2

(
1
n

)
. (29)
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For an arbitrary large value of angular momentum, the size of a
particle composed of an electric charge and two monopoles of opposite
charge may be taken as arbitrarily small (for n → ∞, the spin n~/2 →
∞ and z0 → 0). Let us take n = 1: the angular momentum is ~/2,
z0 = e2/mc2 and the magnetic moment e~/2mc for a net electric charge
e. With m = 0.511 MeV/c2 and e = 1.602 · 10−19 C the values for the
magnetic moment and particle radius agree with the well known observed
values of the electron [8].

Not only fermions can be formed by Dirac monopoles. Bosons are also
possible candidates: photons have been described as a pair of fermions
according to de Broglie description [14]. If fermions are described in
terms of Dirac monopoles, the same space-time structure will be observed
as caused by photons.

5 Conclusions

The present contribution is an initial approach to Dirac strings as sources
of space-time distortions. The model is still in its initial steps as no
clear relation between the string parameters (cross-section, etc) and the
value of the gravitational mass was given.The main result is that Dirac
monopoles cause gravitation to appear as a consequence of volumetric
singular Dirac strings. One question then arises: is there any physical
reason for Dirac strings to have non-null volumes? The generalized flux
quantization rule (magnetic flux plus dual electric charge equals to an
integer) derived by A Davidson and D Karasik [6] suggests that a finite
magnetic flux cannot be confined indefinitely. In their approach this
is associated to the inclusion of gravity in the theory, which shows a
qualitative agreement with the present ideas.

Although the mathematical expression relating the monopole charge
to the corresponding gravitational mass is still lacking in the present
study, there is clear indication that for small δ (which corresponds to
small gravitational fields according to equation (12)) and for small varia-
tions of distance of the test particle from the magnetic charge, monopoles
may be considered as the source of gravitational effects related to point-
like elementary particles.

In other works, [7], monopoles are related to Electromagnetism and
Gravitation in unification efforts. In them torsion was included in the
Weyl-Dirac theory causing the dual of the field strength tensor to have a
nonzero divergence, both for charges and monopoles within the context
of Proca equation.
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In conclusion, it was possible to show that generalized Dirac monopoles
composed of volumetric strings may deform space-time similarly to what
happens in the case of a vanishing point-like mass when the distance of
the test particle to the monopole does not change much. The general-
ization of the present results will be addressed in a future work.
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