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ABSTRACT. In the invariant approach to special relativity (SR),
which we call the ”true transformations (TT) relativity,” a physical
quantity in the four-dimensional spacetime is mathematically repre-
sented either by a true tensor or equivalently by a coordinate-based
geometric quantity comprising both components and a basis. This in-
variant approach differs both from the usual covariant approach, which
mainly deals with the basis components of tensors in a specific, i.e., Ein-
stein’s coordinatization of the chosen inertial frame of reference,.and
the usual noncovariant approach to SR in which some quantities are
not tensor quantities, but rather quantities from ”3+1” space and time,
e.g., the synchronously determined spatial length. This noncovariant
formulation of SR is called the ”apparent transformations (AT) rela-
tivity.” The principal difference between the ”TT relativity” and the
”AT relativity” arises from the difference in the concept of sameness of
a physical quantity for different observers. In the second part of this
paper we present the invariant formulation of electrodynamics with the
electromagnetic field tensor F ab, and also the equivalent formulation
in terms of the four-vectors of the electric Ea and magnetic Ba fields.

1. INTRODUCTION

At present there are two main formulations of the classical electrody-
namics. The first one is the manifestly covariant formulation, which
deals with the component form, in Einstein’s coordinatization, of tensor
quantities and tensor equations in the four-dimensional (4D) spacetime,
and where the electromagnetic field tensor Fαβ (the component form;
for the notation see the next section) contains all the information about
the electromagnetic field. (In the Einstein (”e”) [1] coordinatization
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Einstein’s synchronization [1] of distant clocks and cartesian space co-
ordinates xi are used in the chosen inertial frame of reference (IFR).)
The second one is the noncovariant formulation dealing with the three-
vectors (3-vectors), the electric field E and the magnetic field B, and
with equations containing them. The whole latter formulation is given
in ”3+1” space and time and was constructed by Maxwell before the
appearance of Einstein’s theory of relativity [1]. In [2, 3] I have pre-
sented an alternative covariant formulation of vacuum electrodynamics
with the electric and magnetic 4-vectors Eα and Bα (also the compo-
nent form), which is equivalent to the usual covariant formulation with
Fαβ . Recently [4] the invariant formulation of vacuum electrodynamics
is presented with the electric and magnetic 4-vectors Ea and Ba (true
tensors), which is equivalent to the invariant formulation with F ab (also
true tensor). For the covariant formulation of electrodynamics with Eα

and Bα (the component form of tensors in the ”e” coordinatization )
see also [5] and [6]. The covariant formulation with Fαβ and the usual
formulation with the electric and magnetic 3-vectors E and B are gener-
ally considered to be equivalent. It is shown in [2, 3] ([4]) that, contrary
to the general opinion, there is not the equivalence between covariant
(invariant) formulations, either the usual one with Fαβ (F ab), or equiv-
alently the alternative one with Eα and Bα (Ea and Ba), and the usual
noncovariant formulation.

It seems that the work on the foundations of electromagnetic theory
is again in a continuos progress and I only quote two recent references,
[7] and [8], which present an interesting part of this work.

In the first part of this paper a general discussion on the ”TT relativ-
ity” will be presented, and in the second part we consider the invariant
formulation of electrodynamics with F ab, and Ea and Ba.

2. A GENERAL DISCUSSION ON THE ”TT RELATIVITY

In [9] Rohrlich introduced the notions of the true transformations (TT)
and the apparent transformations (AT) of physical quantities and em-
phasized the role of sameness of a physical quantity for different ob-
servers. This concept of sameness is also considered in the same sense
by Gamba [10].

The principal difference between the ”TT relativity,” the usual co-
variant formulation and the ”AT relativity” stems from the difference in
the concept of sameness of a physical system, i.e., of a physical quantity,
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for different observers. This concept actually determines the difference
in what is to be understood as a relativistic theory.

In this paper we explore a formulation of special relativity (SR) that
is borrowed from general relativity. This is the formulation in which all
physical quantities (in the case when no basis has been introduced) are
described by true tensor fields, that are defined on the 4D spacetime,
and that satisfy true tensor equations representing physical laws. The
true tensors and true tensor equations are defined without any refer-
ence frame. For the formulation of spacetime theories without reference
frames see, e.g., [11]. When the coordinate system is introduced the
physical quantities are mathematically represented by the coordinate-
based geometric quantities (CBGQs) that satisfy the coordinate-based
geometric equations (CBGEs). The CBGQs contain both the compo-
nents and the basis one-forms and vectors of the chosen IFR. Speaking
in mathematical language a tensor of type (k,l) is defined as a linear
function of k one-forms and l vectors (in old names, k covariant vectors
and l contravariant vectors) into the real numbers, see, e.g., [12, 13, 14].
If a coordinate system is chosen in some IFR then, in general, any ten-
sor quantity can be reconstructed from its components and from the
basis vectors and basis 1-forms of that frame, i.e., it can be written in
a coordinate-based geometric language, see, e.g., [14]. The symmetry
transformations for the metric gab, i.e., the isometries, leave the pseudo-
Euclidean geometry of 4D spacetime of SR unchanged; if we denote
an isometry as Φ∗ then (Φ∗g)ab = gab. At the same time they do not
change the true tensor quantities, or equivalently the CBGQs, in physi-
cal equations. Thus isometries are what Rohrlich [9] calls the TT. The
formulation of SR that deals with true tensor quantities and the TT is
called the ”TT relativity.” In the ”TT relativity” different coordinatiza-
tions of an IFR are allowed and they are all equivalent in the description
of physical phenomena. (An example of a nonstandard synchronization,
and thus nonstandard coordinatization as well, that drastically differs
from the Einstein synchronization is considered in detail in [4].) In the
”TT relativity” the concept of sameness of a physical quantity is very
clear. Namely the CBGQs representing some 4D physical quantity in
different relatively moving IFRs, or in different coordinatizations of the
chosen IFR, are all mathematically equal. Thus they are really the same
quantity for different observers, or in different coordinatizations. We
suppose that in the ”TT relativity” such 4D tensor quantities are well
defined not only mathematically but also experimentally, as measurable



290 T. Ivezić

quantities with real physical meaning. The complete and well defined
measurement from the ”TT relativity” viewpoint is such measurement in
which all parts of some 4D quantity are measured. Different experiments
that test SR are discussed in [15] and it is shown that all experiments,
which are complete from the ”TT relativity” viewpoint, can be qualita-
tively and quantitatively explained by the ”TT relativity,” while some
experiments cannot be adequately explained by the ”AT relativity.”

In this paper I use the same convention with regard to indices as in
[4, 15]. Repeated indices imply summation. Latin indices a, b, c, d, ... are
to be read according to the abstract index notation, see [12], Sec.2.4.; they
”...should be viewed as reminders of the number and type of variables
the tensor acts on, not as basis components.” They designate geometric
objects in 4D spacetime. Thus, e.g., laAB (a distance 4-vector laAB =
xaB−xaA between two events A and B with the position 4-vectors xaA and
xaB) and xaA,B are (1,0) tensors and they are defined independently of
any coordinate system. Greek indices run from 0 to 3, while latin indices
i, j, k, l, ... run from 1 to 3, and they both designate the components of
some geometric object in some coordinate system, e.g., xµ(x0, xi) and
xµ
′
(x0′ , xi

′
) are two coordinate representations of the position 4-vector

xa in two different inertial coordinate systems S and S′. The true tensor
xa is then represented as the CBGQs in different bases {eµ} in an IFR S

and {eµ′} in a relatively moving IFR S′ as xa = xµeµ = xµ
′
eµ′ , where,

e.g., eµ are the basis 4-vectors, e0 = (1, 0, 0, 0) and so on, and xµ are the
basis components when the ”e” coordinatization is chosen in some IFR
S. Similarly the metric tensor gab denotes a tensor of type (0,2). The
geometry of the spacetime is generally defined by this metric tensor gab,
which can be expanded in a coordinate basis in terms of its components
as gab = gµνdx

µ ⊗ dxν , and where dxµ ⊗ dxν is an outer product of
the basis 1-forms. Thus the geometric object gab is represented in the
component form in an IFR S, and in the ”e” coordinatization, i.e., in
the {eµ} basis, by the 4×4 diagonal matrix of components of gab, gµν =
diag(−1, 1, 1, 1), and this is usually called the Minkowski metric tensor.

It has to be noted that the ”TT relativity” approach to SR differs
not only from the ”AT relativity” approach but also from the usual co-
variant approach. The difference lies in the fact that the usual covariant
approach mainly deals with the basis components of tensors (represent-
ing physical quantities) and the equations of physics are written out in
the component form. Mathematically speaking the concept of a tensor in
the usual covariant approach is defined entirely in terms of the transfor-
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mation properties of its components relative to some coordinate system.
Obviously in the usual covariant approach (including [9] and [10]) the
basis components of a true tensor, or equivalently of a CBGQ, that are
determined in different IFRs (or in different coordinatizations), are con-
sidered to be the same quantity for different observers. Although the
basis components of a true tensor refer to the same tensor quantity they,
in fact, are not the same quantity. They depend on the chosen reference
frame and the chosen coordinatization of that reference frame. Thus the
basis components are the coordinate quantities.

In contrast to the TT the AT are not the transformations of space-
time tensors and they do not refer to the same 4D quantity. Thus they
are not isometries and they refer exclusively to the component form of
tensor quantities and in that form they transform only some components
of the whole tensor quantity. In fact, depending on the used AT, only
a part of a 4D tensor quantity is transformed by the AT. Such a part
of a 4D quantity, when considered in different IFRs (or in different co-
ordinatizations of some IFR) corresponds to different quantities in 4D
spacetime. An example of the AT is the AT of the synchronously de-
fined spatial length [1], i.e., the Lorentz ”contraction.” It is shown in
[9, 10], and more exactly in [4], that the Lorentz ”contraction” is an
AT. The spatial or temporal distances taken alone are not well defined
quantities in 4D spacetime. Further it is shown in [2, 3], and more ex-
actly in [4], that the conventional transformations of the electric and
magnetic 3-vectors E and B (see, e.g., [16] Sec.11.10) are also the AT.
The formulation of SR which uses the AT we call the ”AT relativity.”
An example of such formulation is Einstein’s formulation of SR which
is based on his two postulates and which deals with different AT. Thus
in the ”AT relativity” quantities connected by an AT, e.g., two spatial
lengths connected by the Lorentz contraction, are considered to be the
same quantity for different observers. However, as explicitly shown in
[4], the quantities connected by an AT are not well defined quantities
in 4D spacetime and, actually, they correspond to different quantities in
4D spacetime.

(In the following we shall also need the expression for the covariant
4D Lorentz transformations Lab, which is independent of the chosen
coordinatization of reference frames (see [17], [3] and [4]). It is

Lab ≡ Lab(v) = gab −
2uavb
c2

+
(ua + va)(ub + vb)

c2(1 + γ)
, (1)
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where ua is the proper velocity 4-vector of a frame S with respect to
itself, ua = cna, na is the unit 4-vector along the x0 axis of the frame
S, and va is the proper velocity 4-vector of S′ relative to S. Further
u · v = uava and γ = −u · v/c2. In the Einstein coordinatization Lab is
represented by Lµν , the usual expression for pure Lorentz transformation
which connects two coordinate representations, basis components xµ, xµ

′

of a given event. xµ, xµ
′

refer to two relatively moving IFRs (with the
Minkowski metric tensors) S and S′,

xµ
′

= Lµ
′
νx

ν , L0′
0 = γ, L0′

i = Li
′
0 = −γvi/c,

Li
′
j = δij + (γ − 1)vivj/v2, (2)

where vµ ≡ dxµ/dτ = (γc, γvi), dτ ≡ dt/γ and γ ≡ (1−v2/c2)1/2. Since
gµν is a diagonal matrix the space xi and time t (x0 ≡ ct) parts of xµ

do have their usual meaning.)

As already mentioned different experiments that test SR are dis-
cussed in [15]. In numerous papers and textbooks it is considered that
the experiments on the length contraction and the time dilatation test
SR, but the discussion from [15] shows that such an interpretation of
the experiments refers exclusively to - the ”AT relativity,” and not to
- the ”TT relativity.” When SR is understood as the theory of 4D
spacetime with pseudo-Euclidean geometry then instead of the Lorentz
contraction and the dilatation of time one has to consider the 4D tensor
quantities, the spacetime length l, l = (gablalb)1/2, or the distance 4-
vector laAB = xaB−xaA. Namely in the ”TT relativity” the measurements
in different IFRs (and different coordinatizations) have to refer to the
same 4D tensor quantity, i.e., to a CBGQ. In the chosen IFR and the
chosen coordinatization the measurement of some 4D quantity has to
contain the measurements of all parts (all the basis components) of such
a quantity. However in almost all experiments that refer to SR only the
quantities belonging to the ”AT relativity” were measured. From the
”TT relativity” viewpoint such measurements are incomplete, since only
some parts of a 4D quantity, not all, are measured. It is shown in [15]
that the ”TT relativity” theoretical results agree with all experiments
that are complete from the ”TT relativity” viewpoint, i.e., in which all
parts of the considered tensor quantity are measured in the experiment.
However the ”AT relativity” results agree only with some of the exam-
ined experiments (and this agreement exists only for the specific coor-
dinatization, i.e., the ”e” coordinatization. Moreover the agreement of
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the ”AT relativity” and the experiments is, in fact, an ”apparent” agree-
ment, which is usually obtained by means of an incorrect treatment of
4D quantities. This is explicitly shown in [15] for some of the well-known
experiments: the ”muon” experiment, the Michelson-Morley type exper-
iments, the Kennedy-Thorndike type experiments and the Ives-Stilwell
type experiments.

In this paper we only give a short discussion of the Michelson-Morley
experiment and for the details see [15]. In the Michelson-Morley exper-
iment two light beams emitted by one source are sent, by half-silvered
mirror O, in orthogonal directions. These partial beams of light traverse
the two equal (of the length L) and perpendicular arms OM1 (perpen-
dicular to the motion) and OM2 (in the line of motion) of Michelson’s
interferometer and the behavior of the interference fringes produced on
bringing together these two beams after reflection on the mirrors M1 and
M2 is examined. The Earth frame is the rest frame of the interferome-
ter, i.e., it is the S frame, while the S′ frame is the (preferred) frame in
which the interferometer is moving at velocity v.

In the Michelson-Morley experiment the traditional, ”AT relativity,”
derivation of the fringe shift 4N deals only with the calculation, in the
”e” coordinatization, of t1 and t2 (in S and S′), which are the times
required for the complete trips OM1O and OM2O along the arms of the
Michelson-Morley interferometer; . The null fringe shift obtained with
such calculation is only in an ”apparent,” not true, agreement with the
observed null fringe shift, since this agreement was obtained by an in-
correct procedure. Namely it is supposed in such derivation that, e.g., t1
and t′1 refer to the same quantity measured by the observers in relatively
moving IFRs S and S′ that are connected by the Lorentz transforma-
tion. However, as shown in [4, 15], the relation for the time dilatation
t′1 = γt1, which is used in the usual explanation of the Michelson-Morley
experiment, is not the Lorentz transformation of some 4D quantity, and,
see [15], t′1 (t′1 = 2L/c(1 − v2/c2)1/2) and t1 (t1 = 2L/c) do not corre-
spond to the same 4D quantity considered in S′ and S respectively but
to different 4D quantities.

Our ”TT relativity” calculation, in contrast to the ”AT relativity”
calculation, deals always with the true tensor quantities or the CBGQs;
in the Michelson-Morley experiment it is the phase of a light wave

φ = kagabl
b, (3)

where ka is the propagation 4-vector, gab is the metric tensor and lb is
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the distance 4-vector. All quantities in (3) are true tensor quantities
and thus (3) is written without any reference frame. These quantities
can be written in the coordinate-based geometric language and, e.g., the
decompositions of ka in S and S′ and in the ”e” coordinatization are

ka = kµeµ = kµ
′
eµ′ , (4)

where the basis components kµ of the CBGQ are transformed by Lµ
′
ν

(2), while the basis vectors eµ are transformed by the inverse transfor-
mation (Lµ

′
ν)−1 = Lµν′ . By the same reasoning the phase φ (3) is given

in the coordinate-based geometric language as

φ = kµgµν l
ν = kµ

′
gµν l

ν′ . (5)

As shown in [15] the ”TT relativity” calculations yields the observed null
fringe shift and that result holds for all IFRs and all coordinatizations.

In addition, it is shown in [15] that the usual ”AT relativity” actually
deals only with the part k0l0 (i.e., ωt) of the whole phase φ, (3) or (5).
This contribution k0l0 is considered in the interferometer rest frame S,
while in the S′ frame, in which the interferometer is moving, the usual
”AT relativity” takes into account only the contribution k0l0′ (i.e., ωt′);
the k0 (i.e., ω) factor is taken to be the same in S and S′ frames. Thus in
the usual ”AT relativity” two different quantities k0l0 and k0l0′ (only the
parts of the phase (3) or (5)) are considered to be the same 4D quantity
for observers in S and S′ frames, and these quantities are considered to be
connected by the Lorentz transformation. Such an incorrect procedure
then caused an apparent (not true) agreement of the traditional analysis
with the results of the Michelson-Morley experiment. Since only a part
of the whole phase φ (3) or (5) is considered the traditional result is
synchronization, i.e., coordinatization, dependent result.

Driscoll [18] improved the traditional ”AT relativity” derivation of
the fringe shift taking into account the changes in frequencies due to
the Doppler effect. (Recall that in the traditional approach ω is the
same in S and S′.) The improved ”AT relativity” calculation of the
fringe shift from [18] finds a ”surprising” non-null fringe shift. It is
shown in [15] that the non-null theoretical result for the fringe shift
from [18] is easily obtained from our ”TT relativity” approach taking
only the product k0′ l0′ in the calculation of the increment of phase φ′

in S′ in which the apparatus is moving. Thus again as in the usual
”AT relativity” calculation two different quantities k0l0 and k0′ l0′ (only
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the parts of the phase (3) or (5)) are considered to be the same 4D
quantity for observers in S and S′ frames, and consequently that these
two quantities are connected by the Lorentz transformation. Since only
a part k0′ l0′ of the whole 4D tensor quantity φ (3) or (5) is considered
the non-null fringe shift can be shown to be quite different in another
coordinatization, see [15].

The same conclusions can be drawn for the Kennedy-Thorndike type
experiments, and for the modern laser versions of both, the Michelson-
Morley and the Kennedy-Thorndike type experiments, see [15].

This short consideration illustrates the main differences in the inter-
pretation of the well-known experiments from the point of view of the
traditional ”AT relativity” and from the viewpoint of the ”TT relativ-
ity.”

3. THE INVARIANT FORMULATION OF ELECTRODY-
NAMICS WITH F ab

Let us now apply the above general consideration of the invariant for-
mulation of SR to the electrodynamics.

The usual covariant Maxwell equations with Fαβ and its dual ∗Fαβ

∂αF
aβ = −jβ/ε0c, ∂α

∗Fαβ = 0, (6)

where ∗Fαβ = −(1/2)εαβγδFγδ and εαβγδ is the totally skew-symmetric
Levi-Civita pseudotensor, are actually the equations in the ”e” coor-
dinatization for basis components in a chosen IFR. We first show how
these equations for the basis components are derived from the true ten-
sor equations (when no basis has been introduced). The true tensor
equations can be written in the abstract index notation as

∇aFab = −jb/ε0c, εabcd∇bFcd = 0, (7)

where ∇b is the derivative operator (sometimes called the covariant
derivative), see, e.g., [12]. The tensor equation (7) can be written in
the following form

(−g)−1/2∂a((−g)1/2F ab) = −jb/ε0c, εabcd∂bFcd = 0, (8)

where g is the determinant of the metric tensor gab and ∂a is an ordi-
nary derivative operator. When some coordinatization is chosen in a
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specific IFR S, e.g., the ”e” coordinatization, then the relations (8) can
be written in the coordinate-based geometric language as the equations
that contain the basis vectors as well,

∂αF
aβeβ = −(1/ε0c)jβeβ , ∂α

∗Fαβeβ = 0. (9)

(We remark that (9) follows from (8) for those coordinatizations for
which the basis vectors are constant, e.g., the ”e” coordinatization.)
From (9), which contain the basis (1,0) tensors (4-vectors), one finds the
already written equations for basis components (6); every equation in (9)
is the equality of two tensors of the same type, two 4-vectors, and if two
4-vectors are equal then the corresponding components are equal, and
that holds in all bases. In many treatments only the covariant Maxwell
equations (6) for the basis components are used forgetting that they are
obtained from the tensor equations (8) or (9).

Similarly one finds from (8) the equations corresponding to (9) and
to (6) but in the {eµ′} basis, i.e., in the S′ frame and in the ”e” co-
ordinatization, by replacing the unprimed quantities with the primed
ones.

¿From this consideration some important conclusions can be derived
regarding the mathematical form of the physical laws in the ”TT rel-
ativity.” From the mathematical viewpoint the (1,0) tensor quantity
(−g)−1/2∂a((−g)1/2F ab) can be written in the coordinate-based geomet-
ric language in the ”e” cordinatization, and in S as ∂αF aβeβ , while in S′

as ∂α′F a
′β′eβ′ , where all primed quantities (including the basis vectors)

are obtained by the TT, i.e., by the Lorentz transformation Lµν,e (2)
from the corresponding unprimed quantities. Thus

(−g)−1/2∂a((−g)1/2F ab) = ∂αF
aβeβ = ∂α′F

a′β′eβ′ , (10)

which shows that the equalities in (10) refer to the same quantity in 4-
D spacetime. Analogously, the mathematics yields for the (1,0) tensor
(4-vector) −jb/ε0c the relations

−jb/ε0c = −(1/ε0c)jβeβ = −(1/ε0c)jβ
′
eβ′ . (11)

A similar analysis can be applied to the second Maxwell equation in (8).

The physical laws expressed as tensor equations, e.g., (8), or equiv-
alently as CBGEs, for example, (9), set up the connection between two
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geometric quantities, in this case, two 4-vectors, that are given by equa-
tions (10) and (11). The experiments in which all parts of tensor quan-
tities are measured then play the fundamental role in deciding about the
validity of some physical law mathematically expressed as tensor equa-
tion. We see from the equations (10) and (11) that when the physical
laws are expressed as tensor, geometric, equations (8) or (9) then these
equations are invariant upon the Lorentz transformations. It is not so
for the equations in the component form, e.g., (6). Of course the co-
variance of physical equations, when they are written in the component
form, is a simple consequence of the invariance of tensor quantities, or
equivalently, of the CBGQs, upon the mentioned TT, that is upon the
isometries. The invariance of physical laws, that are expressed as tensor
equations, or equivalently as the CBGEs, means that all physical phe-
nomena proceed in the same way (taking into account the corresponding
initial and boundary conditions) in different IFRs. Thus there is no
physical difference between these frames, what automatically embodies
the principle of relativity. We remark that in the ”TT relativity” there
is no need to postulate the principle of relativity as a fundamental law.
It is replaced by the requirement that the physical laws must be expressed
as tensor equations (or equivalently as the CBGEs) in the 4D spacetime.

This consideration is used in [4] to derive an important result, i.e.,
to show that, contrary to the general belief, the usual Maxwell equations
with Ei and Bi, or with the 3-vectors E and B, are not equivalent to
the tensor equations (8), i.e., to the CBGEs (9). Further it is explicitly
shown in [4] that the conventional transformations for E and B (see, e.g.,
[16] Sec.11.10) actually connect different quantities in 4D spacetime, and
thus that they are not the TT but the AT.

4. THE INVARIANT FORMULATION OF ELECTRODY-
NAMICS WITH Ea AND Ba

In this section we present the formulation of electrodynamics introducing
the 4-vectors Ea and Ba instead of the usual 3-vectors E and B. The
Maxwell equations are formulated as tensor equations with Ea and Ba,
which are equivalent to the tensor Maxwell equations with F ab, (7) or
(8). We define the electric and magnetic fields by the relations

Ea = (1/c)Fabvb, Ba = −(1/2c2)εabcdvbFcd. (12)

The Ea and Ba are the electric and magnetic field 4-vectors measured by
an observer moving with 4-velocity va in an arbitrary reference frame,
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vava = −c2, and εabcd is the totally skew-symmetric Levi-Civita pseu-
dotensor (density). These fields satisfy the conditions vaEa = vbB

b = 0,
which follow from the definitions (12) and the antisymmetry of Fab. In
the usual treatments (see, e.g., [12], [20], [19]) the tensors Ea and Ba

are introduced in the curved spacetimes or noninertial frames, but at
the same time the usual Maxwell equations with the 3-vectors E and B
are considered to be valid in the IFRs. One gets the impression that
Ea and Ba are considered only as useful mathematical objects, while
the real physical meaning is associated with the 3-vectors E and B. Our
results obtained in [4] and in Sec. 2. imply that it is necessary to use
the 4-vectors Ea and Ba in IFRs as well. This means that the tensor
quantities Ea and Ba do have the real physical meaning and not the
3-vectors E and B. The inverse relation connecting the Ea, Ba and the
tensor Fab is

Fab = (1/c)(vaEb − vbEa) + εabcdv
cBd. (13)

The tensor Maxwell equations with Ea, Ba in the curved spacetimes are
derived, e.g., in [20]. Here we specify them to the IFRs, but in such a
way that they remain valid for different coordinatizations of the chosen
IFR. First we write the tensor Maxwell equations (8) with F ab as the
CBGEs (9). Then we also write the equation (13) in the coordinate-
based geometric language and the obtained equation substitute into (9).
This procedure yields

∂α(δαβµνv
µEν + cεαβµνBµvν)eβ = −(jβ/ε0)eβ ,

∂α(δαβµνv
µBν + (1/c)εαβµνvµEν)eβ = 0, (14)

where Eα and Bα are the basis components of the electric and magnetic
field 4-vectors Ea and Ba measured by a family of observers moving with
4-velocity vα, and δαβµν = δαµδ

β
ν−δανδβµ. The equations (14) correspond

in the Ea, Ba picture to the equations (9) in the F ab picture. From the
relations (14) we again find the covariant Maxwell equations for the basis
components (without the basis vectors eβ), which were already presented
in [2], [3] and [4].

∂α(δαβµνv
µEν + cεαβµνBµvν) = −(jβ/ε0),

∂α(δαβµνv
µBν + (1/c)εαβµνvµEν) = 0. (15)

(It has to be mentioned that the component form of Maxwell equations,
(15), was also presented in [5], and with jβ = 0 in [6]. However in [6]
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the physical meaning of vα is unspecified - it is any unitary 4-vector.
The reason for such choice of vα in [6] is that there Eα and Bα are
introduced as the ”auxiliary fields,” while E and B are considered as
the physical fields. In our ”invariant” approach with Ea and Ba the
situation is just the opposite; Ea and Ba are the real physical fields,
which are correctly defined and measured in 4D spacetime, while the
3-vectors E and B are not correctly defined in 4D spacetime from the
”TT viewpoint.” The equations (15) for basis components correspond
to the covariant Maxwell equations for basis components (6). Instead
of to work with F ab- formulation, (9) and (6), one can equivalently use
the Ea, Ba formulation with (14) and (15). For the given sources ja one
could solve these equations and find the general solutions for Ea and
Ba.

4.1 The comparison of Maxwell’s equations with E and B and
those with Ea and Ba

The comparison of this invariant approach with Ea and Ba and the usual
noncovariant approach with the 3-vectors E and B is possible in the ”e”
coordinatization. If one considers the ”e” coordinatization and takes that
in an IFR S the observers who measure the basis components Eα and Bα

are at rest, i.e., vα = (c,0), then E0 = B0 = 0, and one can derive from
the covariant Maxwell equations (15) for the basis components Eα and
Bα the Maxwell equations which contain only the space parts Ei and Bi

of Eα and Bα, e.g., from the first covariant Maxwell equation in (15) one
easily finds ∂iEi = j0/ε0c. We see that the Maxwell equations obtained
in such a way from the Maxwell equations (14), or (15), are of the same
form as the usual Maxwell equations with E and B. From the above
consideration one concludes that all the results obtained in a given IFR
S from the usual Maxwell equations with E and B remain valid in the
formulation with the 4-vectors Ea and Ba (in the ”e” coordinatization),
but only for the observers who measure the fields Ea and Ba and are at
rest in the considered IFR. Then for such observers the components of
E and B, which are not well defined quantities in the ”TT relativity,”
can be simply replaced by the space components of the 4-vectors Ea

and Ba (in the ”e” coordinatization). It has to be noted that just such
observers were usually considered in the conventional formulation with
the 3-vectors E and B. However, the observers who are at rest in some
IFR S cannot remain at rest in another IFR S′ moving with V α relative
to S. Hence in S′ this simple replacement does not hold; in S′ one cannot
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obtain the usual Maxwell equations with the 3-vectors E′ and B′ from
the transformed covariant Maxwell equations with Eα

′
and Bα

′
.

Some important experimental consequences of the ”TT relativity”
approach to electrodynamics have been derived in [3]. They are the
existence of the spatial components Ei of Ea outside a current-carrying
conductor for the observers (who measure Ea) at rest in the rest frame
of the wire, and the existence of opposite (invariant) charges on opposite
sides of a square loop with current, both when the loop is at rest and
when it is moving.

The similar external second-order electric fields from steady currents
in a conductor at rest are also predicted in, e.g., [21]. But this prediction
is made on the basis of Weber’s theory and thus the theory from [21] is
an action-at-a-distance theory.

5. SUMMARY AND CONCLUSIONS

In this paper we have presented the invariant (true tensor) formulation of
SR. This ”TT relativity” is compared with the usual covariant approach
to SR and with the usual ”AT relativity” formulation, i.e., with the
original Einstein’s formulation.

The principal concept that makes distinction between the ”TT rela-
tivity” formulation, the usual covariant formulation and the ”AT relativ-
ity” formulation of SR is the concept of sameness of a physical quantity
for different observers. In the ”TT relativity” the same quantity for dif-
ferent observers is the true tensor quantity, or equivalently the CBGQ,
only one quantity in 4D spacetime.

In the usual covariant approach one deals with the basis components
of tensors and with the equations of physics written out in the component
form, and all is mainly done in the ”e” coordinatization. There one
considers that the basis components, e.g., lµ and lµ

′
, represent the same

quantity for different observers. These quantities, in fact, are not equal
lµ 6= lµ

′
, but they only refer to the same tensor quantity laAB . If only one

coordinatization is always used, usually the ”e” coordinatization, then
the conventional covariant approach can be applied. However the physics
must not depend on the chosen coordinatization, which means that the
theory has to be formulated in the manner that does not depend on the
choice of some specific coordinatization. The Einstein coordinatization is
nothing more physical but any other permissible coordinatization. This
requirement is fulfilled in the ”TT relativity.”
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In the ”AT relativity” one does not deal with tensor quantities but
with quantities from ”3+1” space and time, e.g., the synchronously de-
termined spatial lengths, or the temporal distances taken alone. The
AT connect such quantities and thus they refer exclusively to the com-
ponent form of tensor quantities and in that form they transform only
some components of the whole tensor quantity. In the ”AT relativ-
ity” the quantities connected by an AT are considered to be the same
quantity, but such quantities are not well defined in 4D spacetime, and
actually they correspond to different quantities in 4D spacetime.

The difference between the traditional ”AT relativity” and the in-
variant formulation of SR, i.e., the ”TT relativity,” is also illustrated by
the difference in the interpretation of the Michelson-Morley experiment.

In Sec. 3 we have presented Maxwell equations as the true tensor
equations (7) or (8) and as the CBGEs (9). It is discussed how from
these equations one finds the usual covariant Maxwell equations (i.e.,
the component form) (6).

In Sec.4 we have introduced the 4-vectors Ea and Ba instead of the
usual 3-vectors E and B and we have formulated the Maxwell equations
as tensor equations with Ea and Ba, i.e., as the CBGEs (14) and the
equations for the basis components Eα and Bα (15) (all in the ”e” co-
ordinatization). These equations are completely equivalent to the usual
covariant Maxwell equations in the F ab- formulation, (9) and (6). It has
been explicitly shown in Sec. 4.1 that all the results obtained in a given
IFR S from the usual Maxwell equations with E and B remain valid in
the formulation with the 4-vectors Ea and Ba (in the ”e” coordinati-
zation), but only for the observers who measure the fields Ea and Ba

and are at rest in the considered IFR. Thus we conclude that the tensor
quantities Ea and Ba do have the real physical meaning and not the
3-vectors E and B.
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