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ABSTRACT. In order to extend the limits of classical theory appli-
cation in the microworld some slight generalization of Maxwell elec-
trodynamics is suggested. It is shown that slightly generalized clas-
sical Maxwell electrodynamics can describe the inneratomic phenom-
ena with the same success as relativistic quantum mechanics can do.
Group-theoretical grounds for the description of fermionic states by
bosonic system are presented briefly. The advantages of generalized
electrodynamics in inneratomic region in comparison with standard
Maxwell electrodynamics are demonstrated on testing example of hy-
drogen atom. We are able to obtain some results which are impossible
in the framework of standard Maxwell electrodynamics. The Som-
merfeld - Dirac formula for the fine structure of the hydrogen atom
spectrum is obtained on the basis of such Maxwell equations without
appealing to the Dirac equation. The Bohr postulates and the Lamb
shift are proved to be the consequences of the equations under consid-
eration. The relationship of the new model with the Dirac theory is
investigated. Possible directions of unification of such electrodynamics
with gravity are mentioned.

1 Introduction

There is no doubt that the Maxwell classical electrodynamics of macro-
world (without any generalization) is sufficient for the description of
electrodynamical phenomena in macro region. On the other hand it is
well known that for micro phenomena (inneratomic region) the classi-
cal Maxwell electrodynamics (as well as the classical mechanics) cannot
work and must be replaced by quantum theory. Trying to extend the
limits of classical electrodynamics application to the intraatomic region
we came to the conclusion that it is possible by means of generalization
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of standard Maxwell classical electrodynamics in the direction of the ex-
tencion of its symmetry. We also use the relationships between the Dirac
and Maxwell equations for these purposes. Furthermore, the relation-
ships between relativistic quantum mechanics and classical microscopical
electrodynamics of media are investigated. Such relationships are con-
sidered here not only from the mathematical point of view - they are used
for construction of fundamentals of a non-quantum-mechanical model of
microworld.

Our non-quantum-mechanical model of microworld is a model of
atom on the basis of slightly generalized Maxwell’s equations, i. e. in
the framework of moderately extended classical microscopical electrody-
namics of media. This model is free from probability interpretation and
can explain many intraatomic phenomena by means of classical physics.
Despite the fact that we construct the classical model, for the purposes
of such construction we use essentially the analogy with the Dirac equa-
tion and the results which were achieved on the basis of this equation.
Note also that electrodynamics is considered here in the terms of field
strengths without appealing to the vector potentials as the primary (in-
put) variables of the theory.

The first step in our consideration is the unitary relationship (and
wide range analogy) between the Dirac equation and slightly generalized
Maxwell equations [1].

Our second step is the symmetry principle. On the basis of this
principle we introduced in [2] the most symmetrical form of generalized
Maxwell equations which now can describe both bosons and fermions
because they have (see [2]) both spin 1 and spin 1/2 symmetries. On
the other hand, namely these equations are unitarily connected with the
Dirac equation. So, we have one more important argument to suggest
these equations in order to describe intraatomic phenomena, i. e. to be
the equations of specific intraatomic classical electrodynamics.

In our third step we refer to Sallhofer, who suggested in [3] the possi-
bility of introduction of interaction with external field as the interaction
with specific media (a new way of introduction of the interaction into
the field equations). Nevertheless, our model of atom (and of electron)
[1] is essentially different from the Sallhofer’s one.

On the basis of these three main ideas we are able to postulate the
slightly generalized Maxwell equations as the equations for intraatomic
classical electrodynamics which may work in atomic, nuclear and particle
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physics on the same level of success as the Dirac equation can do. Below
we illustrate it considering hydrogen atom within the classical model.

The interest to the problem of relationship between the Dirac and
Maxwell equations dates back to the time of creation of quantum me-
chanics [4]. But the authors of these papers during long time considered
only the most simple example of free and massless Dirac equation. The
interest to this relationship has grown in recent years due to the results
[3], where the investigations of the case m0 6= 0 and the interaction
potential Φ 6= 0 were started. Another approach was developed in [5],
where the quadratic relations between the fermionic and bosonic ampli-
tudes were found and used. In our above mentioned papers [1, 2], in
publications [6] and herein we consider the linear relations between the
fermionic and bosonic amplitudes. In [6] we have found the relationship
between the symmetry properties of the Dirac and Maxwell equations,
the complete set of 8 transformations linking these equations, the re-
lationship between the conservation laws for the electromagnetic and
spinor fields, the relationship between the Lagrangians for these fields.
Here we summarize our previous results and give some new details of the
intraatomic electrodynamics and its application to the hydrogen atom.
The possibilities of unification with gravitation are briefly discussed.

2 New classical electrodynamical hydrogen atom model

Consider the slightly generalized Maxwell equations in a medium with
specific form of sources:

curl−→H − ∂0ε
−→
E = −→j e, curl−→E + ∂0µ

−→
H = −→j mag,

divε−→E = ρe, divµ−→H = ρmag,
(1)

where −→E and −→H are the electromagnetic field strengths, ε and µ are the
electric and magnetic permeabilities of the medium being the same as in
the electrodynamical hydrogen atom model of H. Sallhofer [3]:

ε (−→x ) = 1− Φ (−→x ) + m0

ω
, µ (−→x ) = 1− Φ (−→x )−m0

ω
(2)

where Φ (−→x ) = −Ze2/r (we use the units: ~ = c = 1, transition to
standard system is fulfilled by the substitution ω −→ ~ω,m0 −→m0c

2).
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The current and charge densities in equations (1) have the form

−→
je = gradE0,

−→
j mag = −gradH0,

ρe = −εµ∂0E
0 +−→E gradε, ρmag = −εµ∂0H

0 +−→H gradµ,
(3)

where E0, H0 is the pair of functions (two real scalar fields) generating
the densities of gradient-like sources.

One can easily see that equations (1) are not ordinary electrodynam-
ical equations known from the Maxwell theory. These equations have
the additional terms which can be considered as the magnetic current
and charge densities - in one possible interpretation, or equations (1) can
be considered as the equations for compound system of electromagnetic−→
(E,
−→
H) and scalar E0, H0 fields in another possible interpretation.
The reasons of our slight generalization of the classical Maxwell elec-

trodynamics are the following.
1. The standard Maxwell electrodynamics cannot work in in-

traatomic region and its equations are not mathematically equivalent
to any of quantum mechanical equations for electron (Schrodinger equa-
tion, Dirac equation, etc...)

2. The existence of direct relationship between the equations (1) and
the Dirac equation for the massive particle in external electromagnetic
field in the stationary case can be applied. Namely these equations were
shown in papers [1] to be unitary equivalent with such Dirac equation
(see also Sec. 3 below).

3. Equations (1) can be derived from the principle of maximally pos-
sible symmetry - these equations have both spin 1 and spin 1/2 Poincaré
symmetries and in the limit of vanishing of the interaction with medium,
where ε = µ = 1, they represent [2] the maximally symmetrical form of
the Maxwell equations. This fact means first of all that from the group-
theoretical point of view of Wigner, Bargmann - Wigner (and of modern
field theory in general) Eqs. (1) can describe both bosons and fermions
(for more details see Sec. 4. below). As a consequence of this fact one
can use these equations particularly for the description of the electron.
On the other hand, this fact means that intraatomic classical electro-
dynamics of electron needs further (relatively to that having been done
by Maxwell) symmetrization of Weber - Faraday equations of classical
electromagnetic theory which leads to the maximally symmetrical form
(1). Below we demonstrate the possibilities of the equations (1) in the
description of testing example of hydrogen atom.
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Contrary to [1], here the equations (1) are solved directly by means
of separation of variables method. It is useful to rewrite these equations
in the mathematically equivalent form where the sources are maximally
simple:

curl−→H − ε∂0
−→
E = −→j e, curl−→E + µ∂0

−→
H = −→j mag,

div−→E =
∼
ρe, div−→H =

∼
ρmag,

(4)

where
−→
je = gradE0,

−→
j mag = −gradH0,

∼
ρe= −µ∂0E

0,
∼

ρmag= −ε∂0H
0.

(5)

Consider the stationary solutions of equations (4). Assuming the
harmonic time dependence for the functions E0, H0

E0(t,−→x ) = E0
A(−→x ) cosωt+ E0

B(−→x ) sinωt,
H0(t,−→x ) = H0

A(−→x ) cosωt+H0
B(−→x ) sinωt, (6)

we are looking for the solutions of equations (4) in the form
−→
E (t,−→x ) = −→E A(−→x ) cosωt+−→E B(−→x ) sinωt,−→
H (t,−→x ) = −→H A(−→x ) cosωt+−→HB(−→x ) sinωt.

(7)

For the 16 time-independent amplitudes we obtain the following two
nonlinked subsystems

curl−→HA − ωε−→EB = gradE0
A, curl−→EB − ωµ−→HA = −gradH0

B ,

div−→EB = ωµE0
A, div−→H A = −ωεH0

B ,
(8)

curl−→HB + ωε
−→
EA = gradE0

B , curl−→EA + ωµ
−→
HB = −gradH0

A,

div−→EA = −ωµE0
B , div−→HB = ωεH0

A.
(9)

Below we consider only the first subsystem (8). It is quite enough
because the subsystems (8) and (9) are connected with transformations

E −→ H, H −→ −E, εE −→ µH, µH −→ −εE,
ε −→ µ, µ −→ ε,

(10)

which are the generalizations of duality transformation of free electro-
magnetic field. Due to this fact the solutions of subsystem (9) can be
easily obtained from the solutions of subsystem (8).
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Furthermore, it is useful to separate equations (8) into the following
subsystems:

ωεE3
B − ∂1H

2
A + ∂2H

1
A + ∂3E

0
A = 0,

ωεH0
B + ∂1H

1
A + ∂2H

2
A + ∂3H

3
A = 0,

−ωµE0
A + ∂1E

1
B + ∂2E

2
B + ∂3E

3
B = 0,

ωµH3
A − ∂1E

2
B + ∂2E

1
B − ∂3H

0
B = 0,

(11)

and

ωεE1
B − ∂2H

3
A + ∂3H

2
A + ∂1E

0
A = 0,

ωεE2
B − ∂3H

1
A + ∂1H

3
A + ∂2E

0
A = 0,

ωµH1
A − ∂2E

3
B + ∂3E

2
B − ∂1H

0
B = 0,

ωµH2
A − ∂3E

1
B + ∂1E

3
B − ∂2H

0
B = 0.

(12)

Assuming the spherical symmetry case, when Φ(−→x ) = Φ(r), r ≡ |−→x |,
we are making the transition into the spherical coordinate system and
looking for the solutions in the spherical coordinates in the form

(E,H) (−→r ) = R(E,H) (r) f(E,H) (θ, φ) , (13)

where E ≡
(
E0,
−→
E
)
, H ≡

(
H0,
−→
H
)
. We choose for the subsystem (11)

the d’Alembert Ansatz in the form

−
E0
A=

−
CE4 RH4P

−
m4
lH4
e−

−
im4φ,

−
EkB=

−
CEk REkP

−
mk
lEk

e−
−
imkφ,

−
H0
B=

−
CH4 RE4P

−
m4
lE4
e−

−
im4φ, k = 1, 2, 3.

−
Hk
A=

−
CHk RHkP

−
mk
lHk

e−i
−
mkφ,

(14)

We use the following representation for ∂1, ∂2, ∂3 operators in spherical
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coordinates

∂1CRP
m
l e
∓imφ =

e∓imφC

2l + 1
cosφ

(
R,l+1P

m+1
l−1 −R,−lPm+1

l+1

)
+ e∓i(m−1)φC

m

sin θ
Pml

R

r
,

∂2CRP
m
l e
∓imφ =

e∓imφC

2l + 1
sinφ

(
R,l+1P

m+1
l−1 −R,−lPm+1

l+1

)
∓ e∓i(m−1)φC

im

sin θ
Pml

R

r
,

∂3CRP
m
l e
∓imφ =

e∓imφC

2l + 1
(
R,l+1(l +m)Pml−1 +R,−l(l −m+ 1)Pml+1

)
.

(15)

Substitutions (14) and (15) together with the assumptions

REα = RE , lEα = lE , RHα = RH , lHα = lH ,
−
m1=

−
m2=

−
m3 −1 =

−
m4 −1 = m,

−
CH1= i

−
CH2 ,

−
CE2= −i

−
CE1 ,

−
CH4= −i

−
CE3 ,

−
CH3= −i

−
CE4 ,

−
CIH2

=
−
CIE4

(lIH +m+ 1),
−
CIE3

= −
−

CIE4
≡
−
CI ,

−
CIE1

=
−
CIE3

(lIE −m), lIH = lIE − 1 ≡ lI ,
−
CIIH2

= −
−
CIIE4

(lIIH −m),
−
CIIE3

= −
−

CIIE4
≡
−
CII ,

−
CIIE1

=
−
−CIIE3

(lIIE +m+ 1), lIIH = lIIE + 1 ≡ lII

(16)

into the subsystem (11) guarantee the separation of variables in these
equations and lead to the pair of equations for two radial functions
RE , RH (for the subsystem (12) the procedure is similar):

εωRIE −RIH,−l = 0, µωRIH +RIE,l+2 = 0, (17)

εωRIIE −RIIH,l+1 = 0, µωRIIH +RIIE,−l+1 = 0; R,a ≡
(
d

dr
+
a

r

)
R.

(18)

For the case Φ = −ze2/r the equations (17), (18) coincide exactly with
the radial equations for the hydrogen atom of the Dirac theory and,
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therefore, the procedure of their solution is the same as in well-known
monographs on relativistic quantum mechanics. It leads to the well-
known Sommerfeld - Dirac formula for the fine structure of the hydro-
gen spectrum. We note only that here the discrete picture of energetic
spectrum in the domain 0 < ω < m0c

2 is guaranteed by the demand
for the solutions of the radial equations (17), (18) to decrease on infinity
(when r → ∞ ). From the equations (17), (18) and this condition the
Sommerfeld - Dirac formula

ω = ωhydnj =
m0c

2

~
√

1 + α2

(nr+
√
k2−α2)2

(19)

follows, where the notations of the Dirac theory (see, e. g., [7]) are used:
nr = n − k, k = j + 1/2, α = e2/~c. Let us note once more that the
result (19) is obtained here not from the Dirac equation, but from the
Maxwell equations (1) with sources (3) in the medium (2).

Substituting (16) into (14) one can easy obtain the angular part of the
hydrogen solutions for the

−→
(E,−→H,E0, H0) field and calculate according

to (3) the corresponding currents and charges. Let us write down the
explicit form for the set of electromagnetic field strengths

−→
(E,−→H ), which

are the hydrogen solutions of equations (1), and also for the currents and
charges generating these field strengths (the complete set of solutions is
represented in [1]:

−→
EI = RIE

∣∣∣∣∣∣
(−l +m− 1)Pml+1 cosmφ
(l −m+ 1)Pml+1 sinmφ
−Pm+1

l+1 cos (m+ 1)φ

∣∣∣∣∣∣ ,
−→
HI = RIH

∣∣∣∣∣∣
(l +m+ 1)Pml sinmφ
(l +m+ 1)Pml cosmφ
−Pm+1

l sin (m+ 1)φ

∣∣∣∣∣∣ ,
−→
jIe = gradRIHP

m+1
l cos (m+ 1)φ,

−−→
jImag = −gradRIePm+1

l+1 sin (m+ 1)φ,

ρIe = −
(
εRIE

)
,l+2

Pm+1
l cos (m+ 1)φ,

ρImag = −
(
µRIH

)
,−l P

m+1
l+1 sin (m+ 1)φ,

(20)
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−→
EII = RIIE

∣∣∣∣∣∣
(l +m)Pml−1 cosmφ

(−l −m)Pml−1 sinmφ
Pm+1
l−1 cos(m+ 1)φ

∣∣∣∣∣∣ ,
−−→
HII = RIIH

∣∣∣∣∣∣
(−l +m)Pml sinmφ
(−l +m)Pml cosmφ
−Pm+1

l sin (m+ 1)φ

∣∣∣∣∣∣
−→
jIIe = gradRIIH P

m+1
l cos (m+ 1)φ,

−−→
jIImag = −gradRIIE Pm+1

l−1 sin (m+ 1)φ,

ρIIe = −
(
εRIIE

)
,−l+1

Pm+1
l cos (m+ 1)φ,

ρIImag = −
(
µRIIH

)
,l+1

Pm+1
l−1 sin (m+ 1)φ.

(21)

In one of the possible interpretations the states of the hydrogen atom
are described by these field strength functions −→E ,−→H generated by the
corresponding currents and charge densities.

It is evident from (1) that currents and charges in (20), (21) are
generated by scalar fields (E0, H0). Corresponding to (20), (21) (E0, H0)
solutions of equations (1) are the following:

EI0 = RIHP
m+1
l cos (m+ 1)φ, HI0 = RIEP

m+1
l+1 sin (m+ 1)φ,

EII0 = RIIH P
m+1
l cos (m+ 1)φ, HII0 = RIIE P

m+1
l−1 sin (m+ 1)φ.

(22)

As in quantum theory, the numbers n = 0, 1, 2, ...; j = k − 1
2 = l∓ 1

2
(k = 1, 2, ..., n) and m = −l,−l + 1, ..., l mark both the terms (19) and
the corresponding exponentially decreasing field functions −→E ,−→H (and
E0, H0) in (20)-(22), i. e. they mark the different discrete states of
the classical electrodynamical field (and the densities of the currents
and charges) which by definitions describes the corresponding states of
hydrogen atom in the model under consideration.

Note that the radial equations (17), (18) cannot be obtained if one
neglects the sources in equations (1), or one (electric or magnetic) of
these sources. Moreover, in this case there is no solution effectively
concentrated in atomic region.

Now we can show on the basis of this model that the assertions
known as Bohr’s postulates are the consequences of equations (1) and
of their classical interpretation, i. e. these assertions can be derived
from the model, there is no necessity to postulate them from beyond the
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framework of classical physics as it was in Bohr’s theory. To derive the
first Bohr’s postulate one can calculate the generalized Pointing vector
for the hydrogen solutions (20)-(22), i. e. for the compound system of
stationary electromagnetic and scalar fields

−→
(E,−→H,E0, H0)

−→
P gen =

∫
d3x(−→E ×−→H −−→EE0 −−→HH0). (23)

The straightforward calculations show that not only vector (23) is iden-
tically equal to zero but the Pointing vector itself and the term with
scalar fields (E0, H0) are also identically equal to zero:

−→
P =

∫
d3x(−→E ×−→H ) ≡ 0,

∫
d3x(−→EE0 +−→HH0) ≡ 0. (24)

This means that in stationary states hydrogen atom does not emit any
Pointing radiation neither due to the electromagnetic

−→
(E,−→H ) field, nor

to the scalar (E0, H0) field. That is the mathematical proof of the first
Bohr postulate.

The similar calculations of the energy for the same system (in for-
mulae (23)-(25) the functions

−→
(E,−→H,E0, H0) are taken in appropriate

physical dimension which is given by the formula (49) below)

P 0 =
1
2

∫
d3xE†E =

1
2

∫
d3x(−→E 2 +−→H 2 + E2

0 +H2
0 ) = ωhydnj (25)

give a constant Wnl, depending on n, l (or n, j) and independent of
m. In our model this constant is to be identified with the parameter
ω in equations (1) which in the stationary states of

−→
(E,−→H,E0, H0) field

appears to be equal to the Sommerfeld - Dirac value ωhydnj (19). By
abandoning the ~ = c = 1 system and putting arbitrary ”A” in equations
(1) instead of ~ we obtain final ωhydnj with ”A” instead of ~. Then the
numerical value of ~ can be obtained by comparison of ωhydnj containing
”A” with the experiment. These facts complete the proof of the second
Bohr postulate.

This result means that in this model the Bohr postulates are no
longer postulates, but the direct consequences of the classical electrody-
namical equation (1). Moreover, this means that together with Dirac or
Schrodinger equations we have now the new equation which can be used
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for finding the solutions of atomic spectroscopy problems. In contradic-
tion to the well-known equations of quantum mechanics our equation is
the classical one.

Being aware that few interpretations of quantum mechanics (e.g.:
Copenhagen, statistical, Feynman’s, Everett’s, transactional, see e. g.
[8]) exist, we are far from thinking that here the interpretation can be
the only one. But the main point is that now the classical interpretation
(without probabilities) is possible.

Today we prefer the following interpretation of hydrogen atom in the
approach, when one considers only the motion of electron in the external
field of the nucleon. In our model the interacting field of the nucleon
and electron is represented by the medium with permeabilities ε, µ given
by formulae (2). The atomic electron is interpreted as the stationary
electromagnetic-scalar wave

−→
(E,−→H,E0, H0) in medium (2), i.e. as the

stationary electromagnetic wave interacting with massless scalar fields
(E0, H0), or with complex massless scalar field E0 = E0− iH0 with spin
s = 0. In other words, the electron can be interpreted as an object hav-
ing the structure consisting of a photon and a massless meson with zero
spin connected, probably, with leptonic charge. The role of the mass-
less scalar field is the following: it generates the densities of electric and
magnetic currents and charges (ρ,−→j ), which are the secondary objects
in such model. The mass is the secondary parameter too. There is no
electron as an input charged massive corpuscle in this model! The mass
and the charge of electron appear only outside such atom according to
the law of electromagnetic induction and its gravitational analogy. That
is why no difficulties of Rutherford - Bohr’s model (about different mod-
els of atom see, e. g., [9]) of atom are present here! The Bohr postulates
are shown to be the consequences of the model. This interpretation is
based on the hypothesis of bosonic nature of matter (on the speculation
of the bosonic structure of fermions) according to which all the fermions
can be constructed from different bosons (something like new SUSY the-
ory). Of course, before the experiment intended to observe the structure
of electron and before the registration of massless spinless meson it is
only the hypothesis but based on the mathematics presented here. We
note that such massless spinless boson has many similar features with the
Higgs boson and the transition here from intraatomic (with high symme-
try properties) to macroelectrodynamics (with loss of many symmetries)
looks similarly to the symmetry breakdown mechanism.

The successors of magnetic monopole can try to develop here the
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monopole interpretation (see [10] for the review and some new ideas
about monopole) - we note that there are few interesting possibilities of
interpretation but we want to mark first of all the mathematical facts
which are more important than different ways of interpretation.

3 The unitary relationship between the relativistic quantum
mechanics and classical electrodynamics in medium

Let us consider the connection between the stationary Maxwell equations

curl−→H − ωε−→E = gradE0, curl−→E − ωµ−→H = −gradH0,

div−→E = ωµE0, div−→H = −ωεH0,
(26)

which follow from the system (8) after ommitting indices A,B, and the
stationary Dirac equation following from the ordinary Dirac equation(

iγµ∂µ −m0 + γ0Φ
)
Ψ = 0, Ψ ≡ (Ψα), (27)

with m 6= 0 and the interaction potential Φ 6= 0. Assuming the ordinary
time dependence

Ψ(x) = Ψ(−→x )e−iωt =⇒ ∂0Ψ(x) = −iωΨ(x), (28)

for the stationary states and using the standard Pauli - Dirac represen-
tation for the γ matrices, one obtains the following system of equations
for the components Ψα of the spinor Ψ:

−iωεΨ1 + (∂1 − i∂2)Ψ4 + ∂3Ψ3 = 0,
−iωεΨ2 + (∂1 + i∂2)Ψ3 − ∂3Ψ4 = 0,
−iωµΨ3 + (∂1 − i∂2)Ψ2 + ∂3Ψ1 = 0,
−iωµΨ4 + (∂1 + i∂2)Ψ1 − ∂3Ψ2 = 0,

(29)

where ε and µ are the same as in (2). After substitution in Eqs. (29)
instead of Ψ the following column

Ψ = column
∣∣−H0 + iE3,−E2 + iE1, E0 + iH3,−H2 + iH1

∣∣ . (30)

one obtains Eqs. (26). A complete set of 8 such transformations can be
obtained with the help of the Pauli - Gursey symmetry operators [11]
similarly to [6].

It is useful to represent the right-hand side of (30) in terms of com-
ponents of the following complex function

E ≡
∣∣∣∣−→EE0

∣∣∣∣ = column
∣∣E1 − iH1, E2 − iH2, E3 − iH3, E0 − iH0

∣∣ , (31)
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where −→E = −→E − i
−→
H is the well-known form for the electromagnetic

field used by Majorana as far back as near 1930 (see, e.g., [4]), and
E0 = E0 − iH0 is a complex scalar field. In these terms the connection
between the spinor and electromagnetic (together with the scalar) fields
has the form

E = WΨ, Ψ = W †E , (32)

where the unitary operator W is the following:

W =

∣∣∣∣∣∣∣∣
0 iC− 0 C−
0 −C+ 0 iC+

iC− 0 C− 0
iC+ 0 C+ 0

∣∣∣∣∣∣∣∣ ; C∓ ≡
1
2
(C ∓ 1), CΨ ≡ Ψ∗, CE ≡ E∗. (33)

The unitarity of the operator (33) can be verified easily by taking
into account that the equations

(AC)† = CA†, aC = Ca∗, (aC)∗ = Ca (34)

hold for an arbitrary matrix A and a complex number a. We note that
in the real algebra (i. e. the algebra over the field of real numbers) and
in the Hilbert space of quantum mechanical amplitudes this operator
has all properties of unitarity: WW−1 = W−1W = 1, W−1 = W †, plus
linearity.

The operator (33) transforms the stationary Dirac equation[
(ω − Φ) γ0 + iγk∂k −m0

]
Ψ (−→x ) = 0 (35)

from the standard representation (the Pauli - Dirac representation) into
the bosonic representation[

(ω − Φ) γ̃0 + ĩγ̃k∂k −m0

]
E (−→x ) = 0. (36)

Here the γ̃µ matrices have the following unusual explicit form

γ̃0 =

∣∣∣∣∣∣∣∣
100 0
010 0
001 0
000−1

∣∣∣∣∣∣∣∣C, γ̃1 =

∣∣∣∣∣∣∣∣
00i 0
000−1
i00 0
010 0

∣∣∣∣∣∣∣∣ ,

γ̃2 =

∣∣∣∣∣∣∣∣
0 001
0 0i0
0 i00
−1000

∣∣∣∣∣∣∣∣ , γ̃3 =

∣∣∣∣∣∣∣∣
−i 0 00
0 −i00
0 0 i0
0 0 0i

∣∣∣∣∣∣∣∣
(37)
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in which γ̃0 matrix explicitly contains operator C of complex conjuga-
tion. We call the representation (37) the bosonic representation of the
γ matrices. In this representation the imaginary unit i is represented by
the 4× 4 matrix operator:

ĩ =

∣∣∣∣∣∣∣∣
0−1 0 0
1 0 0 0
0 0 0 −i
0 0 −i 0

∣∣∣∣∣∣∣∣ . (38)

Due to the unitarity of the operator (33) the γ̃µ matrices still obey
the Clifford-Dirac algebra

γ̃µγ̃ν + γ̃ν γ̃µ = 2gµν (39)

and have the same Hermitian properties as the Pauli - Dirac γµ matrices:

γ̃0† = γ̃0, γ̃k† = −γ̃k. (40)

Thus, the formulae (37) give indeed an exotic representation of γµ ma-
trices.

In the vector-scalar form the equation (36) is as follows

−icurl−→E + [(ω − Φ)C −m0]
−→E = −gradE0, div−→E = [(ω − Φ)C + m0] E0.

(41)

Fulfilling the transition to the common real field strengths according
to the formula E = E − iH and separating the real and imaginary parts
we obtain equations (26) which are mathematically equivalent to the
equations (1) in stationary case.

We emphasize that the only difference between the equation (36) in
the case of description of fermions and in the case of bosons is the pos-
sibility of choosing γµ matrices: for the case of fermions these matrices
may be chosen in arbitrary form (in each of representations of Pauli -
Dirac, Majorana, Weyl, ...), in the case of the description of bosons the
representation of γµ matrices and their explicit form must be fixed in the
form (37). In the case of bosonic interpretation of Eq. (35) one must
fixes the explicit form of γµ matrices and of Ψ (30).

The mathematical facts considered here prove the one-to-one corre-
spondence between the solutions of the stationary Dirac and the sta-
tionary Maxwell equations with 4-currents of gradient-like type. Hence,
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one can, using (30), write down the hydrogen solutions of the Maxwell
equations (1) (or (4)) starting from the well-known hydrogen solutions
of the Dirac equation (27), i. e. without special procedure of finding the
solutions of the Maxwell equations, see [1].

4 Some group-theoretical grounds of the model

Consider briefly the case of absence of interaction of the compound field−→
(E,−→H,E0, H0) with media, i. e. the case ε = µ = 1, and the symmetry
properties of the corresponding equations. In this case equations (1) for
the system of electromagnetic and scalar fields

−→
(E,−→H,E0, H0) have the

form:

∂0
−→
E = curl−→H − gradE0, ∂0

−→
H = −curl−→E − gradH0,

div−→E = −∂0E
0, div−→H = −∂0H

0.
(42)

The Eqs. (42) are nothing more than the weakly generalized Maxwell
equations (ε = µ = 1) with gradient-like electric and magnetic sources
jeµ = −∂µE0, jmagµ = −∂µH0, i. e.

−→
j e = gradE0,

−→
j mag = −gradH0, ρe = −∂0E

0, ρmag = −∂0H
0.

(43)

In terms of complex 4-component object E = E − iH from formula
(31) (and in terms of following complex tensor

E = (Eµν) ≡

∣∣∣∣∣∣∣∣
0 E1 E2 E3

−E1 0 iE3 −iE2

−E2−iE3 0 iE1

−E3 iE2 −iE1 0

∣∣∣∣∣∣∣∣) (44)

Eqs. (42) can be rewritten in the manifestly covariant forms

∂µEν − ∂νEµ + iεµνρσ∂
ρEσ = 0, ∂µEµ = 0 (45)

(vector form) and

∂νEµν = ∂µE0 (46)

- tensor-scalar form. It is useful also to consider the following form of
Eqs. (42)= (45)=(46):

(i∂0 −−→S · −→p )−→E − igradE0 = 0, ∂µEµ = 0, (47)
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where −→S ≡ (Sj) are the generators of irreducible representation D(1) of
the group SU(2):

S1 =

∣∣∣∣∣∣
00 0
00−i
0i 0

∣∣∣∣∣∣, S2 =

∣∣∣∣∣∣
0 0i
0 00
−i00

∣∣∣∣∣∣ ,
S3 =

∣∣∣∣∣∣
0−i0
i 0 0
0 0 0

∣∣∣∣∣∣, −→
S 2 = 1(1 + 1)I.

(48)

The general solution of Eqs. (42)= (45)=(46)=(47) was found in the
last references within [6], their symmetry properties were considered in
[2]. This solution was found in the manifold (S(R4)⊗C4)∗ of Schwartz’s
generalized functions directly by application of Fourier method. In terms
of helicity amplitudes cµ(−→k ) this solution has the form

E (x) =
∫

d3k

√
2ω

(2π)3

{[
c1e1 + c3 (e3 + e4)

]
e−ikx+[

c∗2e1 + c∗4 (e3 + e4)
]
eikx

}
, ω ≡

√−→
k 2,

(49)

where 4-component basis vectors eα are taken in the form

e1 =
∣∣∣∣−→e1

0

∣∣∣∣ , e2 =
∣∣∣∣−→e2

0

∣∣∣∣ , e3 =
∣∣∣∣−→e3

0

∣∣∣∣ , e4 =
∣∣∣∣01
∣∣∣∣ . (50)

Here the 3-component basis vectors which, without any loss of generality,
can be taken as

−→e1 =
1

ω
√

2 (k1k1 + k2k2)

∣∣∣∣∣∣
ωk2 − ik1k3

−ωk1 − ik2k3

i
(
k1k1 + k2k2

)
∣∣∣∣∣∣ , −→e2 = −→e1

∗, −→e3 =
−→
k

ω
,

(51)

are the eigenvectors for the quantummechanical helicity operator for the
spin s = 1.

Note that if the quantities E0, H0 in Eqs. (42) are some given func-
tions for which the representation

E0 − iH0 =
∫

d3k

√
2ω

(2π)3

(
c3e−ikx + c4eikx

)
(52)
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is valid, then Eqs. (42) are the Maxwell equations with the given sources,
jeµ = −∂µE0, jmagµ = −∂µH0 (namely these 4 currents we call the
gradient-like sources). In this case the general solution of the Maxwell
equations (42)= (45)=(46)=(47) with the given sources, as follows from
(49), has the form

−→
E (x) =

∫
d3k
√

ω
2(2π)3

(
c1−→e 1 + c2−→e 2 + α−→e 3

)
e−ikx + c.c

−→
H (x) = i

∫
d3k
√

ω
2(2π)3

(
c1−→e 1 − c2−→e 2 + β−→e 3

)
e−ikx + c.c

(53)

where the amplitudes of longitudinal waves −→e 3 exp (−ikx) are α =
c3 + c4, β = c3 − c4 and c3, c4 are determined by the functions E0, H0

according to the formula (52).
Equations (42)= (45)=(46)=(47) are directly connected with the free

massless Dirac equation

iγµ∂µΨ(x) = 0. (54)

There is no reason to appeal here to the stationary case as it was done in
Sec. 3, where the case with nonzero interaction and mass was considered.
The substitution of

ψ =

∣∣∣∣∣∣∣∣
E3 + iH0

E1 + iE2

iH3 + E0

−H2 + iH1

∣∣∣∣∣∣∣∣ = UE , U =

∣∣∣∣∣∣∣∣
0 0 C+C−
C+iC+ 0 0
0 0 C−C+

C−iC− 0 0

∣∣∣∣∣∣∣∣ , C∓ ≡
1
2
(C ∓ 1), (55)

into Dirac equation (54) with γ matrices in standard Pauli - Dirac rep-
resentation guarantees its transformation into the generalized Maxwell
equations (42)= (45)=(46)=(47). The complete set of 8 transformations
like (55), which relate generalized Maxwell equations (42) and massless
Dirac equation (54), was found in [6]. Unitary relationship between the
generalized Maxwell equations (45) and massless Dirac equation (54) was
considered in the way similar to the Sec. 3 and can be found in some
our papers from among the references within [6].

Equations (45) (or their another representations (42)= (45)=(46)=(47))
are the maximally symmetrical form of the generalized Maxwell equa-
tions. We consider here representation (45) as an example. The following
theorem is valid.

Theorem. The generalized Maxwell equations (45) are invariant
with respect to the three different transformations, which are generated
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by three different representations PV , PTS , PS of the Poincaré group
P (1, 3) given by the formulae

E(x)→ EV (x) = ΛE(Λ−1(x− a)),
E(x)→ ETS(x) = F (Λ)E(Λ−1(x− a)),
E(x)→ ES(x) = S(Λ)E(Λ−1(x− a)),

(56)

where Λ is a vector (i. e. ( 1
2 ,

1
2 )), F (Λ) is a tensor-scalar ((0, 1) ⊗

(0, 0)) and S(Λ) is a spinor representation ( (0, 1
2 )⊗ ( 1

2 , 0)) of SL(2, C)
group. This means that the equations (45) have both spin 1 and spin 1/2
symmetries.

Proof. Let us write the infinitesimal transformations, following from
(56), in the form

EV,TS,S(x) = (1− aρ∂ρ −
1
2
ωρσjV,TS,Sρσ )E(x). (57)

Then the generators of the transformations (57) have the form

∂ρ =
∂

∂xρ
, jV,TS,Sρσ = xρ∂σ − xσ∂ρ + sV,TS,Sρσ , (58)

where

(sVρσ)
µ
ν = δµρgσν − δµσgρν , sVρσ ∈

(
1
2
,
1
2

)
, (59)

sTSρσ =
∣∣∣∣sTρσ00 0

∣∣∣∣ ∈ (1, 0)⊕ (0, 0), sTρσ = −sTσρ :

sTmn = −iεmnjSj , sT0j = Sj ,

(60)

(Sj are given by the formula (48)) and

sSρσ =
1
4
[γ̂ρ, γ̂σ], γ̂ = U†γU, (61)

(the unitary operator U is given by the formula (55), the explicit form
of γ̂ matrices here is essentially different from the explicit form of the
matrices (37) and may be easily found from the definition in (61)). Now
the proof of the theorem is reduced to the verification that all the gen-
erators (58) obey the commutation relations of the P (1, 3) group and
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commute with the operator of the generalized Maxwell equations (42)=
(45)=(46)=(47), which can be rewritten in the Dirac form

γ̂µ∂µE(x) = 0 (62)

(for some details see Ref. [2]). QED.
This result about the generalized Maxwell equations (42)= (45)

=(46)=(47) means the following. From group theoretical point of view
these equations (coinciding with Eqs. (1) in the case ε = µ = 1) can
describe both bosons and fermions. This means that one has direct
group-theoretical grounds to apply these equations for the description of
electron, as it is presented above in Sec. 2.

A distinctive feature of the equation (45) for the system E = (−→E , E0)
(i.e. for the system of interacting irreducible (0, 1) and (0, 0) fields) is the
following. It is the manifestly covariant equation with minimal number
of components, i. e. the equation without redundant components for
this system.

Note that each of the three representations (56) of the P (1, 3) group
is a local one, because each matrix part of transformations (56) (matri-
ces Λ, F (Λ) and S(Λ) ) does not depend on coordinates x ∈ R4, and,
consequently, the generators of (56) belong to the Lie class of operators.
Each of the transformations in (56) may be understood as connected
with special relativity transformations in the space-time R4 = {x), i. e.
with transformations in the manifold of inertial frame of references.

It follows from the Eqs. (45) that the field E = (−→E , E0) is massless,
i. e. ∂ν∂νEµ = 0. Therefore it is interesting to note that neither PV ,
nor PTS symmetries cannot be extended to the local conformal C(1, 3)
symmetry. Only the known spinor CS representation of C(1, 3) group
obtained from the local PS representation is the symmetry group for
the generalized Maxwell equations (45). This fact is understandable:
the electromagnetic field −→E = −→E − i−→H obeying Eqs. (45) is not free, it
interacts with the scalar field E0.

Consider the particular case of standard (non-generalized) Maxwell
equations, namely, the case of equations (45) without magnetic charge
and current densities, i. e. the case when H0 = 0 but E0 6= 0. The
symmetry properties of such standard equations are strongly restricted
in comparison with the generalized Eqs. (45): they are invariant only
with respect to tensor-scalar (spins 1 and 0) representation of Poincaré
group defined by the corresponding representation (0, 1)⊗(0, 0) of proper
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ortochronous Lorentz group SL(2, C). Another symmetries mentioned
in the theorem are lost for this case. The proof of this assertion follows
from the fact that the vector (

(
1
2 ,

1
2

)
) and the spinor (

(
0, 1

2

)
⊕
(

1
2 , 0
)
)

transformations of E = (−→E , E0) mix the E0 and −→E components of the
field E , and only the tensor-scalar (0, 1)⊕ (0, 0) transformations do not
mix them.

For the free Maxwell equation in vacuum without sources (the case
E0 = H0 = 0) the losing of above mentioned symmetries is evident
from the same reasons. Moreover, it is well known that such equa-
tions are invariant only with respect to tensor (spin 1) representations of
Poincaré and conformal groups and with respect to dual transformation:−→
E → −→H ,

−→
H → −−→E . We have obtained the extended 32-dimensional Lie

algebra [12] (and the corresponding group) of invariance of free Maxwell
equations, which is isomorphic to C(1, 3) ⊕ C(1, 3) ⊕ dual algebra. We
were successful to prove it appealing not to Lie class of symmetry opera-
tors but to a more general, namely, to the simplest Lie - Backlund class
of operators. The corresponding generalization of symmetries of Eqs.
(45) presented in the above theorem leads to a wide 246-dimensional Lie
algebra in the class of first order Lie - Backlund operators. Thus, the
Maxwell equations (45) with electric and magnetic gradient-like sources
have the maximally possible symmetry properties among the standard
and generalized equations of classical electrodynamics.

Finally, knowing the operator U (55), it is easy to obtain the relation-
ship between the amplitudes ar(−→k ), br(−→k ) determining the well known
fermionic solution of the massless Dirac equation (in Pauli - Dirac repre-
sentation), and the amplitudes cα(−→k ), determining the bosonic solution
(49). Corresponding formulae (direct and inverse) related fermionic and
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bosonic amplitudes were found in [6]

a1=
1
2ω

[
i
√

(ω − k3)(ω + k3)(c1 − c2)− (ω − k3)c3 + (ω + k3)c4
]
, (63)

ω ≡
√−→
k 2,

a2=
1
2ω

[
−i(k1 + ik2)

(√
ω + k3

ω − k3
c1 +

√
ω − k3

ω + k3
c2

)
+ (k1 + ik2)(c3 + c4)

]
,

b1=
1
2ω

[
i
√

(ω − k3)(ω + k3)(c1 + c2) + (ω + k3)c3 + (ω − k3)c4
]
,

b2=
1
2ω

[
i(k1 + ik2)

(√
ω − k3

ω + k3
c1 −

√
ω + k3

ω − k3
c2

)
+ (k1 + ik2)(c3 − c4)

]
.

In terms of unitary operator V these formulae have the form:

â ≡

∣∣∣∣∣∣∣∣
a1

a2

b1

b2

∣∣∣∣∣∣∣∣ =
1
2ω

∣∣∣∣∣∣∣∣∣∣
i
√
pq −p −i√pq q

−iz∗
√

q
p z
∗−iz∗

√
p
q z
∗

i
√
pq q i

√
pq p

iz
√

p
q z −iz

√
q
p −z

∣∣∣∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣∣
c1

c3

c2

c4

∣∣∣∣∣∣∣∣ = V · ĉ, (64)

where p = ω − k3, q = ω + k3, z = k1 − ik2, z∗ = k1 + ik2, ω ≡√−→
k 2. The operator V (the image of operator U (55) in the space of

quantum-mechanical amplitudes ĉ and â , i. e. in the rigged Hilbert
space S4

3 ⊂ H ⊂ S∗43 , where S∗43 ≡ (S(R3) ⊗ C4)∗ is the space of 4-
component generalized Schwartz functions) is unitary one: V V −1 =
V −1V = 1, V −1 = V †, plus linearity.

Hence, the fermionic states may be constructed as linear combina-
tions of bosonic states, namely, of the states of the coupled electromag-
netic −→E = −→E − i

−→
H and scalar E0 = E0 − iH0 fields. The inverse

relationship between bosonic and fermionic states is also valid. We pre-
fer the first possibility which is new (bosonic) realization of the old idea
(Thomson, Abraham, etc) of electromagnetic nature of mass and of ma-
terial world. Thus, today on the basis of (25), (55), (63), (64) we may
speak about more general conception of the bosonic field nature of ma-
terial world.

On the basis of this relationship, in [6] the relationship between
quantized electromagnetic-scalar and massless spinor field was ob-
tained. The possibility of both Bose and Fermi quantization types for
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electromagnrtic-scalar field (and, inversly, for the Dirac spinor field) was
proved. We will not tauch here the problems of quantization because we
are trying here to demonstrate new possibilities of classical theory.

5 A brief remark about gravity

The unified theory of electromagnetic and gravitational phenomena may
be constructed in the approach under consideration in the following way.
The main primary equations again are written as (1) and gravity is con-
sidered as a medium in these equations, i. e. the electric ε and magnetic
µ permeabilities of the medium are some functions of the gravitational
potential Φgrav:

ε = ε(Φgrav), µ = µ(Φgrav). (65)

Gravity as a medium may generate all the phenomena which in stan-
dard Einstein’s gravity are generated by Riemann geometry. For exam-
ple, the refraction of the light beam near a big mass star is a typical
medium effect in such a unified model of electromagnetic and gravi-
tationaal phenomena. The idea of such consideration consists in the
following. The gravitational interaction between massive objects can be
represented as the interaction with some medium, similarly as here (in
Eqs. (1)) the electromagnetic interaction between charged particles is
considered.

6 Brief conclusions

One of the conclusions of our investigation presented here and in [2, 6]
is that a field equation itself does not answer the question what kind
of particles (Bose or Fermi) is described by this equation. To answer
this question one needs to find all the representations of the Poincaré
group under which the equation is invariant. If more than one such
Poincaré representations are found [2], including the representations with
integer and half-integer spins, then the given equation describes both
Bose and Fermi particles, and both quantization types (Bose and Fermi)
[6] of the field function, obeying this equation, satisfy the microcausality
condition. The strict group-theoretical ground of this assertion is the
following [2]: both slightly generalized Maxwell equations (1) (with ε =
µ = 1) and Dirac equation (54) (with m0 = 0, Φ = 0) are invariant with
respect to three different local representations of Poincaré group, namely
the standard spinor, vector and tensor-scalar representations generating
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by the (0, 1
2 )⊗ ( 1

2 , 0), ( 1
2 ,

1
2 ), (0, 1)⊗ (0, 0) representations of the Lorentz

SL(2,C) group, respectively.
Now it is clear that only the pair of notions ”equation” plus ”fixed

Bose or Fermi representation of Poincare group” answers the question
what kind of particle, boson or fermion, is describing.

So if one fixes the pair ”Dirac equation plus reducible, spins 1 and 0,
representation” he may describe bosonic system (photon plus boson).

If one fixes another pair ”Dirac equation plus spin 1/2 representation”
one may describe fermions (electron, neutrino, etc.).

If one fixes the pair ”generalized Maxwell equation plus spins 1 and
0 representation” he may describe bosonic system (photon plus boson).

Finally, if one fixes the pair ”generalized Maxwell equation plus spin
1/2 representation” one may describe fermions. Namely this last possi-
bility is under main consideration in this paper.

The simple case m0 = 0, Φ = 0 is considered in details in formulae
(64), where it is shown that amplitudes of fermionic states (or their cre-
ation - annihilation operators) are the linear combinations of amplitudes
(or of creation - annihilation operators) of bosonic states. In this sense
our model, where the electron is considered as a compound system of
photon plus massless spinless boson, i. e. the states of electron are the
linear combinations of the states of electromagnetic-scalar field, has the
analogy with modern quark models of hadrons.

In the model of atom under consideration based on the equations
of Maxwell’s electrodynamics, not of quantum mechanics, the atomic
electron is interpreted as a classical stationary electromagnetic-scalar
wave (the details of the interpretation see in Sec. 2). That is why
this model is essentially distinguished from the first electrodynamical
hydrogen atom model suggested by Sallhofer, see, e.g., [3, 9].

A few words can be said about the interpretation of the Dirac Ψ
function. As follows from the consideration presented here, e.g., from
the relationship (30), the new interpretation of the Dirac Ψ function can
be suggested too: Ψ function is the combination of the electromagnetic
field strengths

(−→
E ,
−→
H
)

and two scalar fields
(
E0, H0

)
generating the

electromagnetic sources, i.e. in this case the probability or Copenhagen
interpretation of the function Ψ is not necessary.

In the approach based on the equations (1), it is possible to solve
another stationary problems of atomic physics without any appealing to
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the Dirac equation and the probability or Copenhagen interpretation.

Some nonstationary problems, e.g., the problem of transitions be-
tween the stationary states caused by the external perturbation, can
be, probably, solved in terms of the electrodynamical model under con-
sideration similarly to the solution of this problem on the basis of the
stationary Schrödinger equation with the corresponding perturbation.

It is evident from the hydrogen example presented in Sec. 2 that
discretness of the physical system states (and its characteristics such
as energy, etc) may be a consequence not only of quantum systems
(Schrödinger, Dirac), but also of the classical (Maxwell) equations for
the given system. In the case under consideration this discretness is
caused by the properties of medium, which are given by the electric and
magnetic permeabilities (2).

It is very useful to consider the case of Lamb shift in the approach
presented here. This specific quantum electrodynamical effect (as mod-
ern theory asserts) can be described here in the framework of classical
electrodynamics of media. In order to obtain Lamb shift one must add
to Φ (−→x ) = −Ze2/r in (2) the quasipotential (known, e. g., from [13],
which follows, of course, from quantum electrodynamics) and solve the
equations (1) for such medium similarly to the procedure of Sec. 2. Fi-
nally one obtains the Lamb shift correction to the Sommerfeld - Dirac
formula (19). Such Lamb shift can be interpreted as a pure classical
electrodynamical effect. It can be considered here as a consequence
of polarization of medium (2) and not of polarization of such abstract
concept as vacuum in quantum electrodynamics. This brief example
demonstrates that our consideration can essentially extend the limits of
classical theory application in microworld, which was the main purpose
of our investigations.

The main conclusion from Sec. 3 is the following. The unitary equiv-
alence between the stationary Dirac equation and the stationary Maxwell
equations with gradient-like currents and charges in medium (2) gives
the possibility to reformulate all the problems of atomic and nuclear
physics (not only the problem of hydrogen atom description, which here
is only an example of possibilities), which can be solved on the basis of
the stationary Dirac equation, in the language of classical electrodynam-
ical stationary Maxwell equations. It means that our model in stationary
case is equally successful as the conventional relativistic quantum me-
chanics.
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Thus, the new features which follow from our approach are: (i) the
classical interpretation, (ii) new equation and method in atomic and nu-
clear physics based on classical electrodynamics in inneratomic medium
like (2), (iii) the hypothesis of bosonic nature of matter (bosonic struc-
ture of fermions), (iv) extension of the limits of classical theory applica-
tion in the microworld, (v) foundations of a unified model of electromag-
netic and gravitational phenomena, in which gravitation is considered as
a medium in generalized equations.
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