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ABSTRACT. In order to unify electromagnetism and gravitation we
derive the basic principles of both approaches from a common (geo-
metrical) starting formulation we call START, from its structure as a
Space–Time–Action Relativity Theory. Gravitation results from the
epistemological approach of defining a “test particle” which explores
the physical world in such a form that its trajectory indicates the in-
fluence of the rest of the system. Electromagnetism defines a collection
of test particles, we call carriers, in interaction among themselves and
with the rest of the system. Once both approaches have been formally
defined we can unify gravitation and electromagnetism either within
one or the other formalisms.

Contents

1 Introduction 361

1.1 Mass, Charges, Action, Space and Time . . . . . . . . . . 362

1.2 Action Carriers in START . . . . . . . . . . . . . . . . . . 365

1.2.1 Definitions and Notation . . . . . . . . . . . . . . . 367

1.3 Action Density . . . . . . . . . . . . . . . . . . . . . . . . 369

1.3.1 Classification of action (energy) carriers . . . . . . 370

1.3.2 The Density . . . . . . . . . . . . . . . . . . . . . . 371

1.4 Density Functional Theory and Interactions . . . . . . . . 372

1.4.1 Density Functional Theory from START . . . . . . 372

1.4.2 The Density as the Basic Variable . . . . . . . . . 375



360 J. Keller

1.4.3 Introducing Gauge Freedom for the Description of
the Action . . . . . . . . . . . . . . . . . . . . . . . 376

1.4.4 Schrödinger Amplitude Functions in START . . . 377

1.4.5 Linear form of the Schrödinger-Klein-Gordon Equa-
tion . . . . . . . . . . . . . . . . . . . . . . . . . . 379

2 Space–Time–Action Relativity Theory 381

2.1 Space–Time to Space–Time–Action . . . . . . . . . . . . . 382

2.1.1 Formal Presentation . . . . . . . . . . . . . . . . . 382

2.2 The Basic Operators . . . . . . . . . . . . . . . . . . . . . 385

2.3 The Kinetic Energy in START . . . . . . . . . . . . . . . 386

2.4 Dynamical Principles . . . . . . . . . . . . . . . . . . . . . 388

2.4.1 Point-like STA Trajectories . . . . . . . . . . . . . 388

3 Maxwell Equations from START 389

3.1 Tautology between Fields and Charges . . . . . . . . . . . 393

3.2 Newtonian Gravity . . . . . . . . . . . . . . . . . . . . . . 395

3.2.1 Force Intensities. . . . . . . . . . . . . . . . . . . . 396

4 The electron as a general relativity test particle 397

4.1 The Schwarzschild solution . . . . . . . . . . . . . . . . . 397

4.1.1 General relativity in START . . . . . . . . . . . . 400

4.1.2 A charged carrier as a test particle in general rel-
ativity . . . . . . . . . . . . . . . . . . . . . . . . . 401

4.2 The Mathematical Structure of General Relativity from
START . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

4.2.1 The metric in General Relativity . . . . . . . . . . 403

5 Rumer (Kaluza–Klein) Theory deduced from START 406

6 Hypothesis and Principles in START 408

6.1 Lagrangians and symmetries in START . . . . . . . . . . 408



Unification of Electrodynamics and Gravity from START 361

1 Introduction

In the development of physics in the XX century several formulations
were proposed to recast either electrodynamics in the form of general
relativity or of gravity in the form of, gauge theory, electrodynamics.
Although these formalisms could be presented it was felt that they were
unsatisfactory from different points of view, but mainly because electro-
magnetism could not be really recovered when presented in the form of
general relativity and because the attempt to reformulate general rela-
tivity within gauge theory electrodynamics presented a series of formal
and practical problems. In the present paper we analyze the basic postu-
lates of both approaches and find how the unification is achieved once we
have a common deductive approach for both theories. Three approaches
to structural unification are explicitly exhibited.

A deductive approach requires a very fundamental starting point
which should anyhow contain enough physical principles not to be forced
to introduce them when developing the formal theories. Another con-
strain is that no new concepts should be introduced in one particular
approach when deducing the theoretical structures in order to avoid
mistranslation of the concepts introduced for one theory in the search
of an equivalent concept for the other.

All this is achieved in our present paper in the following sequence:

.- Define a basic set of concepts which are to be used to represent the
physical world.

.- Provide a mathematical structure for this set of concepts formu-
lated in such a form that they can be handled within the mathematical
structures that will be used for the deduced theories.

.- Define the basic physical quantities that will be described in the dif-
ferent approaches, in such a form that there is no problem in translating
from one deduced theory to the other.

.- Deduce the corresponding theories.

.- Compare the resulting theories with the standard formulations and
among themselves.

This is then the sequence followed in the present paper.

General Relativity (GR), in particular, is derived from the quadratic
space geometry corresponding to the, in our approach fundamental con-
cepts, of space, of time, and of action and from the philosophical prin-
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ciples of Einstein’s general relativity theory. The formulation allows a
systematic generalization of the procedure.

We will conclude by stating to which extend we have fulfilled our basic
purpose and mentioning both the advantages for future developments
and the possible limitations.

1.1 Mass, Charges, Action, Space and Time

Action, as a fundamental variable, is distributed among a set of car-
rier (of action) fields. An action density a(x, t), action a per unit
space–time hypervolume ∆x0∆x1∆x2∆x3 at point (x, t) with x0 = ct,
is the fundamental concept defining all three: space (parametrized by x),
time (parametrized by t) and action density (parametrized by an scalar
analytical function a(x, t)) as primitive concepts from which all other
physical quantities will be derived or at least related directly or indi-
rectly. The different forms of distributing the action among this carriers
defines the carriers themselves. This is fundamental in the practical use
of the four principles below.

Within our fundamental formulation we will have to define properties
of the fields we call carriers. A carrier will have physical significance
through its set of properties. The density of a carrier field can be defined
through a set of scalar constants such that the integral of the product of
these constants and the density gives the experimentally attributed value
of a property for that carrier. We will use an example. A carrier field
identified with an electron will have a density ρ(x, t) and if the property
is Q we will obtain the definition Q =

∫
q(x, t)dx =

∫
Qρ(x, t)dx for all

t, which defines that Q is a constant property (in space and time) for
that field. The set of properties {Q} characterizes a carrier field and in
turn establishes the conditions for a density field to correspond to an
acceptable carrier. This is for example the case of electromagnetism and
its daughter theory: elementary particles theory where the set {mass,
electric charge, weak charge, strong charge, spin} defines the ‘elementary
particle’ one is dealing with. In the case of general relativity the only
property which is used in the standard formulation, for the test particle,
is the mass; this is the reason for the limitation for both the applicability
and for the extension of the GR theory.

We already stated that in our theory space and time are fundamen-
tal, primordial, concepts. The geometrical unification of these concepts
into a space–time coordinate X = (x, ct) and an interval ds2 requires
the introduction of a universal constant: the speed of light c. As we
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will also use action as a fundamental concept we need another universal
constant κ = d0/h which we will construct from a fundamental distance
d0 and a fundamental unit of action we will choose to be Planck’s ac-
tion constant h. In this form we will have a five dimensional, START,
manifold 3 + 1 + 1 with all dimensions in units of length. There will
be no problem to include quantum concepts in the formulation as far as
Planck’s constant is already a basic part of the geometrical formulation.
The concept of charges appears in the theory first of all from the neces-
sity to define the objects which exchange action among them in order to
give a formal meaning to the principle that action will be exchanged in
integer units of the Planck constant, second to relate the carriers among
themselves defining the interaction through the bilinear form contain-
ing the products of pairs of charges, one type of charge for each one of
the desired interactions. In this context for an electron-like carrier both
mass and electric charge belong to the generic name of ‘charges’. This
program can obviously not be achieved if the formulation is not suitable
to contain the deduction of the theory of elementary particles itself, giv-
ing a geometric meaning to this theory. This will be mentioned in the
paper but the reader is referred to our previous publications on this mat-
ter. To agree with standard formulations energy density E = ∆x0∂a/∂t
and momentum density pi = ∆x0∂a/∂x

i are the fundamental rates of
change of the primitive concept of action (considering a unit time-like
interval ∆x0 = 1 by definition of a as the action per unit space-time
hypervolume, it can be omitted numerically from many formulas).

Our approach presents a natural transition from special relativity to
general relativity and a natural extension of electrodynamics, both the-
ories considered as basic formal structures (in our case deduced from
START and the basic definitions of each approach). A third possibility
would be to recast one or both of those theories in a new geometrical
form where some formal role is given to the concept of ‘structure of space-
time’, although this is possible we will not enter into this new formalism
in the present paper. We are presenting ideas which not only unify exist-
ing theories and transform the theories from inductive to deductive class
but also we suggest a well defined procedure to create future structures
of theoretical physics.

Hermann Minkowski in his 1908 Address to the 80th Assembly of
German Natural Scientists and Physicians, at Cologne, presented his
mathematical formulation of Special Relativity in a talk he called Space
and Time, introducing a fundamental axiom:
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.-The substance of any world-point may always, with the appropriate
determination of space and time, be looked upon as at rest.

In our present formulation the quantity which was called “substance”
by Minkowski is identified with the concept of “action density a” with a
well defined physical and mathematical formulation, that is we include
“substance” in the list of formal terms of physics. It is also appropriate
to say that the concept of matter, hitherto formally undefined, will ac-
quire proper formal definition in the context of the different structural
theories: it is different in GR (where matter is the source of the gravita-
tional curvature) or in Electromagnetism (where it is the source of the
electrical and magnetic fields, but it does not contains the electromag-
netic fields themselves, even if the concept of radiation were added to
be more precise). Then the START theory presented here corresponds
to a geometrization of Minkowski’s fundamental axiom. In fact that au-
thor, introducing the space-time interval squared ds2, adds: “the axiom
signifies that at any world-point the expression

c2dt2 − dx2 − dy2 − dz2 (1)

always has a positive value, or, what comes to the same thing, that any
velocity v always proves less than c.”. In our full geometrization scheme
the positive semi-definite energy–momentum expression

E2/c2 − p2
x − p2

y − p2
z = P 2 (2)

will also be considered, besides the ds2 above, when action change dK =
P · dX is introduced through a series |dK|2 of quadratic terms

dS2 − ds2 = − |dK|2 = −κ2
0

{
(E2/c2)c2dt2 − p2

xdx
2 − p2

ydy
2 − p2

zdz
2
}
,

(3)

joined in one unified geometrical quadratic form dS2. The dK vector, the
directional in space-time change of action, is a new theoretical quantity
formally defined by (3). It acquires additional relevance because action
density will be described as a sum of contributions over carriers, a =∑
i {
∑
c ac}i and then the contributions to energy-momentum, that is

the rates of change of action over space-time directions, will also be
sums over equivalent carriers c or over collections {c}i of carriers of type
i, (whenever convenient the choice can be made to consider them as
interacting carriers).



Unification of Electrodynamics and Gravity from START 365

Notice that the generalization ds2 =⇒ dS2 also corresponds, from
(1) and (2), to a generalization of the metric

dS2 = (1− κ2
0

E2

c2
)c2dt2 − (1− κ2

0p
2
x)dx

2 − (1− κ2
0p

2
y)dy

2 − (1− κ2
0p

2
z)dz

2.

(4)

It has been brought to our attention that the concept of action as a
fifth coordinate, even if it has a new context in our approach [9], can be
traced back to at least the pioneering work of Rumer in the 1940-1960
period of time. Rumer shows that many concepts can be cast in the
framework of a five dimensional geometry [15], even our novel concept
of action density can, in a sense, be extracted from his papers. The
fundamental difference is that we are constructing a systematic deductive
approach to Physics and it is essential that we derive many of the basic
useful structures which have been used.

1.2 Action Carriers in START

The basic set of concepts we will use are then: that of a frame of ref-
erence SPACE, an evolution parameter to be identified with TIME, a
description of the existence of physical objects which we will find useful
to present as a field of ACTION over space–time (or a field of energy
over space) and, finally, the carriers of that action (energy) in the form
which is customary used in the different theories. We need afterwards to
partition the different distributions of action over space–time by consid-
ering a set of contributions by a collection of scalar fields of ‘carriers’ in
such a form that the total action density in space–time is the sum of the
action attributed to the carriers which, in that given point of space–time,
have a non null field. Some properties arise from the START geometry
itself, others from the description of a physical system as a time evolving
energy distribution. For a given observer the carrier field c is defined to
have an energy density Ecρc(x, t) with Ec a constant in space, at time t,
and Nc the integer number of carrier units of type c. The density ρc(x, t)
is then required to obey

∫
V
ρc(x, t)dx = Nc in the system volume V .

In order to make direct contact with standard formulations of physics
we assume that the concepts of space, time and action have the same
meaning and units as they have in those formulations. We also make a
sharp distinction between action density and Lagrangian density. The
Lagrangian containing prescriptions for the description of the system. A
fundamental, immediate, result is that energy and momentum as the rate
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of change of action with respect to time or to space are natural, primary,
geometric concepts. Also the second derivatives of the action distribu-
tion are natural candidates to be the field strengths when expressed per
unit carrier charges. This is particularly important in the gauge theory
approach, where the rate of change of the action distribution, described
through an auxiliary amplitude function, has contributions difficult to
describe, as is often the case, as averages of the energy-momentum of
some hypothetical point carriers .

Action is one of the properties of a distribution describing, in relation
to an observer, the contents of the physical world in space–time. The
concept of Physical Phenomena refers to the existence and change of
this distribution. Physics corresponds to the description of the action
distribution and its changes in relation to a given observer.

The action density function in space–time a(X), or energy density
in space for a given observer, can be considered as a density of action
trajectories in space–time. In this more geometrical approach 1) action is
used as a coordinate expressed in units of distance, 2) action distribution
as a density of action like trajectories associated to a physical object and
3) energy-momentum as the rate of change of this density with respect
to time-space, for that object. For elementary carriers the trajectories
would be elementary trajectories with null space-time-action intervals.

Both the action density function a(X) and the splitting among carrier
fields will be considered analytically well behaved functions.

A description is introduced when we consider the energy E (t) of a
system as a sum among the different carrier types {c}such that E (t) =∑
c Ec (t), a sum of constants Ec (t) in space for a given observer. For a

particular purpose the energy per carrier can furthermore be described as
a sum of space dependent contributions per carrier. The simplest, almost
universal, type of distribution per carrier type is into the constitution or
”mass” energy E0, the position dependent kinetic energy Ek(X), and the
position dependent sum of potential energies Ev(X), then

Ec = Ec0 + Eck(X) + Ecv(X) + Ec∆(X). (5)

It is precisely this distribution (5) which defines the carrier for a given
observer. Ec0 defines the basic carrier (“isolated” and at rest), Eck(X) the
state of motion relative to the observer, and Ecv(X) the relation between
that carrier and the rest of the system as defined by the observer. The
Ec∆(X) term is required to make Ec a position independent constant, this
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is needed to have a meaningful definition of the carriers of type c. For a
given carrier charge qc of type Q an interaction field intensity EiQ,c(X)
can be defined from the second derivatives of the action, per unit charge,
contributing to the energy (Ecv(X))Q,c per carrier defined as arising from
that interaction for that carrier.

This second derivatives in turn may have further derivatives, with re-
spect to space or time coordinates. The invariant definition, given that
the action A is invariant under a space–time Lorentz transformation,
would be A =

∑
cAc, the energy Ec = ∂AcÁ∂t is not invariant but ob-

server dependent and this imposes structural mathematical restrictions
on the energy Ec and, consequently, on Ec0 , Eck and Ecv . Not only because
energy is a component of an invariant four–vector but also because the
partition of energy among carriers has to be observer dependent.

Because the rate of change of momenta is related to the classical con-
cept of force, these geometric features are the geometrical representation
of potentials and their derivatives, the second derivatives of the action
are then correctly termed strength fields or force fields.

Notice that within the concept of interaction the rates of change of
action are to be expressed per unit charge and represent those contribu-
tions arising from sums over carriers other than the one under consider-
ation. The action and the energy and momentum are considered to be
distributed among interacting carriers.

1.2.1 Definitions and Notation

.-Definitions

a) We use the name space for, indistinctly, denote the 3-D space of
our perception of the distribution of physical objects in Nature and for
the mathematical representation of it as a R3 manifold with a quadratic
form. Its points are denoted by the Bold-face letter x and represented
as a vectorial quantity x = xiei. We use the traditional indices i =1,2,3.

b) We use the name time for, indistinctly, denote the 1-D space of
our perception of the evolution of physical phenomena in Nature and for
the mathematical representation of it as a R1 manifold with a quadratic
form. Its points are denoted by the normal-face letter t.

c) We use the name space-time for, indistinctly, denote the 4-D
Minkowski space, of our perception of the physical world in the sense of
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relativity theory, and for the mathematical representation of it as a R4

manifold with a quadratic form :

ds2 = gµνdx
µdxν , (µ, ν = 0, 1, 2, 3). (6)

Its points are denoted by the Normal-face letter X and represented
as a vectorial quantity X = Xµeµ. We use the traditional indices
µ = 0, 1, 2, 3. The vectors eµ in the geometry of space–time generate GST

a 16 dimensional space–time geometry of multivectors. The basis vec-
tors {e0, e1, e2, e3}, with e2

0 = −e2
1 = −e2

23
= −e2

3 = 1 and the definition
property eµeν = −eνeµ generate a Clifford group Cl1,3. We also use the
notation e0j = e0ej = ej ( j=1,2,3) and e5 = e0e1e2e3 = e0123. A special
property of the pseudo-scalar (and also hypervolume and inverse hyper-
volume) in space–time e5 is that e5eµ = −eµe5 (from eµeν = −eνeµ,
µ 6= ν) and then it has the same commuting properties with the gen-
erating vectors of GST as the generating vectors among themselves. A
vector e4 can be used to introduce an additional basis vector, adding
one more dimension and, through its use, obtain the five dimensional
carrier space spanned by the basic vectors eu, u = 0, 1, 2, 3, 4 ( iden-
tified as e0 ⇒ e0, e1 ⇒ e1, e2 ⇒ e2, e3 ⇒ e3 and e4) with metric
guv = diag(+1,−1,−1,−1,−1). Its use allows the construction of a
geometrical framework for the description of physical processes: a uni-
fied space–time–action geometry GSTA, mathematically a vector space
with a quadratic form. An auxiliary element j anti-commutes with all
eµ : eµj = −jeµ and j2 = +1.

For a given observer with time vector e0 the space–time d’Alembertian
operator ¤ has the property

e0¤ =
1
c
∂t +∇ =

1
c
∂t + ei∂i ,

with ∇ the (ordinary space) Laplacian operator for that observer.

c) We use the name action for, indistinctly, denote the 1-D space of
our perception of the objects of physical phenomena in Nature and for
the mathematical representation of it as a R1 manifold with a quadratic
form da2. Its points are represented by the normal-face letter a.

d) We use the name space-time-action for, indistinctly, denote the
5-D space of our perception of physical phenomena in Nature and for
the mathematical representation of it as a R5 manifold with a quadratic
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form

dS2 = ds2 − κ2
0da

2 = gµνdx
µdxν − κ2

0da
2 = gABdx

AdxB , (7)
(A,B = 0, 1, 2, 3, 4), (µ, ν = 0, 1, 2, 3)

. Its points are represented by the set of normal-face letters (X,κ0a).
e) We use the name description to denote the partitioning into

carriers c and into action (or energy-momenta Pc) contributions of the
objects of physical phenomena in Nature and for the mathematical repre-
sentation of this partitioning among carriers and among energy-momenta
contributions.

f) We use the name theoretical structure for a set of defining
considerations about the distribution of action among carriers and the
mathematical form in which the results are presented. In this respect we
will examine in this paper the approaches of Newton, Maxwell, Einstein,
Schrödinger, Hohenberg-Kohn and Rumer as basic structures integrated
through START.

1.3 Action Density

In this section we shall present our fundamental concepts as an Action
Density Functional Theory and discuss the origin and consequences of
the formulation of an Action Amplitude Function Theory.

For the study of the distribution of action we consider that:
a) In the space–time–action picture, where the basic mathematical

properties of space-time are assumed to correspond to the physical space-
time, the action density a(x, t) is inhomogeneously distributed, corre-
sponding to the different material objects to which this action corre-
sponds, in a possible relative motion in the spatial directions with speeds
0 ≤ v ≤ c. The sets of distributions which move with relative velocities
0 ≤ v < c with respect to a given observer are called matter-like.

b) The matter-like energy distributions are to be considered as
sources of (infinite extension, in principle) decaying deformations of ac-
tion distribution of several types: first, a part A0 uniformly decaying
with distance, which observers will interpret as gravitation; second, of a
collection (A,B,C, ...) of vortices fields, superimposed on the A0 part,
which can be felt selectively by responses of given internal vortices of the
other matter-like distributions. This second property is not given a pri-
ori but it is a consequence of the description of the objects, as developed
in the previous section, shown below.
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c) We introduce now a third fundamental concept: energy–momentum
carriers. At a macroscopic level the energy carrier is defined by a den-
sity distribution and by the integral properties of the distribution. We
shall keep this concept without considering that the distribution could
be reduced to a point singularity in space (line in space–time). We shall,
anyhow, use the (not very fortunate) name carrier density for this
quantity, the main reason being that its integral will be taken to be,
as mentioned above, an integer. An extra reason is the definition of
identical carriers as a density in a space volume Vs such that at time t0∫

Vs

ρbdx = nb,

∫
Vs

∂tab∆x0dx =
∫
Vs

ρbεbdx = nbεb = Eb, (8)

and E =
∑
bEb for a collection {b} of (by practical construction) inde-

pendent types of carriers. In agreement with our freedom of description
we could also allow the nb not to be integers, provided Et0 is not changed.

1.3.1 Classification of action (energy) carriers

The definition of energy carrier in (8) is useful for all possible cases.
In the development of the different theories the action and the energy–
momentum will be partitioned into the carrier fields. There will be a
limitation when studying the interactions: some of these carriers ( type
a ) will be called restricted interaction carriers because there will be no
possibility of the energy–momentum attributed to the carrier fields to
present rotational distributions as far as curl(div(a(X))) = 0.

A second type of carriers will be those for which the energy–
momentum itself is also partitioned into the carrier fields as in the
last terms of (8), this will allow that the individual energy–momentum
fields posses rotational distributions curl(p(X)) 6= 0, and by necessity
div(curl(p(X))) = 0. This second type of carriers, whose definition

allows a larger type of interactions, will be called carriers type b.
A third type c of carriers will be present in the systematic develop-

ment of the theory (see [9, 10]), which are those collectively of type b,
for which a further splitting of the field intensities is made which violates
the basic symmetries of space–time for individual carriers ci but not for
the collection

∑
i ci.

The carriers of type a are those considered in standard (Newtonian)
mechanics and in the ordinary formulation of General Relativity where
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only the total energy-momentum content is considered. The carriers
of type b are those considered in standard electrodynamics where the
splitting of the energy-momentum content is considered. The carriers
of type c are considered in the standard model of elementary particles
where symmetry breaking interactions are considered (this will not be
considered here, see [9, 10]).

1.3.2 The Density

The conditions to be obeyed by the analytical function carrier density
ρc(x, t) are:

D1.- ρc(x, t) is a real quantity ρc(x, t) ⊂ R.
D2.- The density 0 ≤ ρc(x, t) < ∞ in order to represent a finite

amount of action.
D3.- The derivatives of the density −∞ < ∂µρc(x, t) < +∞ in order

to represent an assigned finite amount of energy–momentum.

Theorem 1 If Ψ(x, t) is an analytical complex or multivector quantity,
finite and with first and second finite derivatives everywhere, conditions
D1, D2 and D3 are fulfilled identically if ρc(x, t) = |Ψc(x, t)|2. Here |f |2
means the real quadratic form of any more general function f , even if
f itself is not necessarily a real function and we define |f |2 = f+f and
therefore ∂µ |f |2 = (∂µf+)f + f+(∂µf).

Proof. Condition D1 is fulfilled from the definition ρc(x, t) =
|Ψc(x, t)|2. Condition D2 is fulfilled from the definition of Ψ(x, t) and
of |f |2. Condition D3 is fulfilled from the definition ∂µ |Ψ(x, t)|2 =
(∂+
µ Ψ(x, t))Ψ(x, t)+Ψ(x, t)+(∂µΨ(x, t)) because a phase factor ei(∆Et−∆P·x)/~

can freely be included in Ψ(x, t) in order to have the desired value of the
assigned energy-momentum contributions for that carriers system, us-
ing the operator p̂µ = −i}∂µ.

It is seen that the conditions D1, D2, D3 and
∫
V
ρc(x, t)dx = Nc

also define the Ψ(x, t) to be quadratic integrable Hilbert functions. In
any formulation this last definition of ρ can be used as a condition in-
troduced via a Lagrange multiplier. Of course from the definition of
Ψ(x, t) and the ideas of this paragraph this function should be called
“the Schrödinger function” because, as discussed below, it was intro-
duced by him in 1926 [16].
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Gauge freedom Carrier density and density of action should then, to
allow freedom of description, be gauge invariant physical quantities, thus
we need to develop a procedure which can allow gauge freedom, that is, a
procedure which allows for arbitrary, but correct and useful, descriptions.
In any of the theoretical structures to be discussed below the gauge fields
represent the additional energy–momentum terms assigned to the carrier
in our description process. They introduce both the gauge freedom to
split the energy–momentum per carrier and the gauge freedom to define
the sharing of energy attributed to the interactions.

Because the definition of carrier density depends on the attributed
energy per carrier we can not separate the definition of the gauge from
the definition of the carriers themselves.

This is possible with the introduction above of the density amplitude
Ψ, required to contain the necessary information in a form compatible to
the basic concept that the energy–momentum components are obtained
by using the operator −i~∂µ applied to the function which describes the
splitting of the action density into a carrier density ρ and the action per
carrier. The definition required by D1, D2 and D3 above

ρc = |Ψc|2 , (9)

allows then gauge independence. A set of Lagrange conditions and mul-
tipliers can be used to define the carriers and their desired properties.
This procedure can be carried at any level of description, hence the uni-
versality of mathematical descriptions presented here, which in fact give
a self existing status to density functional theory. There should be no
confusion from the fact that (9), here proposed for density functional
theory, is formally equivalent to the use of Wave Equations in Quantum
Mechanics.

1.4 Density Functional Theory and Interactions

1.4.1 Density Functional Theory from START

We proceed now to establish the basic aspects of density functional the-
ory.

• The total energy of the system is a functional of the density, which
can be defined in two steps. The first is to establish that there is
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a ground, minimum energy, state of the system which defines the
carriers themselves:

E
(N)
0 =

∫
E

(N)
0 (x)dx =

∫
ρ

(N)
0 (x)εdx = Nε, (10)∫

ρ
(N)
0 (x)dx = N (N = number of carriers ), (11)

where the density of energy E(N)
0 (x) at a given space point x has

been factorized as the product of the average energy ε per carrier
and the carrier density ρ

(N)
0 . This by itself is the definition of

carriers of a given type: they are all equivalent and the energy of
the carrier is a constant in space, for all points of the distribution
and, in a given system, the same for all carriers of the given type.

• The constant defining the average energy per carrier is a functional
itself of the carrier density

ε = ε
[
ρ

(N)
0 (x)

]
, (12)

being a functional it is a real number. Because the reference energy
has to be freely defined this constant may be either positive, neg-
ative, or null. The functional may be, in some cases, constructed
from the density and its space derivatives at the given point x,
then it becomes a local density functional (LDF).

• The energy density, assuming indistinguishable (independent
or interacting) carriers of a given type (at a given time t′ in
relation to the observer) is now subjected to the description needs
or desires of the observer describing the system, in a local in space
partitioning which in general follows a traditional scheme of using
the concepts of constitutional energy, kinetic energy, and potential
energy

ε = mcc
2 + kin[ρ(N)

0 (x)] + V(x) + Wint,xc[ρ
(N)
0 (x)] + ε0[ρ

(N)
0 (x)],

(13)

where we have defined the average energy per carrier as, first, the
(by the definition of carriers) constitutional energy of the carriers
mcc

2, actual, arbitrary in definition, local kinetic energy per car-
rier kin[ρ(N)

0 (x)] and the external potential energy per carrier (in
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its simplest form) V(x). Second the correction Wint,xc[ρ
(N)
0 (x)] to

the average kinetic and external potential energy per carrier aris-
ing from the assumed interaction among carriers and in due case:
the correction arising from the statistics the carriers should follow
and the assumed correlations of the type of carriers under consid-
eration; this term is needed to define independent carriers from
interacting carriers, as far as this energy appears as a property of
the carrier in the system, it corrects for the fact that the con-
stitutional energy and the external potential refer to the isolated
carrier or more correctly stated to the one carrier system. Third
and finally we have to include a local energy term ε0[ρ

(N)
0 (x)]; a

basic term required to compensate for any difference in the sum
of the previous ones with respect to the (constant) average energy
per carrier ε, this term defines that the carriers are indistinguish-
able among themselves, condition included in the introduction of
the concept of average energy per carrier. The last two terms de-
fine in practice an actual carrier in the system (a pseudo-carrier in
condensed matter physics language) as different from an isolated
carrier.

• Physics studies both the existence of a system and, mainly, its
response to external excitations. In the simplest approximation
the necessary description is that of the possible stationary states
of the system. In each of these system’s states the carriers should
continue to be indistinguishable and then for each stationary state
s of the system the energy Es(x) should obey a condition equivalent
to (10) for the N carrier system

Es =
∫
Es(x)dx =

∫
ρs(x)εsdx = Nεs = E0 + hνs,

(14)∫
ρs(x)dx = N (N = number of carriers ), εs = εs [ρs (x)] ,

(15)

εs = mcc
2 + kin[ρs(x)] + V(x) + Wint,xc[ρs(x)] + εs[ρs(x)].

(16)

The study of the different excitation energies of the system hνs is
now equivalent to the Heisenberg approach to study a physical sys-
tem through its excitations spectra, which was properly termed as
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quantum mechanics because of the direct use of Planck’s constant
h. Note that the functionals are given the same symbol as far as
they are thought to depend only on the type of carrier.

• Among the stationary states of the system there is a simple series
which corresponds in experimental practice where one of the car-
riers is being removed from the system with increasing excitation
energy, in the sense that the remaining part of the system no longer
needs to consider the carrier which has been removed. In that case
we follow (14,15,16) with the conditions adjusted to N −→ N − 1.

Density functional theory describes the self-organization of the
carriers system with density ρ(x) in the presence of some external po-
tential.

In (10,11) we are, in fact, defining the carriers. First, considering the
energy density to be given by the product ρ(x)ε of a density of carriers
and an average energy per carrier (the same for all, in a form which
makes them indistinguishable). Second because the domain of integra-
tion defines the system of equivalent carriers (within this domain). In
(13) the kinetic energy is considered to have the value which corresponds
to independent carriers. The last function in (13) is then required to com-
pensate both for the definition of energy contributions of the equivalent
carriers and for considering them as independent carriers.

1.4.2 The Density as the Basic Variable

It is convenient to define the action in a form which distinguishes the
part corresponding to the self-organization of the distribution and the
part which corresponds to the ‘external’ influences on the distribution.

The volume (in space) of integration is considered large enough for
the ‘kinetic’ energy to be internal, there should be no need to change
the integration domain as a function of time. If the external influence
is represented by the external potential V(X) we can write for the total
(invariant) action

A =
∫
dt

[
EI [ρ(X)] +

∫
dxV(X)ρ(X)

]
, (17)

where the functional EI [ρ(X)] corresponds to the energy of the distribu-
tion of carriers ρ(X). This functional EI has the interesting property
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that at a given time

δEI
δρ(X)

= −V(X). (18)

This is a basic relation in Action–DFT as far as there is an intrinsic
definition of the external potential. This shows the tautological nature
of the concept of carriers, once they are defined the external potential
is defined through the definition of the carriers themselves by EI [ρ(X)].
The tautological cycle is closed when given V(X) and ρ(X) the kinetic
energy and the interaction terms define EI [ρ(X)]. Reminder: in practice
more general forms of V(X) should also be acceptable.

From the definitions above we can extend the description to consider
a set {b} of types of carriers, each carrier type with density ρb. In this
case for each b the ‘the external potential’ depends in all types b′ 6= b.

1.4.3 Introducing Gauge Freedom for the Description of the
Action

We have emphasized that the fact that we are arbitrarily defining the
terms above requires the possibility of changing the description of the
action (energy) partitioning without changing the description of the den-
sity. The density ρ(X) at space–time point X is required to be gauge
invariant, whereas the description of the energy (action) is gauge de-
pendent. This is achieved by constructing the energy density as the
product of an average energy per carrier ε with two conjugated quanti-
ties Ψ(X)and Ψ†(X) such that ρ(X) = Ψ†(X)Ψ(X) is gauge invariant.
Here we have defined an auxiliary quantity which can be essentially writ-
ten in terms of a basic action a0(X) and the action introduced through a
gauge phase φ(X) both in units of ~, as proposed by Klein and by Fock
as early as 1926 [11, 6]:

Ψ(X) =
√
ρ(X) e−ia0(X)+iφ(X), (19)

where we are restricted (even if φ(X) can be very general [9] and can rep-
resent electroweak, color and gravitational interactions), by definition,
to

~
∂ (a0(X)− φ(X))

∂t
= ε, (20)
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showing the gauge freedom of the description of the energy (action) as-
sociated with the carrier. By definition, at all space position points x
we have the same energy per carrier ε which only in the simplest cases
would be the sum of a constitutional, a kinetic and a potential energy
part in the sense above. We have then recovered the equivalent to the
Hohenberg–Kohn Theorems [7] and formally the Kohn–Sham minimiza-
tion procedure [12] as the definition of these two terms

δ

(
E [ρ]− ε

{∫
ρ(x) dx−N

})
= 0, (21)

allows the direct self-consistent determination of ρ(x) and ε (see [10]).

1.4.4 Schrödinger Amplitude Functions in START

The freedom of description of the energy-momentum partitioning is a
fundamental issue in the construction of physical theories. Since at least
the XIXth century an action function was introduced which was use-
ful for this purpose, in the XXth century the de Broglie phase factor
exp(−i4a/~) [2] allowed the freedom of energy-momentum description
and the use of the gauge fields. Later the concept of non-commuting
gauge fields [19] was successfully introduced to describe a larger set
of energy-momentum partitioning among carriers (fundamental inter-
actions). We follow now the Schrödinger procedure.

1. Let the Schrödinger (1926) [16] definition S(x, t) of action in terms
of an auxiliary function Ψ(x, t) be

S(x, t) = K ln Ψ(x, t) = K† ln Ψ†(x, t),

that is: action is considered a sum of terms. The Ψ(x, t) has one fac-
tor for each contribution to the energy–momentum The action S(x, t)
is required to correspond to the stationary states of the system to be
described, this is ensured through a variational optimization procedure.
The choice K = i~ = −K† agrees with the previous paragraphs.

2. Let the carrier density ρ be the real quantity

ρ(x, t) = Ψ†(x, t)Ψ(x, t),

where ρ(x, t), Ψ and Ψ† are: unique-valued, continuous and twice-
differentiable, with the condition ρ(x, t)| space boundary = 0.
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3. Let the canonically conjugated variables be: (x, t) and¤S =K¤ ln Ψ
=K†¤ ln Ψ†, with, again, ¤ = eµ∂µ the space-time gradient operator.

4. The local energy description be (E ,P, E0 are not densities, they
can be gauged as below)

− |K|2 (¤Ψ†) · (¤Ψ)
Ψ†Ψ

c2 = E2 − (Pc)2 = (E0)2 =
(
m0c

2
)2
,

with the Lagrangian (density of energy) function

J = − |K|2 (¤Ψ†) · (¤Ψ)c2 −
(
m0c

2
)2

Ψ†Ψ,

and variationally search for the extremum energy E (minimum of ac-
tion for a stationary state system) δJ = 0 to obtain from the standard
variational approach

− |K|2
[
Ψ†
(
¤2Ψ

)
+
(
¤2Ψ†

)
Ψ
]

= m0c
2Ψ†Ψ,

and the equation for the auxiliary function Ψ

− |K|2¤2Ψ =
(
m0c

2
)2

Ψ.

(In the case where an interaction is assumed to exist (E − V )2 −
(Pc− eA)2 =

(
m0c

2
)2).

From the Schrödinger variational search for the minimum of action for a
stationary state system δJ = 0 we obtain the Schrödinger-Klein-Gordon
Equation (SKG), (consider first V = A = 0) it is[

− |K|2
(
∂2

∂t2
−
(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
c2
)
−
(
m0c

2
)2]

Ψ = 0. (22)

We must emphasize that in the relativistic (and in the non relativis-
tic) case we obtain, through the Schrödinger optimization procedure,
the Ψ (or Ψ†) function which minimizes the action of the system. The
geometric factorization of the operator in the SKG equation transform
it into the Dirac equation. In the next section we follow an alternative
procedure which illustrates directly the meaning of the components of
the Schrödinger Amplitude Function.
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1.4.5 Linear form of the Schrödinger-Klein-Gordon Equation

We want to express the Schrödinger-Klein-Gordon equation (SKG (22))
in the linear form

Ĥlinearψ = m0c
2ψ. (23)

Consider the simple case of the free carrier, that is, of the equation (
here k2 = (m0c/~)2, i2 = −1)

1
c2
∂2

∂t2
ψ −∇2ψ + k2ψ = 0, (24)

and write (following a procedure analog to that used by Charlier, Bérard,
Charlier and Fristot [1] to obtain a Schrödinger-like equation from the
SKG)

ψ =
m∑
a=1

φa, (25)

∂ψ

∂xµ
=

m∑
a=1

caµφa,

m = 8 in order to have a faithful representation of both definitions and
the coefficients are given by the matrix

8caµ = ik


+1+1+1+1−1−1−1−1
+1−1+1−1−1+1−1+1
+1+1−1−1+1+1−1−1
+1−1−1+1+1−1−1+1

 ,

with these definitions we write the 4 equations

∂

∂xµ

m∑
a=1

φa = −ik
m∑
a=1

caµφa,

and use them in equation (22,24) to obtain:

∑
µ

∂

∂xµ

8∑
a=1

caµφa = −ik
m∑
a=1

φa,
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which is a linear form of the energy-momentum conservation equation
(22).

If a representation of the same relation is given through the use in
(25) of a set of real 8×8 we obtain the Dirac equation: ¤ψ = −ikψ. The
Dirac equation is thus a faithful representation of the linearized form
of the Schrödinger–Klein–Gordon equation. The components φa of the
Schrödinger auxiliary function are, according to the original definition,
the contributions to the action function needed for a description of the
energy-momentum distribution. We could otherwise maintain the repre-
sentations (25) and write the equivalent to the Dirac equation without
the use of a matrix representation.

Observe that the fact that we can now define a d’Alembertian oper-
ator

¤ = γµ∂µ,

allows the generation of a Clifford algebra representation of the full ge-
ometry of space–time through the definition

γ (eµ) = γµ,

of the matrix representation of the geometric algebra of space–time. The
γµ faithfully obey the same relations as the basis vectors eµ. The set of
8×8 real matrices [2R(4)] representing the eµ is:

γ(e0) =



+1
+1

+1
+1
−1
−1
−1
−1



γ(e1) =



−1
+1

−1
+1

+1
−1

+1
−1


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γ(e2) =



−1
−1

+1
+1

−1
−1

+1
+1



γ(e3) =



−1
+1

+1
−1

−1
+1

+1
−1


The Dirac matrices γµD and wave function ΨD are obtained trough

a complex structure similitude transformation S (γ (eµ))S−1 = γµD and
ΨD = Sψ with, for example:

S =
1√
2


1 i
1 i

1 i
1 i

 , S−1 =
1√
2



1
1

−i
−i

1
1

−i
−i


.

Representations of algebras are not unique, but they are related by
similitude transformations.

2 Space–Time–Action Relativity Theory

Our basic and more fundamental idea is that the physical world can
be described as a distribution of action density in space–time. The
properties of matter fields and their interaction are represented by the
mathematical properties of this distribution. Action is considered as a
fundamental variable, not as a quantity resulting from some calculation.
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In [9, 10] we analyzed a classical theory of fields in (complex) space–
time geometry and arrived to the conclusion that this geometry corre-
sponds to a unified space–time–action geometry.

2.1 Space–Time to Space–Time–Action

We present a deductive type of theory. The basic description of physical
nature will be derived from the, here assumed primitive, formal concepts
of space and time as a frame of reference and of a distribution of action,
action density in space-time, which obey the principles presented below.
We assume that the theory here developed has as fundamental purpose
to provide a useful and coherent formal representation of our perception
of the physical world; therefore that when we mention the objects of the
physical world: matter, light, position, elapsed time, etc. this objects
correspond to our anthropological concepts and observations.

2.1.1 Formal Presentation

The ideas developed in START (Space–Time–Action Relativity Theory)
are derived from the systematic use of the following principles and pos-
tulates [Keller 2000a,b; 2001].

First Principle: Principle of Relativity: The Principle of Relativity
in full requires that the laws of Physics should have the same form for
all observers.(Poincaré–Einstein Relativity {Poincaré 1904 [14], Einstein
1905 [3]}). As a basic requirement to connect to experiment it assumes:
Constancy of the value of the observed velocity of light in vacuum.
Independently of the state of movement of the source or of the observer
.

First Postulate: There is a geometry, corresponding to space–time,
where the First Principle is satisfied (Minkowski space–time with local
pseudo-Euclidean structure). Here it is clear that the velocity of light is
a fundamental geometrical parameter and the First Principle could be
rephrased to assign a unit value to it.

Second Principle: Principle of Existence: Each observer considers
the physical entity as an amount of action A contained in a given space-
time volume VST, A is a relativistic invariant (in the sense of Minkowski’s
discussion). Independently of the state of movement of the phenomenon
or of the observer.
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Second Postulate: There is a geometry corresponding to the union
of space–time and action where the First and Second Principles are sat-
isfied (pseudo-Euclidean structure).

Main Theorem KT: Complex Structure Theorem. The geometry
where the Second Postulate is satisfied is a five-dimensional basis ge-
ometry, mathematically corresponding to a particular complexification
of space–time. The relation between a 5-dimensional geometry and the
complexification of the basis set has been briefly presented in the intro-
duction and will be discussed below.

Third Principle: Principle of Quantization: The exchanges in ac-
tion (among carriers) always occur as integer multiples of h. This makes
Planck’s principle a universal principle which requires the definition of
the entities we have called action carriers, because if there are not
differentiated action carriers there is not a proper definition of the ex-
changes of action. This is also a guide and a limitation in the definition
of the action carriers and of the VST associated to the system with total
action A.

Fourth Principle: Principle of Choice: The distribution of action
in space–time corresponding to a physical system is unique and nev-
ertheless any faithful description of this distribution should be equally
acceptable. The acceptability of a description, is interpreted here as also
implying an optimization of the action distribution and a mechanism to
allow the system of carriers to arrive to this optimized state.

Third Postulate: The equivalent acceptable descriptions, for a
physical system of carriers, are related by isometries and gauge transfor-
mations in the space–time–action geometric space corresponding to the
Second Postulate.

Proof of the KT Theorem. : We have the kinematical concept of
space–time interval ds2 with a quadratic form

ds2 = gµνdx
µdxν , (µ, ν = 0, 1, 2, 3) (26)

generated by the dxµ and we want to include as a fifth coordinate the
dynamical concept of action and its distribution at each space–time point
X = xµeµ, use the real scalar function A(X)

dA(X) = pµ(X)dxµ which defines pµ(X) = ∂A(X)/∂xµ, (27)

here pµ(X) is a distribution itself, the geometrical meaning is introduced
if we consider pµ(X) = tan Θ(X,µ). Join formally, using i2 = −1 and
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the Clifford numbers j2 = +1, jeµ = −eµj, eµ · eν = eν · eµ = gµν into

dSµ = dxµ(1 + ijκ0tan Θ(X,µ)), (28)

to obtain from the real quadratic form (in units of distance square)

dS2 = 1
2 {[dx

µ(1 + ijκ0 tan Θ(X,µ))eµ] · [dxν(1− ijκ0tan Θ(X, ν))eν ] +h.c.} ,
(29)

dS2 = gµνdx
µdxν1

(
1− κ2

0tan Θ(X,µ)tan Θ(X, ν)
)
, (30)

or, in five-dimensional-like formulation

dS2 = guvdx
udxv = ds2 − κ2

0 |dK(X)|2 ; u, v = 0, 1, 2, 3, 4, (31)

where κ2
0 |dK(X)|2 corresponds to the sum of the squares of action contri-

butions. Note that in order to obtain the desired metric the combination
(ij)2 = −1 had to be used. This has introduced a new vector function
(remark: eµ and jeµ are linearly independent vectors)

dK(X) = dK(X)µjeµ =
∑
µ

tan Θ(X,µ)dxµjeµ.

This vector K mathematically corresponds (in Brillouin’s terminology)
to the contraction of a tensor density, while in geometric analysis to a
vector function dK(dX,P ) of two space-time vectors: dX = dxµeµ and
P = pµe

µ. It is important to notice that it is not the actual value of
the action density which is dynamically important but its space-time
variations. Even more important for dynamics is that, when the action
density is considered a sum a =

∑
c ac over carriers, the contributions

to dK =
∑
c(dK)c per carrier could be non-zero even is the sum could

itself be null. That is the dynamics could be purely relative dynamics.
The basic dynamical equation is proposed to be

δ

∫
dS2 = 0, (32)

in a joint minimization of trajectory and action. A particular theory is
derived if a Lagrangian is proposed (containing description constrains in
addition to this principle). Gravitation will require extremum (shortest)
trajectories for a test carrier besides, through the common procedure
of Lagrangian minimization, the minimization of action. The universal
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constant κ0, the ratio of a fundamental distance to the fundamental unit
of action, expresses the action as an equivalent distance in such a form
that (dx4)2 = |(κ0dK)|2, with gmn = diag(+1,−1,−1,−1,−1) defines
the metric of the equivalent five dimensional geometry basis vectors,
using m,n = 0, 1, 2, 3, 4. Here the diagonal time-like term g00 = +1 and
the ‘action intervals’ term g44 = −1.

For the units to be used in the unified geometry consider the defini-
tion (m0 electron rest mass, c speed of light, h = 2π~ Planck’s constant,
e electron charge, r0 classical electron radius and α = e2/~c)

rCompton =
~

2m0c
=
r0

2α
, κ0 =

d0

h
= 4πrCompton/h =

1
m0c

. (33)

The classical limit of the unification of action to space–time is obtained
when κ0 (4a)I → ∞ for a unit action interval in a form similar to
the classical limit of the unification of space and time being obtained
when c (4t)I → ∞ for a unit time interval. Note that in the MKS
system of units |κ0 (4a)I | À |c (4t)I |. (also natural but not used
here are Planck units in terms of the Planck’s constant, the velocity of

light and the Newton’s gravitational constant length = lP =
(~GN
c3

) 1
2 ,

time = tP =
(~GN

c5

) 1
2 and mass = mP =

(
~c
GN

) 1
2
, [13]).

2.2 The Basic Operators

From the considerations above the fifth coordinate corresponds to the
use of x4 to represent action density in space–time, not the accu-
mulated action. Otherwise the action for a given amount of energy
distribution in space would be an ever increasing function of time.
This will be a distribution of energy in space “moving” in time. The
given definitions, and a dimensionless imaginary circular variable ac-
tion density a (X) = −2πiA(X)/h, allow the introduction of a series of
operators for computing the dynamical quantities defined so far. First,
there is an energy–momentum operator p̂, which would then be, with
the representation γµ = γ (eµ) and with the action units included in
its definition,

p̂ = i~γµ∂µ . (34)

This operator is fundamental to define and study the auxiliary action
amplitude function Ψ and the possibility of changing the description by
gauging.
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Some concepts related to our third principle above. Because action
has to be supplied or emitted in multiples of h, when a given energy
E0 or momentum p0 is considered, a characteristic associated time τ or
distance λ are automatically defined as either a period or a wavelength:

E0 =
h

τ
or p0 =

h

λ
, (35)

also from (34) E0 and p0 are geometrically in the tangent space of ST
and the associated action in the e4eµ planes which, from (35), have
symplectic structure. This introduces the concept of cyclic variables for
(35) in the form τ = 2πτ0 or λ = 2πλ0.

Then defining, as usual, ~ = h/2π we can write (35) in the form

E0 = ~/τ0 = ~ω or p0 = ~/λ0 = ~$. (36)

With the definitions above the energy–momentum operator p̂ = i~γµ∂µ =
i~¤ has become the usual in Quantum Mechanics. (Here also ¤ = γµ∂µ
is the space–time d’Alembertian operator (µ = 0, 1, 2, 3)). We should
remind the reader that our definitions here are direct consequence of the
principles above, not additional postulates.

2.3 The Kinetic Energy in START

From our definitions we are considering two quantities: energy
i~
∫
dV ∂t a(X) and the corresponding momenta i~

∫
dV ∂xi a(X). One

of the basic relations in relativistic dynamics is the transformation of
the above quantities with respect to observers in relative motion with a
relative velocity v12.

For an observer 1 the integrated energy–momentum Pµ = (E/c, 0, 0, 0)
can be written

E = mc2, (37)

as by definition for this observer that object is at rest and then the
energy corresponds to a mass m and no momenta are involved. From
the definition we see that there is a geometrical constraint that any space
variation of the action distribution, in the volume of integration, should
be symmetric for the observer in relation to which the distribution is
at rest (in order that the integral to vanish). Notice that it is not a
point-like object, even if it can be considered small in relation to some
characteristic distance.
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For an, in relative motion with respect to the first, observer 2 the
same relations hold. The energy for this observer will be E ′=m′c2 =
i~
∫
dV ′∂t′ a′(X ′), larger than E , given that in his frame of reference the

derivatives have to be computed with respect of its own, shorter time
intervals, dt′, where

dt′√
1− v2

12
c2

= dt from (cdt)2 − (v12dt)2 = (cdt′)2. (38)

For the observer 2 the measurement corresponding to the prime sys-
tem

E ′ = ∂

∂t′
A =

1√
1− v2

c2

∂A
∂t

=
E√

1− v2

c2

. (39)

The action A related to that physical entity is invariant

A = i~
∫
VST

dVSTa(X) = i~
∫
V ′ST

dV ′STa
′(X). (40)

Then for the observer 1 in relative motion the action A corresponds
to a smaller time ∆t′ and consequently the associated energy is E ′ =
m′c2 = E/

√
1− v2/c2. Observer 1 concludes that in the moving system

E ′ = mc2√
1− v2

c2

→ with lim(v ¿ c)→ mc2 + 1
2mv

2 + ..., (41)

and also, because the prime system is considered in motion, he can call
the energy E ′ the sum of the rest (mass) energy E and the kinetic energy
Ek which for the slow motion is approximated by the typical Ek = 1

2mv
2

term. Otherwise for the system in motion a characteristic inverse length
of the energy distribution has been changed from p0/h to p′0/h, together
with a characteristic inverse time E/h → E ′/h, these quantities should
be part of the gauge-free description used in the theory.

Considering (41) again, we can write

E = hν0, E ′ = hν = h(ν0 + ∆ν), (42)

and then, mainly in the low velocity approximation, we can write

Ek = hνk where νk = ∆ν ≥ 0. (43)
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Here ν corresponds to the characteristic frequency appearing in the Dirac
equation, where the total energy is considered, whereas λ = p/h and νk
would be the characteristic wavelengths and frequencies as, for example,
in the Schrödinger equation, as derived from START.

2.4 Dynamical Principles

In space–time–action geometry the main dynamical principle should be
that all elementary trajectories be minimal. That is, from our definition
of carriers above where dA = {εc

∫
ρc(X)dx}dt, a minimization of a total

action A ( in the case when we admit that the κ0 >> 1 predominates)
or a minimization of a START trajectory. Defining the (square of the)
differential (dS)2 = (ds)2−(da)2, where (ds)2 = gµνdx

µdxν is the space–
time differential and (da)2 the equivalent length of the action differential,
the minimal principle

δ(dS)2 = 0, (44)

could be separated into a kinematical principle similar to the one of
(general) relativity and an additional principle of minimum action

δ(ds′)2 = 0, δ(da′)2 = 0. (45)

Where we have defined

(ds′)2 = (ds)2 −
[
(da)2 − (da′)2

]
, (46)

as a modified space–time interval square which, in fact, corresponds to
considering a curved effective space–time as will be shown below. The
action interval square (da′)2 corresponds to some ‘inactive’ part of the
action in relation to a given geometrical description.

For some phenomena, light as the main example, (45) is separately
obeyed given that (cdt)2− (dx)2 = 0 and gµνpµxν = 0 because ε = pc =
hν = hc/λ. Otherwise our principle of minimal action corresponds to
the one universally accepted in the formulation of physical principles.

2.4.1 Point-like STA Trajectories

To make connection with classical relativistic approaches a point–
like carrier can be defined using a Dirac’s delta function distribution



Unification of Electrodynamics and Gravity from START 389

a0(X,xp) = κ0ap(t)δ(x − xp), following a point–like trajectory xp re-
duced to a line in space. For the observer there would be two types of
trajectories to study fields:

1) massive (m0 parameter), that when at rest have STA interval

dS2 = gABdx
AdxB = 0 = (cdt)2 −

(
κ0m0c

2dt
)2
, (47)

which in fact defines κ0 = 1/m0c in terms of m0 and c (in our case the
electron mass and the velocity of light); and

2) massless (e = hν, p = h/λ, c = λν parameters) for which x2 +
y2 + z2 = (ct)2 and a2 = 0, where as a consequence

dS2 = gABdx
AdxB = 0 = (cdt)2 −

(
dx2 + dy2 + dz2

)
− (κ0dA)2

. (48)

The ordinary density of action can be considered as a density of
point–like trajectories a(X) = ρ(X)

∫
a0(X ′, x)dx′.

3 Maxwell Equations from START

Let us formally show that the Maxwell equations in their standard text-
book form are analytical properties of the third derivatives of the action
density attributed to a test carrier (with ‘electric’ charge) as induced by
a collection of interacting carriers (carriers type b, those for which the
energy–momentum is partitioned in an interdependent form). Then the
energy per carrier can be considered the derivative of a scalar field but
the momentum for carriers of type b can not be solely considered the
gradient of a scalar field. In this particular case assume that we describe
a set of carriers as interacting by partitioning an amount of energy (the
interaction energy Ee(X) ) among them, allowing the partitioning of
the momentum, which is a quantity with a sign related to directions in
space, to be the sum of the momenta of the different carriers, that is the
sum could be any number including zero whereas the individual momenta
will be described as the result of the overall momentum

(
∂ae(X)/∂xi

)
ei

plus the momentum ∆R pe,iei induced by the interactions among the
carriers. These interaction momenta fields might then have a non null
rotational part.

In the reference frame of a given observer the induced action den-
sity (arising from the interaction), denoted by ae(X), per unit charge (
⇒puch) of a test carrier at space–time pointX = xµeµ (here the greek in-
dices µ = 0, 1, 2, 3 and x0 = ct whereas the space vectors q = qiei = qiei
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, ei = e0ei, i = 1, 2, 3 are written in bold face letters and we use the
standard definitions of ”dot” and ”cross” products), the related energy
density Ee(X) and the total (external plus induced) momentum density
pe, per unit charge of the test carrier, would be

Ee(X) =
∂ae(X)
∂t

, pe = pe,iei = (
∂ae(X)
∂xi

+ ∆R pe,i)ei, (49)

and the, by definition, electric field intensity E is the force (puch) cor-
responding to this terms

E = (
∂Ee(X)
∂xi

+
∂pe,i
∂t

)ei = ∇Ee(X) +
∂pe
∂t

,

with time dependence

∂E
∂t

= (
∂2Ee(X)
∂t∂xi

+
∂2pe,i
∂t∂t

)ei = 2
∂3ae(X)
∂t∂xi∂t

ei +
∂2 (∆Rpe,i)

(∂t)2 ei.

By definition of interacting carriers, we have added in (49) the term
∆R pe,iei as the effect of the conservation of interaction transverse
momenta between the field representing the rest of the carriers with
that sort of charges. This is by definition the origin, in START, of a
magnetic field intensity B = Bkek that will appear as the curl of the
momentum (puch) of an interaction field acting on a carrier of type b.
The axial vector

B =
(
∂pe,i(X)
∂xj

)
ej × ei = ∇× pe,

with time dependence

∂B
∂t

=
∂2pe,i(X)
∂t∂xj

ej × ei.

.Otherwise the space variation of E, including the interaction trans-
verse momenta,

∇ E = ∇ ·E +∇×E, (50)

will then also include a transversal (rotational) term

∇×E =
∂2pe,j(X)
∂xi∂t

ei × ej = −∂B
∂t
, (2nd Maxwell Equation)
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relation which is the direct derivation in START of this well known
Maxwell equation. The scalar term ∇ ·E being a divergency of a vector
field should be defined to be proportional to a source density

∇ ·E =
1
ε0
ρ =

∑
i

(
∂3ae(X)
∂xi∂xi∂t

)
=

∂

∂t
∇2ae(X),

(1st Maxwell Equation)

and will be given full physical meaning below.
For the space variation of B we have

∇ B = ∇ ·B +∇×B.

The first term vanishes identically in our theory because it corresponds
to the divergence of the curl of a vector field

∇ ·B = 0, (3rd Maxwell Equation)

while the last term, using U × V ×W = V (U ·W )− (U · V )W

∇×B = ∇
(
∇2ae(X)

)
−∇2pe = µ0(J + ε0

∂E
∂t

),

(4th Maxwell Equation)

where the additional dimensional constant µ0 is needed to transform
from time units (used in the conceptual definition of a current J =
∇
(
∇2ae(X)

)
/µ0) into distance units and ε0µ0 will have then units

of T 2/D2 or inverse velocity squared, in fact (see below) ε0µ0 =
c−2corresponding to have used twice the derivative with respect to t
and not to x0 = ct. The 4th Maxwell Equation, defining J, is related
to the analogous of the 1st Maxwell Equation and to the analogous of
the 2nd Maxwell Equation, also to a Lorentz transformation of the 1st
Maxwell Equation.

As we have mentioned for carriers of type a the magnetic-like field
will vanish B = 0 and then the interaction will be simpler, obeying only
the source first Maxwell equation, this is for example the standard ap-
proach to the case of the gravitational interaction. Because all carriers
will have the action partitioned as in the case of carriers of type a a
gravitational-like interaction is universal in START. Otherwise the full
Maxwell-like interaction will be related to the concept of charges for car-
riers of type b. A more comprehensive theory of gravitation should use



392 J. Keller

the formal structure of the Maxwell equations and effects depending in
the currents of the masses should be included. This, because gravita-
tion is 38 orders of magnitude weaker than electromagnetic interactions,
require extremely large speeds and densities, situation not foreseeable
in our observable physical world, can not be expected to be directly
inspected experimentally.

The derived Maxwell equations are formally equivalent to the original
Maxwell equations, then they are: first local equations and second linear
in the sources (ρ and J).

Both the 4th Maxwell Equation, defining J, related to a Lorentz
transformation of the 1st Maxwell Equation, defining ρ, can immedi-
ately be integrated using geometric analysis techniques, the standard
approach being of fundamental conceptual consequences in START. The
space divergence of a non-solenoidal vector field like E is immediately
interpreted as its ‘source’ given that

∆E = (∇ ·E)S∆x,

and this equation is integrated using the standard geometric theorem
that the volume integral of a divergency ∇·E equals the surface integral
of the normal (to the surface) component of the corresponding vector
field n · E. Where n is a unit vector perpendicular to the surface S (in
the text-book formula below S = 4πr2 corresponding to an integration
sphere of radius r containing a spherically symmetric source density ρ(r)
generating a force field per unit charge E = E(r) r

r , note we are using here
the notation x → r for symmetry purposes) of the integration volume
V = 4πr3/3:∫
V

(∇ ·E) dV =
∫
V

4π
ε0
ρ(r′)r′2dr′ =

1
ε0
Q =

∫
S

E(r)
(r · n)
r

dS = 4πr2E(r),

E = E(r)
r
r

=
Q

4πε0r2

r
r
, r · n = r.

That is: the inverse square law of the Newtonian and Coulombic
forces are geometrical consequences of the definition of interaction among
charged carriers. But this is not a derivation of the values of the New-
tonian and Coulombic constants G and ε0.

In the case of the, generated by a current, magnetic force field in-
tensity B, being a space bivector, it is also a direct geometrical conse-
quence that its source can (must) be a current vector density J. For a
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small (l¿ r) current source at the origin of coordinates: (in the sphere
rt(θ, φ) • rct = 0, (rt)2 = (rct)2 = 1)

∫
V

(∇×B) dV =
∫
S

B(r)
(
rt(θ, φ)× n

)
dS = 4πr2fB(r)rct,∫

V

4πµ0Jδ (r′) r′2dr′ = µ0Mrct = 4πr2fB(r)rct ⇒ B = B(r)rt =
µ0M

4πr2f
rt,

and its Amperian inverse square law is also a geometrical consequence
of the definition of transverse interaction among charged carriers.

3.1 Tautology between Fields and Charges

Now, coming back to our considerations in the introduction about car-
riers and action partitioning

Consider the particular case of an initial situation without electro-
magnetic phenomena being present E = 0, J = 0, B = 0 and ρ = 0,
and that in the process of creating a pair of ‘interacting carriers’ with
charges Q, an initial pulse of current J(r, t) = Qv(r)δ(t0) is assumed to
have been generated, this induces an electric field for t > t0 from the
Maxwell Equations derived above:

∂tE = −J(r, t)/ε0+∇×B/ε0µ0 = Qv(r)δ(t0)/ε0,
E(r, t; t > tc) = −Qv(r)/ε0 then ρ(r, t) = −Q∇ · v(r), (51)

and ∂tB(r, t; t > tc) = −∇×E(r, t; t > tc) = Q∇× v(r)/ε0, (52)

showing that this virtual mechanism (in our process to establish a par-
titioning of energy and momentum among charged carriers) requires the
actual allocation of physical properties, to the collection of created carri-
ers, as far as the divergence of the current pulse creates a charge and the
rotational of the current pulse of velocity field v(r) a magnetic multipole.
We can see that the definitions are a circuitous procedure and that it can
equally be said that we have sources that create fields or that the fields
generate the concept of sources. Notice that a source (of a pair) with
a circular current generates an electric and a magnetic field, as in the
case of the electron, and the carrier also show the presence of the spin
associated to the solenoidal current. Within the postulates above the
action of circular currents will have to be quantized in terms of Planck’s
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~, a pair of currents in terms of ~/2 each. The excess energy-momentum-
angular momentum (electromagnetic wave) is itself (from the Maxwell
Equations) an action carrier traveling at the speed c = (ε0µ0)−

1
2 .We see

that the concept of electromagnetic (light) wave is basic in the study
of action density and its distribution in space–time, the quantization
condition is also fundamental in this case.

In relation to (??) in the introduction, consider the process of creating
a carriers-pair where the current pulse is r−2 where a decaying pulse,

v(r) =
−1

4πr2

r
r
, 4πr2v(r) =

r
r
,

then the generated permanent electric field is

E(r) =
∂2ae(r)
∂r∂t

=
Q

ε04πr2

r
r
,

representing the creation of the electric effect of a permanent charge
Q .The linearity of the equations allows the consideration of a charge
distribution ρ = Qρc, and not necessarily of a, not compatible with the
principles of START, point charge. We clearly see the inseparability of
the concept of charge and of the field of that source charge. The concept
of action density in space–time is fundamental in our discussion.

In actual systems there will be a media which represents globally a
collection of carrier fields and we can define a more general intensity
bivector G which keeps the linear-like description but corrects for the
influence of that media

G ≡ D + e5H,

¤ ∧G = 0, ¤ ·G =
J

ε0
.

defining the influence of the media as a coefficient affecting the original
intensities

D ≡ εr(X)E, B ≡ µr(X)H,

in our approach the εr(X) and µr(X) fields correspond to a redefinition
of ae(X) and of the transverse part of pe .

The basic properties being local relations are not changed in this
substitution.
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3.2 Newtonian Gravity

The analysis above depends only on the assumption of the decomposition
of the action and of the energy momentum into contributions per carrier.
We have mentioned that there could be at least two types of carriers:
universal, or type a, and with particular pair-wise relative charges,
or type b. For the first type a universal type of interaction is possible
and, because there are no relative charges, all carriers of action would
participate in this category. In the equations above, even if related to
the Maxwell equations, all steps of the analysis apply to carriers of type
a, the only difference is that there the concept of charge is a universal
quantity. In START there is only one universal quantity in relation to
a given observer as reference: the energy related to any carrier, there is
no room for positive and negative charges in this case. This is different
for the relative charges which otherwise could naturally be of opposite
sign as far as they are related to the process of creating two charged
carriers from any previously existing carriers and thus breaking
the description symmetry of the previous stage.

The solution of the first Maxwell equation, when applied to gravi-
tation considering the mass M = E/c2, implies (as shown above) the
Newtonian gravitational potential equation per unit test mass m:

E = V = −GM
r

, that is E = −GM
r2
,

the usual relations in the textbook formulation of Newtonian gravity.
The constant G = 1/4πε(g)

0 . If we define c2µ(g)
0 ε

(g)
0 = 1 then µ

(g)
0 =

4πG/c2.
This straightforward result will be used below. In this approach to

gravitation there is no quantization properly, there being no exchange
of action, only a description of the sharing of energy between a source
carrier and a test carrier.

When general relativity is analyzed we will immediately find the need
for the consideration of the momentum of the test particle moving ac-
cording to the geodesic of the curved space–time. As mentioned above we
could also include the transverse momentum in the interaction between
sources of the gravitational field, where it was mentioned that gravita-
tional forces are 38 orders of magnitude weaker than electric forces. On
top of that we should add that, as by definition the magnetic forces are
expressed as rates of change of momenta, then a factor of the inverse
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of the velocity of light c will appear explicitly in the relation Eg to Bg

equations when t⇒ ct

∇×Eg =
∂2p

(g)
j (X)
∂xi∂t

ei × ej = −∂Bg

∂t
,

∇×Bg = ∇
(
∇2a(g)

e (X)
)
−∇2p(g)

e = µ
(g)
0 (Jg + ε

(g)
0

∂Eg
∂t

)

=
4πG
c2

Jg +
1
c2
∂Eg
∂t

,

and then if the equivalent of magnetic interactions were to be added to
gravitation the factor of 1/c2 is to be added.

3.2.1 Force Intensities.

From the previous sections and definitions an interaction field inten-
sity space–time bivector F can be considered as generated from another
space–time vector distribution J(x, t) = Jµeµ = ρe0+Je0, usually called
the current (of the generating carriers fields):

¤F =
J

ε0
, F = ¤−1 J

ε0
;

or, analytically inverting the relation, we obtain F from the source cur-
rent which usually is considered the more important physical quantity.
This current is nothing else that the (observer dependent) description
of the carrier distribution ρc(x, t) defined by the reference observer. In
our approach the space–time current J is not an additional concept, it is
formally defined from the derivatives of the action. The generating four
dimensional vector current J is usually analyzed, for a given observer
frame of reference with time-like vector e0, in the time-like (scalar) part
density ρ = Qρc proportional to the carrier density ρc and the space-like
(vector) part ‘current density’ J, writing F = E+e5B/µ0, ¤⇒ (∂t +∇)
and e0J = ρ− J

(∂t +∇)
(
E + e5

B
µ0

)
=

(ρ− J)
ε0

,

the intensity vectors E and B can be analyzed in curlless and solenoidal
parts,

∇E = ∇ ·E + e5∇×E, ∇B = ∇ ·B + e5∇×B,
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and the basic equations separated for a given observer

∇ ·E = ρ/ε0 (space scalar part)
∂tE = −J/ε0 + e5∇×B/ε0µ0(space vector part)
∂tB = −∇×E (space bivector part)

e5∇ ·B = 0 (space trivector part)

(53)

4 The electron as a general relativity test particle

In general relativity, meant to be a comprehensive theory, the best known
solutions are developed for the so called matter-free space and a test par-
ticle. We use this concept to show that (46) corresponds to a description
of the action distribution which agrees with the conceptual development
of General Relativity.

4.1 The Schwarzschild solution

In our present theory there are two fundamental carrier structures: the
massless fields and the massive electron field with basic relation

E2 = (E0 + ∆E)2
, E2 − E2

0 = (pc)2, (54)

where ∆E is any gauge-free energy contribution and E0 = m0c
2 the

energy, at rest relative to some observer, considered to be the mass of
the carrier.

The concept of test particle in general relativity in the Schwarzschild
solution is compatible with the Newtonian limit for the interaction grav-
itational energy

∆E (r) = −m0
GM

r
, (55)

where M is the total mass of ‘the system’ of radius rs we are exploring
with the test particle and, conceptually, with the START use of the
action square difference, writing E = E0 + ∆E for large (classical limit)
values of r > rs

E2 − E2
0 = E2

0 + 2E0∆E + (∆E)2 − E2
0 = (pc)2 (56)

= 2E0∆E + (∆E)2 → −2m0c
2m0

GM

r
+
(
m0

GM

r

)2

,
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this corresponds to the energy and radial momentum terms in (dA)2 −
(dA′)2 if (dA′)2 = (m0c

2dt)2 , and substituting in (46) using κ0 = 1/m0c
and space spherically symmetric coordinates t, r, θ, φ we obtain

(dS)2 =

(
1− 2

GM

c2r
+
(
GM

c2r

)2
)
c2 (dt)2 (57)

−
(

1 +
2GM
c2r

−
(
GM

c2r

)2
)

(dr)2 − r2
[
(dθ)2 + sin2 θ (dφ)2

]
,

which is the Schwarzschild [Schwarzschild 1916] metric in the limit of
r À GM/c2 (sometimes (57) is called the Eddington form [Eddington
1928], notice (1−x)−1 ∼= (1+x), x¿ 1, this relation is also used below.).

It is customary to write [Snygg 1997] the interval square using in our
case f (r) = 1 + b2 (r) and h (r) = 1− b2(r)

f (r) =

(
1− 2

GM

c2r
+
(
GM

c2r

)2
)

and h (r) =

(
1 +

2GM
c2r

−
(
GM

c2r

)2
)
,

(58)

for c2r À GM we obtain the Schwarzschild relation f ∼= h−1, which can
afterwards be used for all r in matter free space following the Einstein’s
definition which requires the curvature to be identically zero.

The result (57) shows that our approach provides a conceptual un-
derstanding of the role of sources carriers and test particles in general
relativity. It also shows the possibility of extending the analysis to cir-
cumstances more difficult to consider within the traditional approaches.

Once we have obtained the Schwarzschild metric we can now find the
curved hypersurface in START corresponding to the curved
space–time where the test particles are assumed to move. For-
mally we need to define a set of vectors eµ, µ = 0, 1, 2, 3 , gµν =
diag (1,−1,−1,−1), and their reciprocal, in terms of a vierbein using
the Minkowski space reference vectors

{
e(0)
µ = êµ, µ = 0, 1, 2, 3; e(0)

µ e(0)
ν + e(0)

ν e(0)
µ = 2g(0)

µν

}
.

Use the induced metric
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gαβ = diag
[
c2f (r) ,−h (r) ,−r2,−r2 sin2 θ

]
, (59)

From this, it is clear (see [Snygg 1997]) how to construct an orthonor-
mal system of vectors (in the Eddington’s representation)

et = c (f (r))
1
2 ê0, er = (h (r))

1
2 ê1,

eθ = rê2, eφ = r sin θê3. (60)

The extension of this analysis to the space–time regions where the
sources are considered to exist (as an action distribution) will be given
in the next section.

Notice that in (57), because of the use of κ0, the test particle pa-
rameters have cancelled. This is the reason for this approach to be
universal. As a result the solutions for the case of gravitation do not
depend at all in the test particle considered, provided that its defini-
tion is the Einstein definition: a sufficiently small mass to be introduced
into the system without noticeably disturbing it. The action related to
the intrinsic energy–momentum of the test particle is ‘inactive’ in the
analysis. Otherwise we could have introduced in (55), (56) and (57)
other contributions to the action, but this can not be done in a universal
form if they are of electromagnetic type (a factor e/m0 can not be re-
moved). Anyhow, it is suggestive that it can be done, new terms appear
for that test particle, including cross terms like (QM/r2) (e/m0) and
others. Also in (57) there is a quadratic, repulsive, term which can have
physical significance, for distances much smaller than the ones where
general relativity has been successfully tested.

One of the possible symmetries in START is the transformation of
position vectors y in START to a new set {y = xueu; u = 0, 1, 2, 3, 4}

y′ = f(y) =x′ue′u. (61)

which describes the curvature of the space–time part necessary for rep-
resenting physical interactions, at the expense of defining ‘test’ carriers
which are now considered as non-interacting amongst themselves, but
defining the new representation (61) of position vectors and coordinates
in START.
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4.1.1 General relativity in START

From our previous analysis, the structure equivalent to general relativity
[Einstein 1915a, 1915b, 1915c, 1916] in START is the following:

• In the flat space–time–action geometry a distribution of action
is given and analyzed as corresponding to the total matter and
interaction fields (radiation) content. For a given observer at a
given time this will appear as an energy, momentum, and stress
distribution. The usual name for this is the energy–momentum–
stress density tensor.

• Basically one obtains the structure corresponding to general rel-
ativity by the process of transforming this 1 + 3 + 1 geometrical
description into an equivalent 1 + 3 description given by a curved
space–time.

• Even if the projection of the surface in five dimensions as a four-
dimensional space corresponds to the curved space–time of general
relativity, the physical meaning of this curved space–time is given
by defining the trajectories of ‘test’ particles as the geodesics in
this 4-D space. The definition of the test particle is that of a
sufficiently small and sufficiently small energy–momentum physical
entity such that its trajectory can be considered as that generated
by a moving point which will not noticeably change the assumed
energy–momentum–stress distribution.

• General relativity was constructed with gravitation as the basic
interaction; this is very important because gravitation has proved
this far to be universal, that is, any two amounts of energy, within
experimental conditions, attract each other through a gravitational
interaction.

• Other interactions than gravitation could also be included in gen-
eral relativity either as the amount of energy–momentum they rep-
resent or as part of the description of the energy–momentum which
is attributed as belonging to a given ‘test’ particle. See below.

The analysis we have presented here corresponds to changing the
status of general relativity from a physical model to a part of a deductive
theory where a specific form of description has been selected: that of
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not using action as a fifth variable but as a guide for constructing the
curvature of space–time to obtain the characteristic equations of general
relativity.

4.1.2 A charged carrier as a test particle in general relativity

A charged particle at rest which is acted on by gravitational and elec-
tromagnetic interactions will have for the (attributed) total energy (at
distances large enough such that the collection of masses with which the
test carrier interacts are collectively represented by the volume integral
of a mass density M(r)) in the presence of the mass M =

∫
D
M(r)dv,

the following description:

ε = m0c
2 −m0

GM

r
+ e

Q

r
.

Substituting this in (54)–(58) will change the functions f (r) and h (r)
into

f(r) = 1− 2
GM

c2r
+
(
GM

c2r

)2

− e

m0
Q
GM

c4r2
+ 2

eQ

m0c2r
+
(

eQ

m0c2r

)2

,

h(r) = 1 + 2
GM

c2r
−
(
GM

c2r

)2

+
e

m0
Q
GM

c4r2
− 2

eQ

m0c2r
−
(

eQ

m0c2r

)2

.

The analysis of these functions would lead to the following conclusions:

1. Besides the attractive gravitational term there is a (quadratic) re-
pulsive term which will dominate at intermediate distances. Time
coordinates do not become imaginary or discontinuous.

2. The electric part of the interaction depends explicitly in the e/m0

ratio of the test particle, and it can then not be a universal behavior
of a test particle.

Otherwise, when the relations corresponding to general relativity are
derived from START, those entering into the experimental proofs of the
validity of general relativity (considered this far) are not changed and
retain their validation status.
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4.2 The Mathematical Structure of General Relativity from START

Once we have seen that an electron used as a test particle in the START
geometry allows us to obtain the Schwarzschild metric we can now pro-
ceed to a systematic derivation of the structure of general relativity from
START.

The main considerations are the following.

a) General relativity is a geometric theory describing the trajectories
of test particles as the natural trajectories, geodesics, in curved
space–time geometry.

b) The curved space–time is obtained by incorporating, within STA,
equivalent distances from the action part into the ST part. At
the level of the test particle the action that was incorporated into
the initially flat space–time was the additional interaction action,
gravitational in our example, for the test particle. This corresponds
to the amount of action which would be described as belonging to
the particle in classical mechanics when the particle is considered
as being ‘acted’ upon by the gravitational field. The mathematical
description of the fact that the particle is now a non-disturbing
test object is introduced by subtracting from the square of the
total action the square of the action corresponding to the direct
description of the particle. That is, general relativity is a theory
where the geometry describes everything that is to be described,
through the curved space–time, and the test particle is only an
auxiliary in this description.

c) The quadratic form obtained was afterwards analyzed using intrinsic
geometrical techniques to have, in accordance to the basic geomet-
ric postulate of Einstein, a purely geometrical theory. The basic
equations, everywhere in space, are the transfer of the intervals cor-
responding to the relevant action (squared) to the flat quadratic
form of space–time.

d)We can directly consider that the quadratic form defines the met-
ric tensor of the new geometry, and then use the definition of the
curvature from the metric tensor in the generated curved space–
time, to obtain a relation between the curvature and the energy–
momentum–stress tensor. The result is a derivation of the starting
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equations of Einstein, which in his formulation are a basic postu-
late, where the presence of matter induces the curvature of space–
time.

We write the equations related to the considerations above.

4.2.1 The metric in General Relativity

Once we have created the equivalent curved space–time the metric in
GR is given through the use of the line element (here gµν = gGR

µν from
the choice of action allocation to geometry and g0

µν corresponds to flat
space–time)

dS2 = gµνdx
µdxν = g0

µν (1 + ∆gµν) dxµdxν , (62)

which in turn defines local vector frames (up to a gauge transformation)

eGRµ = h (eµ) , such that gµν = eGR
µ · eGR

ν ,

with h (x) a vector-valued function of vectors usually represented
through a vierbein hνµ. In general, from our complex type of structure,

h (v) = v + fµν (x)v · (eµeν) . (63)

In (58) above

h (v) = v + ib (r)v · (e0er) , b2 = κ2
0 (∆a)2

,

with ∆a the action being allocated to be represented as space–time
curvature.

Anyhow there are additional Lorentz boosts and rotations which can
be applied, without changing dS2 to a set of reference functions h(0).
They are generated by the bivector functions Ω (x) to obtain h = Ωh(0).
The set of fields {h(0) (x) , Ω (x)} define the local geometry of the 4-D
space–time ST (curved when action has been described as part of the
carrier space ST). In this space the invariant volume is given by d4x

√−g,
where g = det (gµν).

In terms of these fields the components of the covariant derivative
for multi-vectors M are, using 2 (A×B) ≡ AB −BA

DµM ≡ eµ · ∇M + Ω (eµ)×M, DM ≡ h (eµ)DµM. (64)
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For a spinor ψ

Dψ = h (eµ) (eµ ·¤ψ + 1
2Ω (eµ)ψ), (65)

and then the Ω (eµ) appear as the Fock–Ivanenko gauge fields. We shall
consider two types of gauge fields. The type Ω (eµ) which is a vector-
valued function of a vector and the type

A (x) = (AR + iAI) + ie0e1e2e3 (BR + iBI) , (66)

(complex) vector and (complex) axial vector fields, which can also be
considered as resulting from proper and improper Lorentz transforma-
tions R (the inclusion of action has enlarged the set of isometries to that
corresponding to complex Lorentz transformations), they all will obey

Ω′ (eµ) = R̃Ω (eµ)R− 2R̃eµ · ∇R, (67)

using R̃R = 1 and M → M ′ = R̃MR, as the Lorentz transformation
of the multi-vectors. In our theory R̃ can be R̃ ∈ {K̃} a more general
transformation belonging to the group of complex Lorentz transforma-
tions K̃.

In practice the metric appears as an independent field in START
which is defined according to the Principle of Choice of Acceptable De-
scriptions, then once it is chosen the condition of flat STA is that the
total curvature vanishes. Otherwise (from the integral of the selected
contributions to action) with g ≡ −det (gµν),

A =
∫
a (x)

√−g dx0dx1dx2dx3, (68)

we can derive the effective energy–momentum-stress density tensor, cor-
responding to the selected contributions to action, as

κ0
δA

δgµν (x)
≡ κ0

2
Tµν (x) , (69)

(the factor 1
2 is needed for convention reasons); also, from the Ricci scalar

curvature R which results from the chosen line elements

δR
δgµν (x)

= Rµν − 1
2gµνR, with Rµν − 1

2gµνR+
κ0

2
Tµν = 0. (70)
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to obtain the equivalent to the GR basic equation. Here we should stress
that our formulation is not, neither for the gravitational part nor for the
electromagnetic part, a Kaluza–Klein theory. Nevertheless, a change of
variables in (70) would allow the formal writing of Rab = 0, a, b =
0, 1, 2, 3, 4. We only require a set of coordinates xµ covering the (curved
or not) region of space–time around x, the existence of tangent vectors
eµ = ∂µx allowing the definition of vectors in that space

V = V µeµ → V′ = V ′µe′µ, V ′µ =
(
∂x′µ

∂xν

)
V ν ,

and e′µ = ∂x′µx =
(
∂xν/∂x′

µ)
eν and of its derivatives in terms of the

coefficients of affine connection Γρνµ

∂µeν ≡ Γρνµeρ, (71)

such that

∂µV =
(
∂µV

µ + ΓνρµV
ρ
)
eν ≡ (∇µV ν) eν , (72)

where we define the covariant derivative of the (contravariant) compo-
nent of a vector.

The set of definitions above are usually related to the Riemann cur-
vature tensor, to the Ricci contractions and to the concept of parallel
transport along a curve xµ (τ),

dxρ

dτ
(∇ρV µ) = 0, (73)

using the arbitrary parameters τ , defining the curve along which the
vector V remains unchanged. This is when

dV µ

dτ
= −Γµνρ

(
dxρ

dτ

)
V ν ; or

d2xµ

dτ2
= −Γµνρ

(
dxρ

dτ

)(
dxν

dτ

)
. (74)

To find the curve itself the vector V is considered the tangent vector
V µ → dxµ/dτ to the curve xµ (τ) to obtain from (74) the well known
condition for an extremum trajectory. The metric itself can be con-
sidered to be the symmetric functional g(, ) of the basis vector pairs
gGRµν = g

(
h(e(0)

µ ),h(e(0)
ν )
)
. Our theory is otherwise a purely geometric

theory where the description of space–time surfaces in STA is changed
to that corresponding to that of a particular action density distribution
following our principle of acceptable choice of description.
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5 Rumer (Kaluza–Klein) Theory deduced from START

The Rumer form of the Kaluza–Klein–Einstein–Bergmann [8, 11, 5] the-
ory is deduced from START when besides deriving the metric tensor
from the square of the line element dS, as the symmetric part of dS2,
the antisymmetric, then imaginary, elements are kept and considered in
turn as as real elements of an extended metric tensor in a 5-D geometry.
That is consider again the complex line element

dS = eµdS
µ = dxµ(1 + jκ0itan Θ(X,µ)) = eµ(dxµ + ijκ0p(X,µ)dxµ),

from which we have obtained the real quadratic form (in units of distance
square)

dS2 = gµνdx
µdxν

(
1−κ2

0tan Θ(X,µ)tan Θ(X, ν)
)
, (75)

or, in the diagonal local system of coordinates

dS2 = ds2 − κ2
0 |dK(X)|2 ; (76)

where κ2
0 |dK(X)|2 corresponds to the sum of the squares of action con-

tributions.
Compute again the complex square, keeping now the scalar and the

bivector parts

(dS)2 =
1

2
[{eµdxµ(1 + jκ0i tanΘ(X,µ))} {eνdxν(1− jκ0itanΘ(X, ν))}+(hc)]

+
1

2
[{eµdxµ(1 + jκ0i tanΘ(X,µ))} {eνdxν(1− jκ0itanΘ(X, ν))}− (hc)]

= gµνdx
µdxν

(
1−κ2

0tanΘ(X,µ)tanΘ(X, ν)
)

+ eµνdx
µdxνijκ0(p(µ)− p(ν))

= dS2 + eµνdx
µdxνijκ0(p(X,µ)− p(X, ν)),

where the antisymmetric product of two vectors, the bivectors eµν are
also the generators of spin angular momentum.

From the principles of General Relativity of considering the changes
in energy-momentum for the test particle, consider that in the case of
an electromagnetic interaction the test particle of charge e receives and
additional energy momentum p(X,µ) = eAµ (X)

ijκ0p(X,µ) = ij
e

m0c
Aµ (X) ,

using the action equivalent distance κ0 = 1/m0c. Here as in the case of
general relativity j is a unit vector with property j2 = −1. The relation
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of the electromagnetic field with the intrinsic spin of the electron as the
test particle is explicitly found here and is recovered in the analysis of
the Dirac equation both in its multivector formulation and its twistor
formulation. The resulting scheme, where a spherically symmetric ap-
proximation to gravitation is included in the terms f(r) and h(r) as
above, can be presented as a 5×5 matrix

gAB =


f(r) ij eA0

m0c

−h(r) ij eA1
m0c

−1 ij eA2
m0c

−1ij eA3
m0c

−ij eA0
m0c
−ij eA1

m0c
−ij eA2

m0c
−ij eA3

m0c
0

 ,

which is the usual 5-D presentation of the Kaluza–Klein idea, in the
case of the electromagnetic field, where the fifth dimension is the addi-
tional action, for the test particle, expressed in the form of an equivalent
distance. When the gAB matrix is symmetrized as in general relativity
the additional antisymmetric terms are all null and then they are not
relevant for that type of study, only the diagonal term which includes
anyhow the possibility of electromagnetic contributions.

Besides the many papers which have been written about the Kaluza–
Klein proposition and their extension to the idea of hyper-space with one
additional dimension (at least) for each additional interaction included,
the direct inclusion of action as a fifth dimension was proposed as early as
the 1949–1956 by the Russian physicist Y.B. Rumer[?] under the name
of ‘Action as a spatial coordinate. I-X’.

In the work of Rumer the main foreseen application is to the case
of optics in what he called 5-optics. We should remember that in this
case the action dA = 0 and then the fifth coordinate turns out to be
identically null. Then there is no need for mathematical procedures to
make this coordinate disappear which is the problem of higher dimen-
sional procedures. Also this author proposes that a periodic boundary
condition is applied to this coordinate in the sense that

x5(A) = x5(A+ h),

the distance equivalent to action is a circular coordinate with period
equal to the Planck’s constant h. In our study the physical elementary
trajectories can all be taken as densities of null trajectories, as defined
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above, and then this condition is automatically obeyed. In START there
is no need to eliminate the fifth-dimension because it is a null dimension,
by definition.

6 Hypothesis and Principles in START

The set of hypothesis and principles which are explicitly included in our
theory, we have called START, as presented in this paper, are:

Physics is the science which describes the basic phenomena of Nature
within the procedures of the Scientific Method.

We consider that the mathematization of the anthropocentric primary
concepts of space, time and the existence of the physical objects
(action carriers), is a suitable point of departure for creating intel-
lectual structures which describe Nature.

We introduce a set of principles: Relativity, Existence, Quantization
and Choice as the operational procedure, and a set of 3 mathemat-
ical postulates to give this principles a formal, useful, structure.

We derive, in this paper some of, the fundamental structures of Physics:
General Relativity, Density Functional Theory, Newtonian Gravi-
tation and the Maxwell formulation of Electromagnetism. A fun-
damental common concept is the definition of energy (action) car-
riers. It is clear that most of the here presented relations are known
relations as far as we are deriving the structures and theories from
START.

6.1 Lagrangians and symmetries in START

We are analyzing the consequences of assuming an action density distri-
bution to describe the physical world. A closely related function for the
purpose of deriving the mathematical structures is the Lagrangian of the
system obtained by adding to the total action A =

∑
a

∫
aa(X)dx3cdt

obtained from a sum of action density contributions, a series of vanishing
functions multiplied by the set of factors known as Lagrange multipliers
L. They have the form of a choice of description. For example, to state
that we consider a set of na of non-interacting carriers of type a and that
the particles densities are factorized

La = λa

[∫
ψ+
a ψadx

3 − na
]
. (77)
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The term
∑
a aa(X) is now called a contribution to the ‘Lagrangian

density’. Here
∫
ψ+
a ψadx

3 = na and the term in the square parenthesis
vanishes, λa is the Lagrange multiplier which, for consistency, is the av-
erage energy per carrier of type a, and when (dS)2 is being optimized we
perform the variation (for each carrier La can contain as many conditions
as needed)

δ

{
A+

∑
a

∫
cdtLa

}
= 0. (78)

In START, because of its equivalent complex structure (28)–(29) and
its quadratic forms (47)–(48), we have, besides the geometrical space–
time Poincaré group P of transformations leaving the finite difference
(dx0)2 − (dx)2 invariant, an additional set of transformations related
to the complex structure, which can also be considered those of a more
general quadratic form (dx0)2−(dx)2−(dx4)2. The additional operations
are: a translation in the e4 direction, three rotations in the eie4, i =
1, 2, 3 planes and one ‘boost’ in the e0e4 plane.
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