
Annales de la Fondation Louis de Broglie, Volume 27 no 3, 2002 411

Curvature and torsion of implicit hypersurfaces and

the origin of charge-currents

R. M. Kiehn

Emeritus, Physics Dept., Univ. Houston
Homepage:http://www.cartan.pair.com

E-mail: rkiehn2352@aol.com

ABSTRACT. A formal correspondence is established between the cur-
vature theory of generalized implicit hypersurfaces, the classical theory
of electromagnetism as expressed in terms of exterior differential sys-
tems, and thermodynamics. A covariant normal field to a generalized
implicit hypersurface, when made homogeneous of degree zero, can be
used to produce a Jacobian matrix whose similarity invariants are re-
lated to the curvatures of the hypersurface. The Jacobian adjoint
matrix can be used to produce an N-1 form, or current, which is closed
globally. When the closed vector density is assigned the role of an in-
trinsic charge current density, and the components of the normal field
are assigned the roles of the electromagnetic potentials, the theory is
formally equivalent to an exterior differential system that generates the
PDE’s of both the Maxwell Faraday equations and the Maxwell Am-
pere equations. The interaction energy density between the potentials
and the induced closed charge current density is exactly the similarity
curvature invariant of highest degree (N-1) for the implicit surface.

1 Introduction

The origin of charge has long been a mystery to physical theory, perhaps
even more elusive than the concept of inertial mass. A major objec-
tive of this article is to examine the conjecture that the charge-current
density of electromagnetism may have part, if not all, of its origins in
the differential geometry and topology of curvature and torsion. The
concept is in a sense similar to the idea that mass density and gravity
have their origins in the concept of metric curvature. The curvatures of
interest herein are not, however, those generated by a symmetric metric,
but instead are those curvatures related to the similarity invariants of
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a generalized implicit hypersurface. The generalized implicit hypersur-
faces considered herein may not admit a global foliation as their normal
fields need not satisfy the Frobenius integrability conditions. Hence
such generalized hypersurfaces can support topological torsion as well
as curvature. Although other (for example, hydrodynamic) interpre-
tations of the results to be presented are possible, the electromagnetic
nomenclature will be used for purposes of more rapid comprehension.

2 IMPLICIT SURFACE THEORY

2.1 The implicit surface generated by a 1-form if Action, A

An arbitrary 1-form of Action, A0, whose coefficient functions may be
considered as a set of electromagnetic potentials, can also play the role
of the normal direction field to a generalized implicit hypersurface. The
closure of the exterior differential system, F0 − dA0 = 0, always gener-
ates a system of PDE’s which contain the Maxwell-Faraday equations,
thereby establishing the first half of Maxwell theory [1]. The 1-form
of Action can be rescaled by use of a Holder norm, λ, such that the
resulting 1-form A = A0/λ, is homogeneous of degree zero in its coeffi-
cient functions. The curvature features of the implicit hypersurface are
completely specified in terms of the similarity invariants of the Jacobian
matrix, [Jmn] = [∂Am/∂xn] .

It is important to realize that the method to be discussed involves
curvatures, torsion and energy densities, but does not depend explicitly
upon a metric, gauge constraints, or the Einstein field equations.

2.2 The induced charge-current density Js

The remaining half of electromagnetic theory is the Maxwell-Ampere
equations, which depend upon the existence of a globally closed charge-
current density. Although the Jacobian matrix described above is glob-
ally singular, det [J] = 0, it is always possible to construct algebraically
the matrix of cofactors transposed, or [J]adjoint . If the components of
the 1-form, A, do not form a null eigen vector, it is remarkable that
multiplication of these components by [J]adjoint yields an N-1 form den-
sity, or current, Js, which is globally closed, and therefor can be utilized
to play the role of a charge-current density (see Appendix). The global
closure implies that there exists an N-2 form Gs such that Js−dGs = 0.
The PDE’s associated with this exterior differential system are known to
contain the Maxwell-Ampere equations [1]. Note that the two exterior
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differential systems establish topological constraints on the variety. For
example, the domain of support for the 2-form F is not compact without
boundary, while the domain of support for Gs can be compact without
boundary. The N-2 form, Gs , (like the 1-form of Action) is not uniquely
determined by the exterior differential system, as it may contain closed,
or closed and exact, components that do not contribute to the charge
current density, Js = dGs.

These two Maxwell exterior differential systems, F − dA = 0, and
Js − dGs = 0 can be used to deduce two additional differential systems
that augment, but do not change, the PDE’s of the classical Maxwell the-
ory. These augmentations depend upon the existence of two 3-forms,
previously defined as Topological Torsion, AˆF , and Topological Spin,
AˆGs [2]. Constraints of equilibrium and uniqueness (which are not in-
voked herein) will cause these 3-forms to be null. Exterior differentiation
of AˆGs leads to the equation:

d(AˆGs) = FˆGs −AˆJs, (1)

and demonstrates that twice the difference between the magnetic and
electric energy densities of the field, FˆGs, is cohomologous with the
interaction energy density, AˆJs. A major feature of this article is to
present the idea that the interaction energy density, AˆJs, is proportional
to the hypersurface curvature similarity invariant of degree (N-1). This
similarity invariant is defined as the Adjoint curvature and is equal to
the trace of the Jacobian Adjoint matrix, [J]adjoint . Note that closed
but not exact gauge contributions to A and to G can influence the value
of the competing terms, FˆGs and AˆJs.

2.3 The interaction energy density, AˆJs, and Curvature

The interaction energy density, AˆJs, satisfies the cohomological con-
straint 1 and can be evaluated, given A and Gs. The Lagrangian field
energy density term, FˆG, in electromagnetic format is equal to twice
the difference of the magnetic and electric energy density of the electro-
magnetic field. The term has different signs depending on whether the
system is dominated by a plasma or electrostatic state. In regions where
AˆG is closed (has zero divergence), the closed 3 dimensional integrals
of AˆG have values whose ratios are rational and are therefore countable
(quantized in units of h).

It can be shown that this interaction density is precisely equal to the
Adjoint curvature of the hypersurface whose normal direction field is
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generated by the 1-form, A. On a variety of four dimensions, this result
implies that interaction energy, AˆJs is a cubic function of the hyper-
surface curvatures, while the Gaussian sectional curvature (and therefor
mass energy density) is quadratic in the surface curvatures. When the
Jacobian matrix is of maximal rank N-2, the interaction energy vanishes.
Note that if the interaction energy density is zero, the charge current den-
sity need not be zero. A special situation exists when Js is proportional
to the Topological Torsion 3 form, AˆdA, for then the interaction energy
density vanishes due to orthogonality of its two factors. An example of
this special case is given below, where the Hopf map is used to formulate
an implicit surface 1-form. Maple programs are available for comput-
ing the features of generalized implicit hypersurfaces, demonstrating the
claim that an intrinsic charge-current exists, and proving that the intrin-
sic charge-current interaction with the potentials is equal to the Adjoint
curvature of the implicit hypersurface [3].

2.4 Topological evolution, internal energy density, dissipation

Given a 1-form of Action A and a closed charge current density Js, it is
possible to use Cartan’s magic formula of topological evolution to demon-
strate a correspondence between the implicit surface theory and the first
law of thermodynamics. Cartan’s Magic formula invokes the Lie deriva-
tive, with respect to a direction field, acting on exterior differential forms
[4] as the fundamental generator of equations of evolution. The method
does not depend upon metric, nor connection, and has a direct relation-
ship to the Calculus of Variations. The name ”Lie derivative” is said
to be due to Slebodzinski, [5], but appears in archaic format in E. Car-
tan’s book, ”Lecons sur les Invariant Integraux”. The name ”Cartan’s
Magic formula” is due to Marsden [6]. All of these authors overlooked
the concept that Cartan’s Magic formula is the cohomological expression
linking topological evolution and the first law of thermodynamics in a
non-statistical manner [7].

For evolutionary processes in the direction of the charge current
density, Cartan’s magic formula becomes

L(Js)A = i(Js)dA+ d(i(Js)A) = W + dU = Q (2)

Using electromagnetic notation, on a variety {x, y, z, t} the (virtual)
work 1-form becomes
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W = i(Js)dA = (ρE + J×B)kdxk + (J ·E)dt (3)

which is recognized as the product of the Lorentz force density times the
differential displacement plus the dissipative power density times the
increment dt.

In certain cases the induced charge current density, Js will have
a component proportional to the Topological Torsion field, AˆdA =
i(T )dxˆdyˆdzˆdt. An example of this case is presented below. If Js
is proportional to the Topological Torsion current, T, it follows that the
evolution of the implicit surface is given by the expression,

L(Js)A = L(T )A = i(T )dA+ 0 = (Γ) A = (E ·B)A = Q. (4)

It follows that the heat 3 form, QˆdQ, and the Topological Torsion 3
form, AˆF , are proportional:

QˆdQ = (E ·B)2
AˆdA. (5)

From classical thermodynamics, when a process produces a heat 1-form
Q which does not admit an integrating factor, then such a process is
thermodynamically irreversible. From Frobenius theory, an integrating
factor does not exist if QˆdQ 6= 0. If the implicit surface 1-form is of
Pfaff dimension 4, then AˆdA 6= 0, and the topological parity 4 form,
dAˆdA = 2(E·B)dxˆdyˆdzˆdt 6= 0. So if the induced charge-current
density has a component in the direction of the Topological Torsion field,
then the associated process is thermodynamically irreversible. Such
irreversible processes are artifacts of 4 dimensions.

Similarly, evaluation of the internal energy density for a process
defined by the dynamics of the charge-current density becomes U =
(i(Js)A) = A · Js − ρφ, which is identical to the coefficient of the in-
teraction energy density. The dissipative irreversible component of the
evolutionary process, which is proportional to the Topological Torsion
current, does not contribute to the internal energy, as i(T )A = 0. Hence
a correspondence has been established between the curvature theory of
implicit surfaces, the charge-current density interaction, and the internal
energy of a thermodynamic system. In the reversible situations, where
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(E·B) = 0, the implicit hypersurface method thereby seems to offer an
alternative, non-quantum mechanical, understanding of what otherwise
would be called superconducting currents. It is possible to have charge
currents without dissipation. In one case, (the Meisner effect) the B
field is excluded from the superconducting region, and in another case
(the Hall effect) a large B field is present along with a non-dissipative
but transverse current.

2.5 Four Dimensional Hypersurfaces

In this example, the Hopf map is used to deduce a 1-form of Pfaff
dimension 4:

A0 = b(ydx− xdy) + a(tdz − zdt). (6)

This 1-form of Potentials depends on the coefficients a and b which are
presumed to take on values ±1. There are two cases corresponding
to left and right handed ”polarizations”: a = b or a = −b. (There
actually are 6 cases to consider, by cyclically permuting the variables,
and these can be combined to represent spinor solutions.[8]) The details
of the calculation are presented elsewhere [3], but the results of the
similarity curvature invariants are summarized below. Both the Mean
curvature and the Adjoint cubinc (interaction) curvature of the implicit
Hopf hypersurface in 4D vanish, for any choice of a or b. The Gauss
curvature is non-zero, positive, real and is equal to the square of the
radius of a 4D euclidean sphere.

Mean Curvature (linear sum of curvatures) = 0, (7)
Gauss Curvature (quadratic in curvatures) > 0 (8)

AˆJs Adjoint Curvature (cubic in curvatures) = 0 (9)

The computations indicate that the Hopf implicit surface has three
curvature eigen values, {0,+iω,−iω). Hence the Hopf surface is a 3D
imaginary minimal hyper surface in 4D, has two non-zero imaginary cur-
vatures, and is of positive Gauss curvature! Real minimal surfaces in 3D
have negative Gauss curvature. Strangely enough, the charge-current
density is not zero, but is proportional to the non-zero topological Tor-
sion vector that generates the 3 form AˆF. The Topological Torsion
vector has a direction field proportional to the radius of a 4D sphere,
representing an expansion (or contraction) of space-time. The Topolog-
ical Parity 4 form is not zero, and its coefficient (4ba) depends on the
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sign of the coefficients a and b. In other words the ’handedness’ of the
different components of the 1-form of Action determines the orientation
of the normal field with respect to the implicit surface. From section
1.4 it is known that a process described by a vector proportional to the
Topological Torsion vector, in a domain where the topological parity
(4ba) is non-zero, is thermodynamically irreversible.

2.6 Possible applications to gravitational collapse

Every Pfaffian 1-form whose coefficients are functionally homogeneous
of degree zero can be used to describe the normal field to an implicit
surface. The equation 1 can be put into correspondence with the prin-
ciple of equivalence, where FˆG plays the role of the gravitational field
and where AˆJ plays the role of inertial energy density. When the
Topological Spin is closed (has zero divergence) then the gravitational
energy density is equivalent to the inertial energy density. The cur-
vature similarity invariants can be computed from the Jacobian matrix
of the homogeneous 1 form. For those p-branes which are 3 dimen-
sional implicit surfaces in 4 dimensions, the interaction (inertial) energy
density of is exactly the cubic curvature similarity invariant of the im-
plicit hypersurface. As the curvature radii get smaller and smaller, the
electromagnetic interaction energy - being proportional to the cube of
the curvatures - could conceivably prevent, if not impede, gravitational
collapse. It seems intuitive that a collapsing mass system generates high
temperatures, which intuitively would ionize the matter to produce an
electromagnetic plasma. Certainly such terms involving electromagnetic
interaction should be included in the dynamics of collapsing mass sys-
tems. Note that this effect, like the Bohm-Aharanov effect, does not
depend explicitly upon the field strengths, E and B. Such considera-
tions appear to have been neglected in metric based curvature theories
that claim to generate black holes.

3 Summary

The usual dogma of electromagnetic teaching is that given a charge cur-
rent density, one tries to deduce E,B,D, and H fields by some system
of constraints and constitutive relations. In practice, this route to so-
lutions involves the creation of a set of potentials, A, φ. The approach
employed in this article starts with the potentials and deduces the charge
currents, by utilizing a new result of implicit surface theory to construct
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a global divergence free vector field from any given covariant vector field.
It is most remarkable that the globally closed current so deduced does
NOT require that F = dA 6= 0. From the Electromagnetic point of
view such a result would imply the extraordinary existence of D and
H fields without E and B fields, and no electromagnetic forces of the
Lorentz type. Even in such cases there still exist interaction energies
between the potentials and the charge current densities, which are cubic,
not quadratic, in the curvatures of the induced hypersurface.

For many years, the physical properties of the potentials were ignored
because the potentials could admit gauge contributions that did not ef-
fect the E and B fields. However, quantum mechanics, and the Bohm
Aharonov effect have changed all that, such there now are admissions
that there are regions that contain potentials but the field intensities
are excluded. These regions are often superconducting regions, and ac-
cording to the arguments presented herein are regions where interaction
energies are cubic in curvatures of the implicit hypersurface.

4 Appendix: Generalized Implicit hypersurfaces.

The classic implicit surface is generated by assigning a constant value to
a function, φ(x, y, z..). It is important to recall that an implicit surface,
in contrast to a parametric surface, can consist of more than one discon-
nected components. The gradient field to the given function represents
a normal field to the surface, and tangent vectors which reside on the
surface are orthogonal to the normal field at all points. As the normal
field for the classic implicit surface is a gradient field, its associated 1-
form is exact. If this normal gradient field is rescaled by a factor such
that it is homogeneous of degree zero in its functional arguments, then
the Jacobian matrix of the rescaled normal field can be used to generate
the curvatures of the implicit surface.

This procedure can be extended to the study of generalized implicit
surfaces whose normal field is not representable by an exact 1-form. The
1-form representing the normal field can have arbitrary Pfaff dimension.
If the Pfaff dimension (class) of the 1-form is greater than 2, then the
implicit surface can support topological torsion, AˆdA 6= 0. It is nec-
essary that the Pfaff dimension be greater than 2 if the implicit surface
admits an envelope.
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4.1 The Holder norm and similarity curvature invariants.

After division by a suitable function of the coefficient potentials, λ, an
original 1-form of Action, A0 = (U(x, y, z, ...)dx + V (x, y, z, ...)dy +
W (x, y, z, ...)dz...),can be made homogeneous of degree zero in terms
of those coefficient functions that define the potentials. It is to be em-
phasized that the homogeneity condition is not on the arguments of the
coefficients, but on the coefficient functions themselves. The scaling
function of choice, λ, is a Holder norm and is defined in terms of the co-
variant coefficients of the 1-form, λ = (aUp + bV p + cW p + ...)n/p. The
index n will be defined as the homogeneity index; the index p will be
described herein as the isotropic index, and the constants (a, b, c...) are
constant scale factors whose signs determine the signature. By choosing
the index n to be unity, n = 1, the 1-form, A, defined as

A = A0/λ = (Udx+ V dy +Wdz...)/λ = Akdx
k (10)

becomes homogeneous of degree zero in its coefficients. That is, if ev-
ery coefficient function is increased by a factor β then the coefficient
functions Ak does not change. This 1-form, A0/λ, which is homo-
geneous of degree zero in its coefficients, is used to define the normal
field to an implicit hypersurface in the variety. The geometrical prop-
erties of this hypersurface can be expressed classically in terms of the
similarity invariants of the associated singular Jacobian dyadic (or ma-
trix), [Jmn] =

[
∂Am(xk)/∂xn

]
. Classically these similarity invariants

are ”symmetric” functions of the surface curvatures. Examples may be
found at [3].

The fundamental conjecture of extended implicit surfaces utilized
herein has two parts: (1) The determinant of the Jacobian matrix
[J], defined above as a vector valued set of homogeneous gradient func-
tions, has value zero for n=1, any isotropic index p, and any signature
(a,b,c....). (2) The components of a Current |Js〉 constructed from the
matrix product |Js〉 = [J]adjoint · |A〉 has zero divergence globally. That
is, the n-1 form i(Js)dxˆdyˆdz..., composed from the components of Js,
is closed in an exterior derivative sense:

dJs = d(i(Js)dxˆdyˆdz...) = 0. (11)



420 R. M. Kiehn

The conjecture has been proved abstractly to dimension N=8, but is
presumed to work for any N.

The curvature similarity invariants of the Jacobian matrix [J] can
be computed algebraically by forming the Cayley-Hamilton character-
istic polynomial. When the Gauss subset of the Holder norm is used
(p = 2, n = a = b = c... = 1), then the trace of the adjoint matrix is
exactly equal to the coefficient of the interaction energy density, AˆJs.
For implicit surfaces in 4 dimensional space, which is all that is needed in
this article, this similarity invariant is cubic in the curvatures of the hy-
persurface. For explicit constructive proof of the fundamental theorem
in 4 dimensions using Maple, see [9].
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