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ABSTRACT. We analyze the data on the comparison of clock rates
between a flying clock and a clock at ground, carried out by Alley and
coworkers at the end of ’70’s .The fit to such data is in favour of an
energy-dependent metric for gravitation. We discuss also the results of
a recently proposed electromagnetic test of breakdown of local Lorentz
invariance - based on the detection of a voltage induced by a stationary
magnetic field - and show that the obtained positive evidence for such
an effect seems to support the derived form of the energy-dependent
gravitational metric.

1 Introduction

The geometrical structure of the physical world - both at a large and
a small scale -has been debated since a long. After Einstein, the gen-
erally accepted view considers the arena of physical phenomena as a
four-dimensional space-time, endowed with a global, curved, Riemannian
structure and a local, flat, Minkowskian geometry.

However, a recent analysis of some experimental data concerning
physical phenomena ruled by different fundamental interactions seems
to provide evidence for a local departure from Minkowski metric(1−6):
among them, the lifetime of the (weakly decaying) K0

s meson(7), the
Bose-Einstein correlation in (strong) pion production(8) and the super-
luminal propagation of electromagnetic waves in waveguides(9). These
phenomena seemingly show a (local) breakdown of Lorentz invariance,
together with a plausible inadequacy of the Minkowski metric; on the
other hand, they can be interpreted in terms of a deformed Minkowski
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space-time, with metric coefficients depending on the energy of the pro-
cess considered(1−6).

All the above facts suggested to us a (four-dimensional) generaliza-
tion of the (local) space-time structure based on an energy-dependent
”deformation” of the usual Minkowski geometry, whereby the corre-
sponding deformed metrics ensuing from the fit to the experimental data
seem to provide an effective dynamical description of the relevant interac-
tions (at the energy scale and in the energy range considered). Moreover,
it was also shown(10) that the four-dimensional energy-dependent space-
time is just a manifestation of a larger, five-dimensional space in which
energy plays the role of a fifth dimension. In fact, all the phenomenolog-
ical metrics discussed in refs. [1-6] can be obtained as solutions of the
Einstein equations in such a five-dimensional space-time.

An analogous energy-dependent metric seems to hold for the grav-
itational field (at least locally, i.e. in a neighborhood of Earth) when
analyzing some classical experimental data concerning the slowing down
of clocks(11). We have given a preliminary form of such a metric in paper
[6]. However, our derivation was based on a theoretically assumed anal-
ogy of the gravitational energy-dependent metric with the strong one;
moreover, the experimental data were only used as a consistency check.

In the present paper, we want instead to derive the energy-dependent
metric for gravitation by fitting them. Moreover, we will put in evi-
dence some interesting connections between such a metric and the elec-
tromagnetic one, on account of a recent experimental test apparently
providing evidence for an electromagnetic breakdown of local Lorentz
invariance(12,13).

The paper is organized as follows. In sect. 2 we review the formalism
of the deformed Minkowski space, and the main phenomenological results
of interest to us. In sect. 3 we fit the data of the Alley experiment on the
comparison of clock rates and derive the form of the energy-dependent
metric for gravitation. Sect. 4 describes the proposed test of the local
Lorentz invariance, based on the detection of a voltage induced by the
stationary magnetic field of a coil, and the preliminary positive evidence
for such an effect provided by a first experimental run. In sect. 5 we put
forward a possible connection between the results of the two previous
sections, and discuss its physical implications.
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2 Deformed Minkowski space and metric description of inter-
actions

Let us shortly review the main ideas and results concerning the (four-
dimensional) ”deformed” Minkowski space-time.

The four-dimensional ”deformed” metric scheme introduced in [1-6]
is based on the assumption that space-time, in a preferred frame which
is fixed by the scale of energy E , is endowed with a metric of the form

ds2 = b20(E)c2dt2 − b21(E)dx2 − b22(E)dy2 − b23(E)dz2 = ηµν(E)dxµdxν ;
ηµν(E) = diag

(
b20(E),−b21(E),−b22(E),−b23(E)

)
,

(1)

with xµ = (x0, x1, x2, x3) = (ct, x, y, z), c being the usual speed of light in
vacuum. We named ”Deformed Special Relativity” (DSR) the relativity
theory built up on metric (1)(6).

Although uncommon, the use of an energy-dependent space-time
metric is not new. It can be traced back to Einstein himself, just in
connection with the problem of clock behavior in a gravitational field.
In fact, in order to account for the modified clock rate due to gravity,
Einstein was the first to generalize the usual special-relativistic interval
by introducing a ”time curvature” as follows(11):

ds2 =
(

1 +
2φ
c2

)
c2dt2 − dx2 − dy2 − dz2, (2)

where φ is the Newtonian gravitational potential. This expression of the
gravitational metric is now known to be valid in the Newtonian (weak
field) approximation.

The metric (1) is supposed to hold locally, i.e. in the space-time
region where the process occurs. It is supposed moreover to play a
dynamical role, and to provide a geometric description of the interac-
tion, in the sense that each interaction produces its own metric, through
different specializations of the parameters bµ(E). We notice explicitly
that the space-time described by (1) is flat (it has zero four-dimensional
curvature), so that the geometrical description of the fundamental inter-
actions based on it differs from the general relativistic one (whence the
name ”deformation” used to characterize such a situation). Although for
each interaction the corresponding metric reduces to the Minkowskian
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one for a suitable value of the energy E0 (which is characteristic of the
interaction considered), the energy of the process is fixed and cannot
be changed at will. Thus, in spite of the fact that formally it would be
possible to recover Minkowski space by a suitable change of coordinates
(e.g. by a rescaling), this would amount, in such a framework, to be a
mere mathematical operation devoid of any physical meaning. Actually,
it can be shown that the physics of the interaction lies in the curvature of
a five-dimensional space-time, with energy as fifth dimension, in which
the four-dimensional, deformed Minkowski space is embedded(10). Let
us stress that this result is in agreement with the approach by Jackiw(14)

to the breakdown of Lorentz invariance, based on the introduction of an
additional field in the usual electromagnetic Lagrangian. Indeed, adding
new fields amounts, on many respects, to adding new dimensions to
space-time.

Among the kinematical implications of metric (1), let us mention the
existence, inside the deformed Minkowski space, of an upper limit of
propagation of signals, i.e. a maximal causal speed, given by

uk =
b0
bk
c (3)

which is characteristic of a given interaction (and/or physical process),
a priori different for different spatial directions, and different, in gen-
eral, from the light speed in vacuum(5). It can be regarded as the speed
of propagation of the interaction considered (i.e. the speed of the cor-
responding quanta which mediate it). Let us notice that the possible
theoretical existence of upper speeds different from the light one traces
back to the early 70’s (15), and is present in other generalizations of Spe-
cial Relativity1 and in recently discussed models of Lorentz-noninvariant
effects (the ”maximum attainable speed” of Coleman and Glashow(16)).

Moreover, the following formula for time dilation holds in DSR:

dτ =
√
η00dt = b0(E)dt, (4)

where τ denotes the proper time.
As far as phenomenology is concerned, it is important to recall that

a local breakdown of Lorentz invariance may be envisaged for all the
four fundamental interactions (electromagnetic, weak, strong and grav-
itational) whereby one gets evidence for a departure of the space-time

1A main account can be found in ref.[6].
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metric from the Minkowskian one (in the energy range examined). The
explicit functional form of the metric (1) for the first three interactions
can be found in refs. [1-6]. To our present aims, we recall the following
basic features of these energy-dependent phenomenological metrics:

1) Both the electromagnetic and the weak metric show the same
functional behavior, namely(4−6)

η(E) = diag
(
1,−b2(E),−b2(E),−b2(E)

)
; (5)

b2(E) =
{

(E/E0)1/3, 0 ≤ E < E0

1, E0 ≤ E
(6)

with the only difference between them being the threshold energy
E0 , the energy value at which the metric parameters are constant,
i.e. the metric becomes Minkowskian (ηµν(E ≥ E0) ≡ gµν =
diag(1,−1,−1,−1)); the fits to the experimental data yield

E0el = 4.5± 0.2µeV ;
E0w = 80.4± 0.2GeV ; (7)

Notice that for either interaction the metric is isochronous, spatially
isotropic and ”sub-Minkowskian”, i.e. it approaches the Minkowskian
limit from below (for E < E0). Both metrics are therefore Minkowskian
for E > E0w ' 80GeV , and then our formalism is fully consistent with
electroweak unification, which occurs at an energy scale ∼ 100GeV .

2) For strong interactions, the metric reads(2,6):

η(E) = diag
(
b20(E),−b21(E),−b22(E),−b23(E)

)
; (8)

b20(E) = b23(E) =
{

1, 0 ≤ E ≤ E0s

(E/E0s)2, E0s < E
. (9)

with

E0s = 367.5± 0.4GeV . (10)

Let us stress that, in this case, contrarily to the electromagnetic and the
weak ones, a deformation of the time coordinate occurs (whence the lack
of isochrony); moreover, the three-space is anisotropic , with two spatial
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parameters constant (but different in value) and the third one variable
with energy in an ”over-Minkowskian” way(2,6) (namely, it approaches
the Minkowskian limit from above (E0s < E)).

We want also to stress that a still open problem, from a theoretical
point of view, is represented by the description of processes that are ruled
by more interactions at the same time. Of course, one has first of all
to check explicitly if the energy Ep of the process considered lies in the
Minkowskian region for some of the interactions involved (i.e Ep > E0i,
i = el, w , or Ep < E0i , i = s). There is obviously no difficulty if only
one of the interactions involved exhibits a non-Minkowskian behaviour
at the process energy. Otherwise, it is expected that a superposition
of the metrics describes the total effect of the involved deformation of
space-time. We will deal with this topic on a formal basis in our future
work.

3 Energy-dependent metric for gravitation

3.1 Analysis of the experimental data on clock rates

Let us derive the form of the gravitational metric by fitting the experi-
mental data on clock rates (a more detailed discussion will be given else-
where) obtained by Alley(11) comparing (by short pulses of laser light)
the rate of cesium beam atomic clocks, raised to a higher gravitational
potential by an aircraft, with the rate of similar clocks on the ground.
Alley and co-workers verified to about 1.5% the validity of the time-
dilation formula derived from the metric (2) for a moving clock, i.e.

∆τ = ∆t

√
1 +

2φ
c2
− v2

c2
, (11)

where v is the clock speed. They, therefore, utilized the data for a line
measurement. On the contrary, we will use them for a spectrum analysis,
due to the fact that we are interested in deriving the expression of the
time metric parameter b0 as a function of the gravitational energy E .
The experimental data can be found in ref.[17].

The difference in elapsed proper time between the clock on the air-
craft and the clock on the ground is

∆T =
√
η00∆τ −∆τ = ∆τ(

√
η00 − 1) (12)

or, on account of eq.(4):

∆T = ∆τ(b0 − 1). (13)
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We take, for the test time parameter, the ansatz

b0(E) =
[
1 +

(
E

E0

)n]
(14)

on the basis of an assumed analogy between the strong and the gravita-
tional metric(6); the factor 1 follows from the requirement ∆T = 0 for
E = 0 . Therefore, eq. (13) becomes

∆T
∆τ

=
(
E

E0

)n
(15)

Moreover, we assume

E ≡ E(q) (16)

where q is the aircraft quote over Earth surface in Alley’s experiment.
Since it must be E = 0 for q = 0, we can put

E(q) ∝ qk. (17)

The most natural hypothesis is postulating for the energy the form

E = ε
( g
c2

)
q (18)

where g is the gravity acceleration (for q in feet and ε in eV,
g

c2
=

3.324 × 10−17(feet)−1) and ε is an energy characteristic of the system
considered. This agrees with the standard form of the energy of a body
of mass m at height q in the Earth gravitational field , E = mgq, if we
identify ε with the rest energy of the body, ε = mc2.

The most natural choice for ε (which, in our case, represents a
characteristic energy of the time measuring device) is the energy gap
hν of the Cs133 hyperfine transition (h = 4.136 × 10−15eV · sec ;
ν = 9.193 × 109 sec−1), because it provides the time standard (which
triggers the time-interval measurements, amplified by the atomic clock
device). So, eq.(18) becomes

E =
hν

c2
gq (19)
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Thus, eq. (15) takes the form

∆Tgrav
∆τ

=
[
hν0

( g
c2

)( 1
E0

)
q

]n
(20)

where ∆τ = 1 day= 8.640 × 1013ns , and the suffix ”grav” means that
the time dilation is due only to gravitational effects.

Actually, the experimental data on ∆T do contain a term of kinetic
origin ∆Tkin , which must be subtracted out according to the formula
(see fig. 47 of first ref. [11]):

∆Tgrav = ∆T + ∆Tkin (21)

with

∆Tkin =
(v0

c

)2 ∆τ
2

(22)

With this proviso, we can rewrite eq.(24) as

∆Tgrav
∆τ

= Anqn (23)

with

A = hν0

( g
c2

)( 1
E0

)
. (24)

Putting y =
∆Tgrav

∆τ
, x = q , we get therefore the fit function

y = Anxn (25)

The result of the fit is shown in Fig.1. The values of the parameters n ,
A obtained by the fit are

n = 0.9375± 0.0047;
An = (54.000± 1.149)× 10−4(feet)−n, (26)

with R2 = 0.9519 .



Energy-dependent metric for gravitation . . . 431

3.2 Discussion of the results

Let us discuss the physical consequences of the fit we carried out.
According to the results of the fit, we can conclude that the energy-

dependent time coefficient of the gravitational metric reads (cf. eqs.
(14),(15))

b0(E) = 1 +
E

E0
(27)

where the gravitational energy threshold E0 is given by (cf. eq. (28))

E0 = E0grav =
1
A
hν0

( g
c2

)
. (28)

With the value of A obtained by the fit, we have

E0grav = 20.2± 0.1µeV. (29)

Intriguingly enough, E0grav is approximately of the same order of mag-
nitude of the thermal energy corresponding to the 2.7oK cosmic back-
ground radiation in the Universe.

The value (37) is to be compared with the values of the threshold
energies for the electromagnetic, weak and strong interactions, given by
eqs. (7),(10). We have

E0el < E0grav < E0w < E0s (30)

i.e. an increasing arrangement of E0 from the electromagnetic to the
strong interaction. Moreover

E0grav

Eoel
= 4.49± 0.02 ;

E0s

E0w
= 4.57± 0.01, (31)

namely

E0grav

Eoel
' E0s

E0w
(32)

an intriguing result indeed.
The time-dilation formula corresponding to the time coefficient (35)

reads now (cf. eq.(4))

dτ =
(

1 +
E

E0

)
dt (33)
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at variance with the Einsteinian one (derived from metric (2))

dτ =
(

1 +
E

E0

)1/2

dt (34)

As to the explicit form of the spatial part of the gravitational metric
(on which the experimental data do not provide any information), two
possibilities are open:

1) the spatial, 3-dimensional metric is Euclidean, i.e. b1 = b2 = b3 =
1 ; we have therefore

ηgrav = diag

[(
1 +

E

E0grav

)2

,−1,−1,−1

]
. (35)

2) the spatial metric is anisotropic and energy-dependent, i.e. the
4-dimensional metric has a structure similar to the strong one (8),(9),
namely

ηgrav = diag

[(
1 +

E

E0grav

)2

,−b21,−b22,−
(

1 +
E

E0grav

)2
]

(36)

with, in general, b21 6= b22
2.

As a final remark, we want to stress that both metrics (43) and
(45) can be derived as exact solutions of the five-dimensional Einstein
equations in the framework of the Kaluza-Klein-like scheme (with energy
as fifth dimension) introduced in ref. [10].

4 Evidence for a voltage induced by a stationary magnetic
field: A possible LLI breaking effect

As already stressed in the Introduction, the analysis of some physical
processes, carried out by means of the DSR formalism, seems to provide

2Let us stress that the possible spatial anisotropy of the gravitational metric is
a mere conjecture, because, as already emphasized above, the experimental data
do not provide any information about the other metric coefficients. At present the
only experimental evidence for a space anisotropy concerns the strong metric (see
eqs.(8),(9)), and therefore the length scale involved is ∼ 10Fm.
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a first (although preliminary), indirect evidence for a breakdown of local
Lorentz invariance for all fundamental interactions.

Quite recently the present authors, together with U. Bartocci(12),
proposed a new electromagnetic experiment aimed to testing LLI and
able to providing direct evidence for its breakdown. The results ob-
tained in a first, preliminary experimental run carried out in June 1998 -
essentially aimed to provide new upper limits to the LLI breakdown pa-
rameter by an entirely new class of electromagnetic experiments - admit
as the most natural interpretation the fact that local Lorentz invariance
is in fact broken(12 ,13).

Let us give a brief account of such experiment, which, in our opinion,
allows us to establish an intriguing connection between the electromag-
netic and the gravitational metrics.

The test is based on the possibility of detecting a non-zero Lorentz
force between the magnetic field B generated by a stationary current I
circulating in a closed loop γ, and a charge q, in the hypothesis that
both q and γ are at rest in the same inertial reference frame. Such a
force is zero, according to the standard (relativistic) electrodynamics.

The experimental setup was devised in order to put new upper limits
on the breakdown of LLI, by means of such an entirely new class of
electromagnetic experiments, and also to test possible anisotropic effects
in such limits.

The experimental device used is schematically depicted in Fig.2. It
consisted of a solenoid γ and a Cu conductor R placed inside it on a plane
orthogonal to the γ axis. The conductor R was connected in series to a
capacitor C, and a voltmeter was connected in parallel to the capacitor,
so to measure the voltage due to a possible gradient of charge across R.
The conductor could change its orientation in the plane from 0 to 2π.
Moreover, the whole system of the RC circuit and the solenoid could
turn so letting its plane coincide with one of the coordinate planes. The
coordinate system was chosen as follows: the (x, y) plane tangent to
the Earth surface, with the y-axis directed as the (local) Earth magnetic
field BT ; the z-axis directed as the outgoing normal to the Earth surface,
and the x-axis directed so that the coordinate system is left-handed. A
stationary current I circulating in the solenoid generated a stationary
magnetic field B in which the RC circuit is embedded. The circuit and
the solenoid were mutually at rest in the laboratory frame.
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Measurements of the voltage V across the capacitor were carried out
for the system lying in the different coordinate planes (x, y) , (x, z), (y, z)
, and at different values of the orientation angle α of the circuit in the
plane considered (spaced by π/4). The orientation of the coil γ and the
verse of the current I were chosen so that, when γ lies on (x, y) , its
magnetic field B is directed as z ; when γ is on (y, z), B is directed as
x; for γ on (x, z), B is directed as BT . The last arrangement of the
apparatus is shown in Fig. 3 .

The measurement runs were carried out in three different days (each
day with a different orientation of the apparatus plane), two times a
day. Every run consisted of five measurements of the voltage taken at
the same orientation angle α , for eight values of α ∈ (0, 2π). For a fixed
angle, the five measurements of V were taken at time intervals of 60 sec
from each other.

Measurement of the zero level of the voltmeter fixed such a level to
the value V0 = (0.015 ± 0.010)mvolt (notice the pessimistic evaluation
of the error). The measured values of the voltage V were assumed to
represent a physically acceptable, non-zero signal only if external to the
above interval. Clearly, this permitted to get rid of (at least most of)
the fluctuation contributions and other spurious effects connected with
the background .

The measurements performed with the system lying on the planes
(x, y) and (y, z) gave values of V compatible with the instrument zero.
Indeed, in such cases the statistical tests of correlation showed that each
of the points3 outside the zero-voltage band is uncorrelated with the
preceding and the subsequent point either, and the whole set of points
was shown to be uncorrelated (R2 < 30%). As to the measurements in
the plane (x, z) , it was shown instead that the four points outside the
zero band are statistically correlated (R2 > 80%) , and so they represent
a valid candidate for a non-zero signal.

A polynomial interpolating curve for these points is shown in Fig.4.
Such an interpolating procedure was essentially aimed at finding the
angle αmax corresponding to the maximum value of V , V xzmax = (3.6 ±
1.0)× 10−5volt. The value found was αmax = 3.757rad. The knowledge
of αmax is needed in order to determine the value of the anisotropic LLI
violation parameter in our case(12) .

3Let us recall that - as streessed before - each point is the average of five measure-
ments, taken at the same angle.
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A detailed discussion of possible spurious effects which could simulate
the results obtained, and of the precautions taken to avoid false signals,
can be found in refs. [12,13].

The experiment was repeated in the summer of 1999 in a different
place, with a different apparatus and with a sensitivity improved by two
orders of magnitude. The analysis of the data is being carried out, and
it seems to confirm the positive evidence for the effect (at least as far as
the plane xz is concerned).

We want to stress that the estimated amount of breakdown of LLI
ensuing from our experiments is in agreement with the existing limits(18).
A detailed discussion of this point is given in ref.[13]. Here, we confine
ourselves to summarize the main results.

We recall that two different kinds of LLI violation parameters exist:
The isotropic (essentially obtained by means of experiments based on
the propagation of e.m. waves, e.g. of the Michelson-Morley type), and
the anisotropic ones (obtained via experiments of the Hughes-Drever
type(18), which test the isotropy of the nuclear levels). The smallest
upper limit obtained in the former case is(18) δ < 10−8, whereas the
upper limits on the anisotropic parameter range from δ < 10−18 of the
HD experiment to δ < 10−27 of the Washington experiment(18). In either
case, one has to consider, for the evaluation of δ , a phenomenological LLI
invariance breakdown speed v (e.g., the speed of a hypothetical preferred
frame), such that the new speed of light is u = c+ v 4.

In our framework, an effective LLI breakdown speed v can be intro-
duced, by defining it as the relative speed between the coil γ and the
conductor R, needed to provide, via the Lorentz force F = qv ×B , the
maximum measured voltage across R. A lengthy but straightforward cal-
culation yields (for V = V xzmax = 3.8×10−5volt)(12,13) v ' 6×10−2m/ sec .

Then, it is possible to show that the isotropic LLI parameter cor-
responding to our effect has the value(13) δ ' 4 × 10−10, which is
lower by two orders of magnitude than the upper limit for the isotropic
case. In the anisotropic case, the parameter δ is in the range(13)

2×10−29 < δ < 6×10−20, and therefore compatible with the anisotropic
upper limits .

4Notice that u is nothing but the ”maximal causal speed” of the electromagnetic
interaction, in Deformed Special Relativity(6) , or the ”maximum attainable speed”,
by Coleman and Glashow(16).
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5 Discussion and conclusions

We want now to show that these two experimental facts we discussed,
seemingly completely uncorrelated, have actually intriguing connections,
if just viewed from the point of view of the DSR formalism.

The first question to be answered is: Why is the effect observed in
the e.m. test of Lorentz invariance anisotropic? Indeed, a valid signal
was observed only in the plane xz. In our opinion, this is strictly related
to the fact a preferred direction actually does exist in the experiment,
namely that of the gravitational field. Indeed, due to the low values of
the energies involved (of the order of 10µeV ) gravitational contributions
can a priori no longer be neglected.

From the standpoint of DSR, this implies that two energy-dependent
metrics are involved, the electromagnetic and the gravitational one. This
hypothesis allows us to provide an interesting interpretation of the instru-
mental zero, which we recall is V0 ' 15µvolt (in the second experiment,
we found V0 = (16.5± 1.5)µvolt), and seems actually to be independent
of the instrument. Namely, we conjecture that the instrumental zero is
related to the energy interval ∆E in which both the electromagnetic and
the gravitational metric are fully minkowskian (and therefore no break-
down of Lorentz invariance occurs). We recall (see ref. [6] and Sect.2)
that the energy-dependent electromagnetic metric is sub-minkowskian
(i.e. it approaches the Minkowski metric from below), with threshold
energy E0el ' 5µeV (cfr. eq.(7))5, whereas the gravitational metric is
over-minkowskian (i.e. it approaches the Minkowski metric from above),
with threshold energy E0grav ' 20µeV (cfr. eq.(29)). The energy
interval of minkowskian behaviour for either metric is therefore

∆E = E0grav − E0el ' 15µeV (37)

in surprising agreement with the experimental value of the instrumental
zero V0.

This interpretation - which would support the validity of DSR, at
least as far as the electromagnetic and the gravitational interactions are
concerned - can find confirmation by the just performed repetition of
the experimental test of LLI. Indeed, the improved sensitivity of the ap-
paratus might enable us to determine if a valid signal is present in the

5Let us recall that the explicit form (5),(6) of the energy-dependent electromag-
netic metric, and the corresponding value of E0el, were derived(4,6) from the analysis
of the Cologne experimental data on superluminal tunneling in waveguides (see first
ref.[9]).
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other two planes, too. If so, we expect a difference in signal between the
vertical planes and the horizontal one, xy, of the order of the minimal en-
ergy required for gravitational breakdown of LLI in the DSR framework,
namely E0grav ' 20µeV .

A last remark concerns the possible pattern of interactions ensuing
from DSR. According to the results of sect.2 and subsect.3.2, we have
two pairs of interactions: i) electromagnetic and gravitational; ii) weak
and strong , ordered by the increasing arrangement of the threshold en-
ergies (see eq.(30)). Moreover, in each pair the former interaction is
sub-Minkowskian, and the latter is over-Minkowskian. The first ques-
tion is: Does this pattern end with the second pair, or not? If a third
pair exists, we can assume that the threshold energies of the new pair,
E05 and E06, are related to the threshold energies of the previous sub-
Minkowskian and over-Minkowskian metrics according to

E0,n+2

Eo,n
=
E0,n+4

E0,n+2
, n = 1, 2 (38)

(with E0el = E01 ; E0grav = E02 ; E0w = E03 ; E0s = E04). In such
hypothesis, with the values (7), (10), (29) of the threshold energies for
the known interactions, we get

E05 ' 1.3× 1018GeV ; (39)
E06 ' 6.7× 1018GeV.

Such a pattern may repeat itself again, or not, and it’s of course a
matter of experiment to check the real existence of these new pairs of
interactions. What we exclude is that it repeats ad infinitum. In this
connection, we recall that it was shown that the maximum possible force
in Nature is provided by the Kostro constant K, given by(19)

K =
c4

G
= 7.556× 1051GeV/cm (40)

whereG is the gravitational constant (G = 1.072×10−10cm5/
[
GeV sec4

]
).

The corresponding maximum energy, i.e. the energy of the whole Uni-
verse, is therefore

Emax = KR0 ∼ 1080GeV (41)
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where we take R0 ∼ 1011light− years for the observed Universe radius
6.

Either in the case of new interactions (besides the known ones) or
not, we deem that the interaction pattern in the DSR scheme is bounded
from above at least by the value Emax (41) related to the Kostro limit.
This holds, in particular, for the asymptotic behaviour of the over-
Minkowskian metrics.
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Figures

Figure 1. Fit to Alley’s experimental data by the fit function y = Anxn .

R2 = 0.9519 is the correlation coefficient. See the text.

Figure 2. Schematic setup of the
Helmholz coil experiment. See the
text.
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Figure 3. Schematic view of the orientation of the apparatus
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Figure 4. Curve interpolating the data obtained with the apparatus in the
(x, z) plane, showing the angle of maximum signal αmax = 3.757rad.
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