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ABSTRACT. The laws of classical and quantal electromagnetisms are
presented here as based on principles whose data are only the isotropic
propagation of the electromagnetic action and the Coulomb law. The
Maxwell laws are then obtained -via the deduction from these principles
of Lorentz’s integral formula of the retarded potentials- simply as a
consequence.

RESUME. Les lois de I’électromagnétisme classique et quantique
sont présentées ici comme fondées sur des principes qui reposent
sur les seules données que sont la propagation isotrope de ’action
électromagnétisme et la loi de Coulomb. Les lois de Maxwell s’en
déduisent -via 1’établissement a partir de ces principes de la for-
mule intégrale des potentiels retardés de Lorentz- comme une simple
conséquence.

1 Introduction

Nothing in the present survey, except perhaps the remark made above
Eq. (14) in Sect. 3, may be considered as original. Some readers (we
hope as many as possible) will consider all that follows, in particular the
first part of the conclusion, as evident. Nevertheless we have thought
that some points commonly accepted require to be discussed into detail.

At least, as it is said in the Abstract, what is presented everywhere as
the foundation of electromagnetism is relegated here to the place, almost
accessory, of the consequence of much more simpler principles.

The laws of electromagnetism are presently considered as based on
the Maxwell laws in the form of the equation

0", A" = dmjt (1)
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established with the help of the relations
0, A" =0, 0,5"=0 (2)

i.e. the Lorentz condition on the potential A* and the conservation of
the charge current j*.

The current j*, source of the potential A*, may be considered as
constructed by considering a population made (a) in classical theory, of
distinct charges or (b) in quantum theory, of the eventualities of presence
of an unic charge. Furthermore, the quantization of the field, when
one thinks that it is usefull to use it, implies a new object, the Planck
constant h, just when h intervenes in the source. But in no case this
theory may be used in contradiction with the Maxwell laws.

These laws were established during the 19th century, actually, only
by means of considerations on the fields created by free electrons moving
inside moving wires. It seems a bit miraculous that these laws, whose
origin is macroscopic and classical, can be applied exactly to the miscro-
scopic theory of the electrons bound in atoms, with a probability concept
about the source opposite to the deterministic one of the classical theory.
That leads to think that the substratum of the Maxwell laws is made of
some entity which may be considered as well from a quantal as from a
classical point of view.

The importance of Maxwell-Lorentz’s laws is here absolutely not con-
tested. These laws have been at the origin of the invention of the Rel-
ativity. They lead to concepts (Maxwell tensor S, Poynting vector, ...)
and properties (as the relation implying S and the Lorentz force den-
sity) which are essential for the study of electromagnetism. (A smart
presentation of these concepts and properties is made in [1], Part II).
Furthermore an explanation of the ”useless part” €™ 0\ F v = 0 of the
Maxwell laws may perhaps lead to the invention of new physical objects.
At last, because they are based on the notion of current, and that the
notion of probability current is a necessity in quantum mechanics, these
laws are indispensable to the application of electromagnetism to this
part of physics.

2 The Lorentz integral formula of the retarded potentials

Especially in quantum mechanics (in explanation of the light emitted by
atoms, Lamb shift calculation ..) one often uses, instead of the Maxwell
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laws, the Lorentz formula of the retarded potentials

o 270— ak:
A”(‘To’xk):///vj ( RR7 )dT, R:[Z(xk—ak)2]l/2 (3)

k

In this formula, x* and a* are the coordinates, in a orthonormal galilean
frame {e,} of the Minkowski space M = R(1,3), of the points X and
P of M where A" and j* are considered. V is the volume in the space
E(ep) orthogonal to ey which is the orthogonal projection upon E(ep)
of the domain €2 of M containing all the charges which are the source of
the potential A*.

What is surprising in this formula is the fact that the right hand side
of the formula is to be considered as relativistically invariant whatever
the frame {e,} may be.

This formula is presented as deduced from the Maxwell equation (1),
but the proofs are not convincing. For example, in [2], Sect.I-1, it is
simply said that Eq. (3) may be easily deduced from Eq. (1) (I presume
that the use of the word "easily” is a joke). In [3], Sect. 6.6, one uses the
relativistic Green function but it is applied to the components j* of the
current, taken separatively and that cannot prove the invariance (see Eq.
(5)). In [4], Sect. XXXII-III, the proof is based on the integration of a
partial derivative equation. But it implies an hypothesis of a symetry
on the distribution of the charges, around the point P, which is pointed
out with honesty by the author as not very compatible (see also Sect. 3)
with the equation (2) of the current conservation. Furthermore as in [3]
the proof is relative to the components j#* taken separatively.

3 Invariance of the formula of the retarded potentials

The fact that Eq. (3) might be correctly deduced from Eq. (1) do imply

that the right hand side of (3) is invariant as its left hand side, and also

as the right hand side of (1). We are going to achieve a direct proof of

this invariance but in taking into account this indisputable principle:
All electromagnetic action is propagated at the light velocity.

We apologize for recalling this truism, but it seems that it has not
been taken entirely into account (see the question above Eq. (14)) in the
presentation of electromagnetism. It means that all the charge matter
contributing to the potential at the point X is situated, in the past of X,
inside the isotropic hypercone H(X) whose top is X. But we will see
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that this invariance implies a strong constraint on the definition of the
charge current j*.

Notations. For simplicity we will write a.b = a*b,, (and a* = a.a) for
the scalar product of two vectors a,b € M, a A b for their Grassmann
product (whose components are a*b” — a”b*) or (simple) bivector. The
interior product F.c on the right of a bivector F' (or antisymmetric tensor
of rank two) by a vector ¢ € M will be defined by the relation (aAb).c =
(c.b)a — (c.a)b. We will write 0 = e*0,, for the gradient operator of M
and E(v) for the three dimensional space orthogonal to a timelike vector
v € M (such that v? > 0).

The isotropic vector PX is written in the frame {e,}

PX =R(eg+N), NeM, Neg=0,N>=—c2=-1, R=2"—a°
(4)

Let us write Eq. (3) in the schematic form
oo dr
AX) =Y i) % )
%

in which the integral appears as a sum of objects eachone necessarily
invariant. We have replaced the symbol [ [ [ by > because the right
hand side of Eq. (5) will be replaced by a sum of invariant objects
situated in the domain €2 of M which contains the charges contributing to
the value of A(X) and because this last sum will be able to be considered
also as a discrete sum instead of an integral.

A striking point of our proof will be the fact that, by application of
the above fundamental principle, 2 must be situed inside the hypercone
H(X).

Because j(P) is invariant, the ratio dr/R must be invariant. On one
side dr is the measure of a part of the volume V' which is the orthogonal
projection upon FE(eg) of a small neighbourhood w in M of P. On the
other, R may be related to an invariant lenght in the following way.

The charge current j may be written
j=pv, v €M, v> =1, p>0 (6)
where the charge density p and the vector v are invariant. One can write

W:T(’l)-i-n)’ ’I’LGM7 ’I’L.’UZO, n2:—v2:_1 (7)
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which shows that the lenght r = PX.v is invariant as a scalar product
of two invariant vectors of M. The comparison between Eqs. (4) and
(7) leads to the relations

v=aey+ BN, n=pfeg+aN, a®>—-p3>=1 (8)

PX =r(v+n) =r(a+8)(eo+N) = R(eg+N), = R=r(a+p8) (9)

The number « + 3 is appeared in the passage from the arbitrary frame
{e,} to the privileged frame L(P), associated with the current at the
point P, whose vector time is v. This number must be eliminated, because
the frame {e,} is arbitrary. So it does appear in the expression of the
volume dr.

The use of the frame L(P) requires a more precise definition of the
density p. This number is the ratio

dq.

p— 1
P = e (10)

of the sum dg of the charges contained in the neighbourhood w C Q of
P and the measure dry of the orthogonal projection of @ upon the space
E(v). Eq. (5) becomes

A(X) = zvjdq [5—;] % (11)

We have now to take into account the inclusion of w into the hypercone
H(X). That may be done by considering w as generated by an isotropic
vector £ = df(v 4+ n) whose origin describes a portion of plane 7 orthog-
onal to v and n. If the size of 7 is small with respect to the lenght r,
then the vector ﬁ( may be considered as isotropic for any P’ € @ and
one can consider that w C H(X). 7 is situed inside F(v), and since
—£&.n = dl, the measure of the projection of @ upon E(v) is dry = dod/,
where do is the area of 7.

The passage from the frame L(P) to {e,} keeps n unchanged. On
the other side one can write, in the same way that in (9)

dl(v+n)=dl(a+ B)(eo+ N)=dl'(eg + N), dl' =dl(a+ )

and

dr = dodl’ = dodl(a + () = dro(a+ 3) = 577 =a+f  (12)
0
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After elimination of o + 3, Eq. (11) becomes the relation

AX) =S dg2 = dg— (13)
%:qr ZqP—Xw

Q

where all the terms of the right hand side are relativistically invariant.

The sumation may be considered as made by means of a partition of
Q) C H(X) into elementary domains w;, eachone centered on a point P;.
Each w; contains a charge dg;, and is associated with an unit timelike
vector v;.

But the current j(P) is not defined in the Mazwell laws as depending
on the point X. So it is independent, in these laws, of the vector n. The
compatibility of these laws with an invariance of the retarded potentials
formula, coherent with the fundamental principle of the isotropic propa-
gation of the electromagnetic action, requires to suppose that the charge
dq contained in the neighbourhood w of P, defined above, is the same
whatever the direction of the vector n may be. Is this property of local
symetry of the repartition of the charges (distinct from the one used in
[4], Sect. XXXII-III, but of the same nature) compatible with Eq. (2)
of the conservation of the current? It is not sure. However this last
equation is fundamental not only in the Maxwell laws but in the simple
considerations on the behaviour of the source in spacetime, implying the
fact that all accumulating somewhere of the charges is forbidden. It is a
basic datum in quantum mechanics, in particular in the electron theory.
A way to elude the difficulty would be to say that dq is about the same
whatever the direction of the vector n may be.

On the other side, Eq. (13) is a static spacetime equation, in which
the conservation of the current is necessarily absent. It expresses that
A(X) collectes the actions of all the charges placed inside the hypercone
H(X) in the domain 2, by means of the number 1/r, where the invariant
lenght r is defined by the isotropic vector PX , with P € Q.

A kinematical evolution of the study of electromagnetism, related to
the fact that the derivatives of the potential A(X) are to be considered,
call in the following question. When one passes from X to X +dX, what
happens to A(X + dX), knowing that the new domain Q' to condider is
situated inside the hypercone H(X + dX), and that P + dP € ' must
be in agreement with the relations

PX’=0 = 2PX.d(PX)=0 = PX.dX =PX.dP? (14)
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We think that the fundamental principles of electromagnetism must
precede this question, and lie in Eq. (13), whereas the Maxwell laws,
which contain the double derivatives of A, must follow.

4 On the principles of electromagnetism

We propose a presentation of the principles of electromagnetism which
is a simple prolongation to the geometry of spacetime of the Coulomb
law.

Then these principles will be based only on the two experimental data
which are the propagation of the electromagnetic action at the light veloc-
ity, and the Coulomb law. They will lead directly to the expression (13),
then (11), then (3) of the potentials, then (see Sect. 5) to the Maxwell
equation (1).

As a consequence all the laws of electromagnetism -except the ones
related to the gauge theories of the particles theory (see Sect. 6)- will be
able to be considered as based upon these two experimental data.

Before recalling the Coulomb law, we only mention the relation which
is the link between electromagnetism and electrodynamics (see Sect. 6).
The force (in its spacetime meaning) f € M which acts on a charge ¢/,
whose spacetime velocity is w, subjected to an electromagnetic field F,
is the interior product f = ¢’ F.w, or Lorentz force.

The Coulomb law. If two charges ¢, ¢’, situed at points P and X of
the spacetime M, are at rest in a galilean frame whose vector time is
u € M, the force f acting on the charge ¢’ is defined par the bivector
¢'F (F is the Coulomb field)

A
r2

q'F:q’qn , P—Xz:r(u—&—n), w=1=-n% un=0 (15

where the vector n € M corresponds to the direction of the oriented
straight line which joins the projections of P and X on the space E(u).
Because the spacetime velocity of the charge ¢’ is here u one has

n
f=q¢Fu= q’qr—2 (16)

We propose three fundamental principles.

P;. Let a punctual charge ¢, situed at a point P of the Minkowski
spacetime M, be. One associates with ¢ an unitary timelike vector u
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(such that u? = 1). For all point X € M, in the future of P and such
that the vector PX is isotropic, one defines the spacetime vector

A(X) (17)

U
= q—

PX.u
called retarded potential created at X by the charge ¢ situed at P.

Ps. Le potentiel A created at a same point X by different charges ¢;
is the vector sum of their potentials A; considered separatively:

AX) =37 G — (18)

P3. The product by the charge ¢’ of a punctual charge situed at X
by the bivector F'
F=0ANA (19)

which is the spacetime curl of A (considered by taking the derivatives
of A with respect to the point X), or electromagnetic field at X derived
from the potential A, determines the force f acting on the charge ¢'.

Let us verify that P; is in agreement with the Coulomb law. Sup-
pose an unic charge ¢ at P, at rest in a galilean frame whose spacetime
vector is u (P describes then a straight line of M) and let {e,} be the
orthonormal frame such that ej = u. In a point X such that

W:r(u—f—n), nu=0, n?=-u?=-1, (u+n)u=1
the potential is, because PX.u= r,

A=gq

u
r

(20)

If X is at rest in the frame, the time coordinate z° of X does not
intervene and, since e® = —ey,, (k = 1,2,3), the operator 0 expressed in
spherical coordinates is reduced to

d d 1 nAu
0=-n—, and F=-—-gnAu—(-)=
dr an nug ) 2

q
o r

The expression (17) is analog to the Lienard and Wiechert poten-
tial which has been deduced from the integral formula of the retarded
potentials, in the case where the charge is a small sphere whose center
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describes a straight line. But here we only associate to the charge a
scalar q, a point P in spacetime, and an unit timelike vector u. That
may be applied to the case where, in classical mechanics, the charge
describes a trajectory whose tangent vector at P is u, as the one, in
quantum mechanics, where P is the eventuality of presence of the charge
q.

In the case of a population composed of few charges, one deduces
immediatly the expression (13) of the potential A(X'), where the symbol
> corresponds to a discrete sumation.

Let us consider the case of a numerous population of punctual charges
such that, in a small neighbourhood w of a point P, the vector u of each
charge is about the same as an unic vector v. One can then associate to
P the total charge dq included in w and so obtain the expression (13)
of A(X), then the equivalent expression (11) associated with the choice
of an arbitrary galilean frame. This construction is applicable as well,
in classical electromagnetism, to a population of distinct charges, as, in
quantal electromagnetism, to the population of eventualities of presence
of an unic charge. dq corresponds then to the product of a constant
charge (e for the electron) by a local presence probability.

Defining a charge density p = dgq/dry, where dq is the charge con-
tained in a small neighbourhood w of P, one can introduce the notion of
charge current j = pv and obtain the formula (3) of the retarded poten-
tials, but with the restrictive condition that, for a given measure dry of
the orthogonal projection of w on E(v), the shape of @ has no incidence
(or a weak incidence) on the value of dg, and so that j is independent of
the choice of the point X where the potential A is considered .

5 The Maxwell laws as consequence of the formula of the
retarded potentials

If a charge ¢ describes a curve (C) whose vector tangent at P is u, the
calculation of F' = 9 A A may be made (see [5], 1967-68 or 1967) by
means of the relation of equiprojectivity PX.dX = PX.dP (Eq. 14)
which allows one to clearly define the derivatives upon the potential
A(X) with respect to the situation of the source. (Another calculation,
using the Dirac distribution, can be made). Furthermore one can show
that for any point X # P the equations 9.4 = 0 and 9?4 = 0 (where
0% = 9"9,,) are verified. As the conservation of the charge is, like an
evidence, ensured, one can say that the Maxwell-Lorentz laws are in this
case satisfied (except along the curve (C') where they have no sense). One
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must emphasize that not only is the use of the relation of equiprojectivity
a way to facilitate the calculation, but also it is the answer to the question
asked before Eq. (14) in Sect. 3.

In the general case, one can deduce the Maxwell equation (1) from the
formula (3) of the retarded potentials, by adding the current conservation
equation 0.5 = 0, but the following proof does not bring an answer to
the above question.

If X is outside € the right hand side of Eq. (3) is a proper-Riemann
integral and one can derivate under the sign [. A simple calculation
shows that the relation 92A = 0 is verified.

In the case where X belongs to 2 the integral becomes improper.
One can associate with any point P of € a small neighbourhood w of P,
entirely situed inside {2, and one can separate (2 in two parts {2 —w and
w, whose projections upon E(eg) are two volumes V; and V5. Let Ay,
A the potentials, created by the charges situed inside these two parts
respectively, at a point X of w, be.

(a) The integral (3) is proper-Riemann in V5 and one can write
A =0

(b) the integral (3) becomes improper in V5 .

Suppose w sufficiently small in such a way that the advance of X
with respect to P can be neglected. One can consider the potential A
as being the same as in electrostatic. If one uses at the point P the frame
whose vector time is v, 82 is remplaced by the operator —A, because the
derivatives with respect to the time are not to be taken into account. One
can apply the Poisson formula —AAY = 47p of the newtonian potential
([6], p. 273-276), which allows one to replace an integral on a volume by
a relation verified at each point. That gives in an arbitrary frame, for
this neighbourhood w of P, 9?AY = 4mjr.

From A = A; + A5 upon w, one deduces that at each point X of w
one has 9?°A = 4rj. Repeating the reasoning for each point P of €, one
deduces that for all point X inside € the relation

0*A = 4rj (21)

i.e. the Maxwell equation, is verified.
Furthermore one can deduce (see [4], Sect. XXXII-III) from Eq. (3)

that the Lorentz relation 9.A = 0 is verified if 9.7 = 0 and if the charges
remain confined to €.
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However the hypothesis adopted to achieve this calculation (as those,
habitually used to deduce Eq. (3) from Eq. (1)), are not entirely satisfac-
tory. In particular the hypothesis of the existency of a domain w around
each point P, sufficiently small to allow one the use of the electrostatic
properties, may be contested.

Note that the factor 47 which appears as associated with the current
j in the Maxwell equation (1), has no reason to be used when the source
is composed of distinct punctual charges not joined together in a current.

6 The Maxwell-Lorentz electromagnetism and the gauge po-
tentials of the theory of particles

Note that, at no time, we have mentioned the photon. This object
(although the word photon is often used about relations implying only
the pure Maxwell-Lorentz theory, in particular the retarded potentials
formula) obeys laws (as in the Compton effect) which belong to electro-
dynamics, and so are outside our subject.

However, we cannot end this survey without mentioning the gauge
potentials, although these entities belong to electrodynamics and not
to electromagnetism, because they are closely related to the Maxwell-
Lorentz potentials.

Since the check, in the beginning of the 20th century, of the attempt
of interpreting the mass m of the electron as being of an electromagnetic
nature (see [2], Sect. I-4), electrodynamics and electromagnetism are two
disciplines, often mixed in the treatises, but which are to be carefully
distinguished.

The first one studies the behaviour of charged particles, endowed
with a mass and eventually a spin, in a given electromagnetic field.

The second one is the study of the properties of the fields created by
charged corpuscules (or, in quantum mechanics, eventualities of presence
of one corpuscule) eventually joined in a current, without the direct
intervention of their mass and spin.

The link between the two disciplines lies in the Lorentz force f =
¢’ F.w mentioned in Sect. 4. And the two equations

ml' =eFw, 0,5'=-Fj (22)

where w and I' = dw/do are the spacetime velocity and acceleration
of a classical electron, m its mass, where S* = S(e*), and S is the
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Maxwell tensor associated with the field F' defined via the Maxwell laws
by a charge current j, present similar forms. But the first depends on
electrodynamics, and the second is a pure property of electromagnetism.
The equation

0, IT" =Fj (23)

deduced from the Dirac equation of the electron, where T is the Tetrode
momentum-energy tensor, F' the exterior electromagnetic field, j = epgv
the charge Dirac current (pg is the presence probability density) is an
electrodynamic property of the Dirac theory.

What is called a gauge potential is an object which may be consid-
ered in addition with a Maxwell-Lorentz potential (in which intervene
expressions of the form ¢/r). These two kinds of potentials appear as
quite different and the first belong to electrodynamics.

Without looking for an illustration in the electroweak theory ([5],
1997), we give a simple example of the difference between the geometrical
natures of these two objects in the case of the U(1) gauge of the Dirac
electron theory. We recall, as we have made it many times, that the
momentum-energy vector p = T(v)/pg, may be written ([5], 1971) at
the point x € M

h
= gcw —eA, withw, = (9,n1).n2 = —(9yn2).m (24)

p
Here w is a spacetime vector which represents the infinitesimal rotation
upon itself of a plane 7(z) orthogonal to v, (n1,n2) an orthogonormal
frame of this plane whose direction is nothing else but that of the bivec-
tor spin (hc/2)ny Ang. A is the exterior potential. A rotation of the axes
in the plane m(z) through an angle x(x) changes w in w — dx and the
gauge invariance is obtained by the addition to A of the spacetime vector
—(fic/2e)0x (see [7], [8], [5], 1988). This vector may be called a gauge
potential. However it is placed in an electrodynamics part of the Dirac
theory, it has not been generated by a charged current, and its geometri-
cal interpretation is quite different of that of the exterior potential A, in
the case where A is, for example, the central potential A = —(Ze/r)eq
created by the nucleus of an atom. But it may be called a potential be-
cause it is in addition to an electromagnetic potential, although, because
it is a gradient, it desappears in the electromagnetic field F'. Certainly
it is at the center of the secret of the exchange between the exterior
potential A and the energy of the electron.
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We recall also that the term gauge potential has been given in [9]
independently of all reference to the Dirac electron theory (and quite
independently to the geometrical interpretation we had given to p some
years before in [5], 1971), as the product of fic/2e by the infinitesimal
rotation w upon itself of a plan 7(x), orthogonal to a timelike vector v.
It was associated in [9] with the theory of the strings.

Presently the gauge theories appear as one of the most fundamen-
tal aspect of the particles theory. However the importance in quantum
mechanics of the Maxwell-Lorentz potentials appears everywhere, in par-
ticular in the form of the retarded potentials formula, especially in the
explanation of the linear or circular polarizations of the light emitted by
atoms ([5], 1993) and in the Lamb shift calculation ([1], Sect. VI-34),
and the two aspects of the notion of potential are narrowly bound.

7 Conclusion

Taking into account incontestable features contained in the uncontested
relativistic invariance of Lorentz’s retarded potentials formula, we have
schown that only two experimental data are enough for the edification
of the Maxwell-Lorentz laws of electromagnetism: the isotropic propa-
gation of the electromagnetic action and the Coulomb law. They lead to
simple principles which precede these laws and may be applied as well
to quantal as to classical electromagnetism. These principles explain the
”divine surprise” by which the Maxwell laws, despite their classical, de-
terministic, macroscopic origin, have been revealed as applicable to the
undeterminist, microscopic, quantal electromagnetism.

Due to the simple geometrical aspect of the Coulomb law, and the
simple geometrical interpretaion we have given elsewhere ([5], 1997) to
the cousins of the Maxwell-Lorentz potentials, the gauge potentials, it
seems that the key of the laws of electromagnetism lies entirely in ele-
mentar properties of the geometry of spacetime.
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