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ABSTRACT. In a paper dealing with a new formulation of the
Oppenheimer-Volkoff (O-V) equations, J. Smoller and B. Temple prove,
under mild assumptions on the equation of state, that black holes never
form in solutions of the O-V equations. No attempt is made to extend
this conclusion to other situations. In the present paper we prove that
the concept of black hole is universally inconsistent with the Einstein
theory of gravitation.

Dans un article traitant d’une nouvelle formulation des équations de
Oppenheimer-Volkoff, J. Smoller et B. Temple montrent, sous des con-
ditions faiblement restrictives, que le concept de trou noir n’apparâit
jamais dans les solutions de ces équations. Les auteurs ne cherchent
pas à étendre cette conclusion à d’autres situations. Dans le présent
article nous montrons que la notion de trou noir est universellement
incompatible avec la théorie gravitationnele d’Einstein.

1 Introduction

According to O-V equations [1], black holes could form from gravitational
collapse in massive stars. However this conclusion is based upon rather
flimsy arguments regarding both the geometrical and the physical ideas
involved in the formulation of the problem. In particular it is assumed
that the pressure be identically zero. A recent paper by J. Smoller and
B. Temple [2] introduces a new formulation of the O-V equations without
making this simplified hypothesis and brings about an entirely different
result, namely that black holes never form in solutions of these equations
:
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”When the pressure is not zero, black holes cannot form in
static spherically symmetric solutions of the Einstein equa-
tions for a perfect fluid. This implies that the portion of the
empty-space Schwarzschild solution inside the Schwarzschild
radius is disconnected from the rest of the solution space of
the O-V system in the sense that it cannot be obtained as a
limit of the O-V solutions having non-zero density” [2].

We see that Smoller and Temple do not reject as unphysical the so-called
Schwarzschild solution inside the Schwarzschild radius ; they only prove
its inconsistency with their formulation of the O-V equation of state. In
other words the paper by Smoller and Temple does not reject generally
the concept of black hole. It only proves that the concept of black hole
is inconsistent with the new formulation of the equation of state. So the
question remains :

Is the concept of black hole universally inconsistent with the
Einstein theory of gravitation ?

Of course we cannot expect to answer this question in the setting of the
Smoller-Temple computation. These authors take for granted several
misleading classical ideas and do all of their work with the so-called
standard form :

ds2 = B(r)dt2 −A(r)dr2 − r2
(
sin2 θ dφ2 + dθ2

)
(1.1)

Folklore has it that this form contains all the characteristic features
of the gravitational field generated by a statical spherical distribution
of matter. However, according to a previous investigation [3],[5], basic
features regarding the gravitational field in question are not included in
the metric (1.1) :

a) Although the underlying manifold is the productR×R3 , the metric
(1.1) is referred to polar coordinates, namely to the manifold with
boundary R ×

[
0,+∞

[
×S2 . So the world-line R × {(0, 0, 0)} of

the origin disappears. It follows in particular that the isotropy of
the metric is not conceivable with respect to (1.1).

b) To the form (1.1) there corresponds a metric on R × R3 which
is in general discontinuous at the origin. Moreover the boundary
conditions of the problem cannot be formulated with respect to
(1.1).
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c) The parameter r occurring in (1.1) is wrongly considered as radial
coordinate. In fact the parameter r has nothing to do with coor-
dinates. It only serves to define the length 2πr of a non-Euclidean
circle (and the area 4πr2 of a non-Euclidean sphere) the radius of
which is neither given nor definable by the solution related to (1.1),
namely by the so-called Schwarzschild solution. In particular the
spherical distribution of matter has neither centre nor radius, it is
inexistent with respect to (1.1).

In view of the preceding elucidations, it follows that the derivation
of the so-called Schwarzschild solution is inconsistent with fundamental
mathematical principles. Now, since the notion of black hole results from
an interpretation of this solution, it follows that the answer to the posed
question does not depend essentially on the equation of state inside the
matter, but on a reexamination of the problems related to the vacuum
solutions.

2 Space-Time metric and Equations of Gravitation

Isotropic space-time metric on R × R3 means : Space-time metric on
R×R3 invariant by the action of the group, denoted by SΘ(4), consisting
of the matrices (

1 OH
OV A

)

with OH = (0, 0, 0), OV =

0
0
0

, A ∈ SO(3). It is shown rigorously [5]

that such a metric can be written as

ds2 = a00 (t, ‖x‖) dt2 + 2a01 (t, ‖x‖) (xdx) dt+ a11 (t, ‖x‖) dx2 + a22 (t, ‖x‖) (xdx)2

The functions occurring in it are assumed C∞ on R × R3 , i.e. C∞

with respect to the coordinates t, x1, x2, x3 at every point of R × R3 ,
even at (t, 0, 0, 0). In order to be so, it is necessary and sufficient that
the functions a00(t, u), a01(t, u), a11(t, u), a22(t, u) be C∞ on R×R and
moreover even with respect to u ∈ R.
Since a00 = a00(t, ‖x‖) > 0, we can introduce the C∞ functions

f =
√
a00, f1 =

a01√
a00
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which allow to write

ds2 = (fdt+ f1 (xdx))2 + a11dx
2 +

(
a22 − f2

1

)
(xdx)2

and thus to make explicit the corresponding spatial (positive definite)
metric:

−a11dx
2 −

(
a22 − f2

1

)
(xdx)2

Next we introduce the positive C∞ functions `1 and ` by setting

`21 = −a11, `2 = −a11 −
(
a22 − f2

1

)
‖x‖2

Then, with ‖x‖ = ρ, it follows in particular that the C∞ function a22−f2
1

can be written as

`21 − `2
ρ2

(The differentiability of the last expression for ρ = 0 can also be checked
directly by taking into account the condition `1(t, 0) = `(t, 0) and the
special properties of the functions `1 and `). Thus we obtain the general
isotropic metric in its geometrical form:

ds2 = f2dt2 + 2ff1 (xdx) dt− `21dx2 +
(
`21 − `2
ρ2

+ f2
1

)
(xdx)2 (2.1)

where f , f1, `, `1 are functions of (t, ρ).
It is shown that the Ricci tensor {Rαβ} resulting from (2.1) is invari-

ant by the action of the group SΘ(4) on R × R3 . Then, according to
the theory of SΘ(4)-invariant tensor fields, its components are defined
by means of four functions of (t, ρ) as follows :

R00 = Q00,R0i = xiQ01, Rii = Q11 + x2
iQ22, Rij = xixjQ22,

(i, j = 1, 2, 3; i 6= j)

The curvature scalar R = Q is also a function of (t, ρ).
It is easily seen that, if an energy-momentum tensor {Wαβ} satisfies

the equations of gravitation related to (2.1), then it is SΘ(4)-invariant,
so that its components are also defined by four functions of (t, ρ) in the
following way :

W00 = E00,W0i = xiE01,Wii = E11 + x2
iE22,Wij = xixjE22,

(i, j = 1, 2, 3; i 6= j)



On a paper by J. Smoller and B. Temple 515

By using the preceding notations, we can write down from the outset
the system of the equations of gravitation relative to (2.1) as a system
of four equations. There is no need to introduce polar coordinates in the
computations.

Q00 −
Q

2
f2 +

8πk
c4

E00=0

Q01 −
Q

2
ff1 +

8πk
c4

E01=0

Q11 +
Q

2
`21 +

8πk
c4

E11=0

Q22 −
Q

2

(
`21 − `2
ρ2

+ f2
1

)
+

8πk
c4

E22=0

Usually it is convenient to replace the last equation by the equation :

Q11 + ρ2Q22 +
Q

2
(
`2 − ρ2f2

1

)
+

8πk
c4
(
E11 + ρ2E22

)
= 0

On the other hand the computations are greatly simplified if, instead
of f1 and `1, we introduce the functions h = ρf1 and g = ρ`1, which
are also significant geometrically and physically. The function h satisfies
the condition |h| ≤ ` which serves to characterize the nature of the
coordinate t as time coordinate, whereas the function g is the curvature
radius of the spheres centered at the origin. Of course h and g are
C∞ with respect to (t, ρ) ∈ R × [0,+∞ [ , but, since ρ = ‖x‖ is not
differentiable at the origin, they are not differentiable on the subspace
R×{(0, 0, 0)} of R×R3 . Consequently, whenever we need to check the
differentiability of the metric tensor on the subspace R× {(0, 0, 0)}, we

must return to the functions f1 =
h

ρ
and `1 =

g

ρ
which appear in (2.1).

3 Stationary Fields. Vacuum Solutions comparable with
Newton’s Theory.

If the metric tensor is independent of t, the functions f , h = ρf1, `,
g = ρ`1 depend only on ρ, and an easy computation gives

Q00=f
(
−f
′′

`2
+
f ′`′

`3
− 2f ′g′

`2g

)
Q01=

h

ρf
Q00
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Q11=
1
ρ2

(
−1 +

g′2

`2
+
gg′′

`2
− `′gg′

`3
+
f ′gg′

f`2

)
Q11 + ρ2Q22=

f ′′

f
+ 2

g′′

g
− f ′`′

f`
− 2`′g′

`g
+
h2

f2
Q00

The equations of gravitation (without cosmological constant) outside the
matter imply Q = R = 0, so that they reduce to the system :

Q00 = 0, Q01 = 0, Q11 = 0, Q11 + ρ2Q22 = 0

On the other hand, since Q00 = 0 implies Q01 = 0, we obtain finally a
system of three equations :

−f ′′ + f ′`′

`
− 2f ′g′

g
=0 (3.1)

−1 +
g′2

`2
+
gg′′

`2
− `′gg′

`3
+
f ′gg′

f`2
=0 (3.2)

f ′′ + 2
fg′′

g
− f ′`′

`
− 2f`′g′

`g
=0 (3.3)

By adding (3.1) to (3.3) we obtain

f ′g′

f
= g′′ − `′g′

`
(3.4)

and substituting this expression of
f ′g′

f
into (3.2) we find

−1 +
g′2

`2
+

2gg′′

`2
− 2`′gg′

`3
= 0

whence

d

dρ

(
−g +

gg′2

`2

)
= 0

and

−g +
gg′2

`2
= −2A = const. (3.5)

Moreover (3.4) can be written as

`′

`
+
f ′

f
=
g′′

g′
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whence
f` = cg′, (c = const.) (3.6)

So the general stationary solution outside the matter is defined by the
equations (3.5) and (3.6). The function h does not appear in them. It
remains completely indeterminate. Of course this circumstance does not
mean that h is empty of physical meaning, as is usually believed. In
fact, h is involved in the propagation function of the light emitted radi-
ally from the spherical boundary of the matter, hence also in the defini-
tion of time along the radial geodesics. Specific choices of h give rise to
significant physically definitions of time. This situation differs radically
from that in special relativity where we have to do with a unique propa-
gation function, namely t− ρ

c
. The discussion of the relevant problems

lies beyond the scope of the present paper.
Let us now consider the equation (3.5) which serves to define the

curvature radius g(ρ). If A = 0, we find g′ = `, whence f = c, and the
corresponding metric (2.1) is pseudo-Euclidean. We give up this trivial
case and assume A 6= 0 in the sequel. Then the equation (3.5) gives a first
significant information, namely that the obtained from it determination
of g(ρ) = ρ`1(ρ) does not cover the whole half-line [0,+∞ [ . In fact,
for ρ = 0 we have g(0) = 0 and then the equation (3.5) implies A = 0,
contrary to our assumption A 6= 0. So we are certain in advance that the
solution g(ρ) of (3.5) is defined on some half-line [α,+∞ [ whith α > 0.
Since the function ` = `(ρ) is not given, it seems impossible to obtain
explicitly the general solution of (3.5) relative to the radial coordinate
ρ. However in the present case we have to do with a stationary field, so
that the geodesic distance∫ ρ

0

` (u) du = δ, (ρ = ‖x‖) ,

is well defined (For a non-stationary field, the geodesic distance is rather
inconceivable). So, ρ appears as a strictly increasing function of δ, and
we have

dg

dρ
=
dg

dδ

dδ

dρ
= `

dg

dδ
,−g +

g

`2

(
dg

dρ

)2

= −g + g

(
dg

dδ

)2

−g + g

(
dg

dδ

)2

= −2A = const., f = c
dg

dδ
,
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Writing again ρ instead of δ, we obtain the system :

−g + gg′2=−2A = const. (3.7)
f=cg′ (3.8)

This being said, we have now to bring out the relationship between the
theories of Newton and Einstein.

Classically it is believed that, r being the parameter occurring in

(1.1), −km
r

is identical with Newton’s potential. This assertion is cer-
tainly erroneous. In fact, the parameter r in Newton’s potential is the
Euclidean distance between the centre of mass and the considered point,
whereas the parameter r in (1.1) is the curvature radius of non-Euclidean
spheres centered at the origin. The classical approach to the problem
identifies erroneously the curvature radius g(ρ) with a radial coordinate.
Thus we see in particular that the commonly used term ”Schwarzschild
radius” is meaningless. The Schwarzschild radius is actually a curvature
radius.

Now we pose the fundamental question : Among the solutions defined
by (3.5) and (3.6), which are comparable with Newton’s theory ?.

Since Newton’s potential is defined by means of the Euclidean dis-
tance ‖x‖, it is obvious that the required solutions are obtained by choos-
ing as radial coordinate the geodesic distance between the origin and the
point x. In other words the required solutions are those defined by the
equations (3.7) and (3.8).

On the other hand A 6= 0 implies that g = g(ρ) ≥ α > 0, according
to a preceding remark, and since

g − 2A = gg′2 ≥ 0 (3.9)

we have finally the equation

dg

dρ
=
√
g − 2A√
g

which defines g = g(ρ) as a strictly increasing function of the distance ρ.
The inverse function ρ = F (g) is also strictly increasing and on account
of the equation

dρ

dg
=

√
g√

g − 2A
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its explicit expression is easily obtained :

ρ = F (g) = B +
√
g (g − 2A) + 2A`n

(√
g − 2A+

√
g
)
, B = const.

We see that F (g) → +∞ as g → +∞, hence also g(ρ) → +∞ as
ρ→ +∞. Moreover

ρ

g (ρ)
=
F (g)
g
→ 1, as ρ→ +∞,

so that

1
g(ρ)

=
1 + ε(ρ)

ρ
with ε(ρ)→ 0 as ρ→ +∞

and the equation (3.8) gives

f = c

√
1− 2A

g
= c

√
1− 2A

ρ
− 2Aε(ρ)

ρ

On account of the Newtonian approximation, we obtain now by a rigor-
ous reasoning the value of the constant A :

A =
km

c2
= µ

Regarding the constant B, we write it as B = ρ0 − 2µ`n
√

2µ where ρ0

is another constant, so that the function g = g(ρ) is obtained lastly by
the equation :

ρ = ρ0 +
√
g (g − 2µ) + 2µ`n

(√
g

2µ
− 1 +

√
g

2µ

)
the validity of which requires g ≥ 2µ in accordance with the condition
(3.9). The solution does not allow to ascribe a definite value to the
constant ρ0, and this is why we must take into account all the possible
determinations of g(ρ) for the different values of ρ0. However it is to
be noticed that the allowable physically values of ρ0 will be relatively
small. In any case the function g(ρ) is strictly increasing on the half-line
[ρ0,+∞ [ and its values describe the half-line [2µ,+∞ [ with g(ρ0) = 2µ,
g′(ρ0) = 0.
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Suppose first that ρ0 ≤ 0. If ρ1 denotes the radius of the sphere
bounding the matter, we have necessarily ρ1 > ρ0 and ρ1 > 0 (the value
ρ1 = 0 is excluded because g(ρ) = ρ`1(ρ) vanishes for ρ = 0). The
function g(ρ) is physically valid for ρ ≥ ρ1, so that g(ρ) > 2µ for all
ρ ≥ ρ1.

Suppose secondly that ρ0 > 0. Since f(ρ0) = cg′(ρ0) = 0, the metric
degenerates for ρ = ρ0, so that it is physically meaningless for ρ = ρ0.
Consequently, ρ1 being the radius of the spherical distribution of matter,
we have ρ1 > ρ0 and g(ρ) > 2µ for all ρ ≥ ρ1.

4 Black holes never appear in solutions of the Einstein equa-
tions

We now return to the question : Is the concept of black hole universally
inconsistent with the Einstein theory of gravitation ?

We have already noticed that we cannot answer it in the setting of
the Smoller-Temple computations. In fact, these authors are restricted
within the limits of the metric(1.1) which gives rise to misleading results.
Moreover, since the theory of black holes is based upon the assumption
that the so-called Schwarzschild solution inside the Schwarzschild sphere
be physically valid, we have principally to examine the behaviour of the
vacuum solutions.

This being said, the stationary solution, brought out in the previous
section, points out a fundamental result : The positive constant 2µ is the
greatest lower bound of the mathematical solution g(ρ) = ρ`1(ρ) outside
the matter. Moreover, if ρ1 is the radius of the spherical distribution of
matter, we have g(ρ) = ρ`1(ρ) > 2µ for every ρ ≥ ρ1, so that ρ1 > 0.

Thus we can ascertain three fundamental results:

a) The given distribution of matter cannot be reduced to a point.

b) The so-called Schwarzschild vacuum solution for r = g(ρ) ≤ 2µ is
meaningless mathematically and physically.

c) Black holes never form in solutions of the Einstein equations.
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