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ABSTRACT. A recent extended-particle interpretation or relativis-
tic quantum mechanics is applied to problems of both classical and
quantum physics as size and mass of elementary electric charges,
possible changes in these concepts in the presence of external elec-
tromagnetic fields, answering certain questions of principle, and cri-
tique of earlier arguments.

1. Introduction

Ever since the days of Lorentz and Poincaré the problems of the
structure and origin of the mass of elementary electric charges, the
role of electromagnetic (EM) 4-potentials Aµ = (ϕ, ~A)(µ = 0, 1, 2, 3)
in classical and quantum physics, etc, have been of basic interest for
a numbrer of writers. Recently, novel theoretical ideas on the possible
local gauge-noninvariant role of field-free potentials Aµ (i.e. potentials
Aµ 6= 0 which do not generate EM fields in certain regions of interest)
were advanced [1-4] and a striking prediction that constant potentials
A0 can change the inertial mass of charged particles [1], [3] appears to
have found experimental verification [5]. More precise experiments are
necessary, however, in order to be definite on the matter.

In this note we shall consider certain properties of elementary
electric charges and their masses that follow from a recent extended-
particle interpretation (EPI) of ours of the gauge-invariant Dirac and
Klein-Gordon equations. In combination with the EPI, the quantum
character of the approach admits the discussion of possible effects and
properties that are non-obvious in both classical electrodynamics (CED)
and the conventional interpretation of relativistic quantum mechanics.
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For the sake of concreteness we shall concentrate on the Dirac equation
(DE) but shall remember that there exists a noteworthy parallelism with
the spin 0 Klein-Gordon theory [6].

2. Outline of the EPI

In Gaussian units and the Dirac-Pauli representation the DE is
written

i~
∂ψ

∂t
= {c~α[~̂p− e

c
~A(t, ~x)] + eϕ+mc2β}ψ ≡ Hψ, (1)

where ~̂p = −i~∇ and the magnitude H in the braces is treated as the
actual Hamiltonian of the elctrically charged spin 1

2 object (say electron).
The existence of both positive and negative eigenvalues of the field-free
”Hamiltonian” H0 (the field-free magitudes being indexed hereafter with
zero) induces the thought that H0 (and H) are just pseudo-Hamiltonians
and their change of sign under charge conjugation confirms this [6] : H
can be represented as

H = H̃Λ ; Λ = H/(+H2)
1
2 ), (2)

where H̃ = HΛ is the actual positive Hamiltonian and Λ represents the
sign operator of electric charge ; Λ = Λ† = Λ−1,Λ2 = 1,ΛH = HΛ. (The
origin of energy is taken, in the middle of the gap between positive and
negative pseudo-energy states, so we have an acceptable definition of Λ
only as long as such a clear-cut gap exists). All one-particle operators
must commute with Λ [6] and one can define in a straightforword fashion
one-particle operators as that of electric charge ẽ, etc :

ẽ = eΛ. (3)

Defining the actual states of motion of the reinterpreted theory as
ψ̃ = Λψ, we can recast the DE in the form

i~
∂

∂t
(Λψ̃) = H̃ψ̃, (4)

so the reinterpreted equation of motion has no longer a purely Hamil-
tonian form. Λ0, and hence H̃0, H̃,Λ, ẽ, etc, turn out to be integral op-
erators of (unsharp) range of action ∼ ~/mc = λC (the Compton wave-
length), which magnitude is interpreted as the characteristic size of the
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particle-like kernel of the spin 1
2 object. Since both Λ and H̃ are motion-

determining magnitudes (see eq. (4)), the eigenvalue ±e of ẽ = eΛ and
mc2 of H̃0 (at zero momentum) can be regarded as being the result of
matter motions within the kernel, without necessarily being related to
the existence of any density functions whose integration could generate
them, as they are not obtained this way.

For electrically charged elementary spin 1
2 particles there also exists

in the rest frame their long range electric field but this fact is disregarded
by our integral operators, so renormalization (at that with a correct finite
order of magnitude) is inevitable [6].

3. Conceptions of charge and mass

The well known standard classical relativistic equation of motion of
a point charge e having mass m in a givent classical (external) EM field
Aµ is obtained by varying the charge’s trajectory at a fixed Aµ [7] (Sec.
17) and contains just the Lorentz force :

d~p/dt = e ~E + (e/c)~v × ~H. (5)

The conserved total energy of the particle in static EM fields is Etot =
mc2(1−v2/c2)

1
2 +eϕ. It is then clear that the charge e and mass m of our

point particle are not influenced at all by the magnitude of ~E and ~H, the
charge e being stripped of its own field. Indeed, the said field is nowhere
present in the equation ; besides, the said conservation of Etot is just what
is to be expected of a charge which possesses no field to be emitted, so
e in Eq. (5) simply represents a coupling constant between the EM field
and the bare charge. The explanation that Eq. (5) is applicable when the
charge is small and its influence on the external field is weak [7] (p. 68-9)
is unconvincing since the EM field of a point charge, when considered
explicitly, is infinitely large at the point’s location. (Emission of EM
waves is treated by employing the Maxwell equations but their logic
is quite different : they are obtained by varying Aµ at given 4-current
densities ([7], Sec. 30) that do generate now EM fields of their own, so
it is not really surprising that distinct logics entail distinct physics).

The standard theory based on the DE (1) has features similar to
those of Eq. (5) : we have a fieldless (bare) point charge of constant
magnitude e and mass m. Indeed, that theory deals with only the
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external Aµ and ψ†ψ is treated as point-position probability density
distribution, the mass m being fixed by the Aµ -independent term
mc2β. (This term does not represent any physical operator, as it is non-
commutative with Λ.) Besides, the stationary states of the charge are
infinitely stable, so energy is conserved and EM emissions - that actually
exist - are disregarded.

The common features of Eq. (4) of the EPI with Eqs. (1) and (5) are
that the charge generates no EM fields outside the kernel and the energy
levels (all of which are now positive) are infinitely stable. Everything
else changes since the charge-carrying kernel is extended in the EPI and
physical processes in it are to be identified.

As the physical magnitudes of quantum theory are represented by
operators, we shall consider operator properties. For a non-zero EM field
the operator Λ is represented as Λ = Λ0 + Λf , where Λf is the part of Λ
due to the field. The charge operator ẽ = eΛ has the same eigenvalues as
in the field-free case but the additional term eΛf in ẽ shows that there
are nevertheless certain structural changes of the charge inside the kernel
under the influence of the EM field. Besides, there exists in the EPI no
mass-fixing term of the kind of mc2β in Eq. (1) owing to the presence
of the additional term mc2βΛf in H̃. Therefore, we have no longer a
sharp conception of paticle rest mass in non-zero external fields. (The
term mc2βΛ0 in mc2βΛ fixes the rest mass only in the field-free case.)

It appears that there is just one reasonable explanation of the
latter effect. Namely, the fact that the extended object formed by the
interacting classical field and charged kernel is indefinite in some respects
means that it is engendered by the merging of field and particle matter
and represents a non-autonomous entity (i.e. one that can have no
independent free existence). It is thus neither a pure field formation nor
a pure particle one that can exist autonomously, so it will lack certain
properties of any one of these, e.g. a definite rest mass that characterises
free (autonomous) particle motion. Correspondingly, the parameter m in
Eq. (4) is to be interpreted as the particle’s rest mass in the absence of
any EM fields and Aµ as the 4-potential we would have in the absence
of the particle. A definite rest mass is to be anticipated only of the
autonomous overall system formed by the union of the field and particle
structures.

The above consideration evinces two distinct types of model interac-
tions : (i) direct interaction without any interpenetration of structures,
and (ii) interaction via merging of structures. The EPI of Eq. (4) is
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an example of a type-(ii) theory, whereas point-charge CED and stan-
dard DE theory are type-(i) theories. Indeed, a fieldless point charge
is a structureless entity which cannot influence the structure of finite
classical EM fields but can be influenced by them. This influence, how-
ever, is just external (say imparting acceleration), as such fields cannot
introduce energy in a volume V = 0. There are thus non reasons for
rest-mass variation of a particle of volume V = 0 in these models, so it
is a requirement of the particular model logic (to which these type-(i)
theories conform) that the mass of point charges be constant indeed in
arbitrary external EM fields.

We pass now to the discussion of specific items.

4. Brillouin’s argument on interaction mass

Brillouin finds it strange that in special relativity one assigns a
definite mass to the interaction energy within a system of particles,
whereas when the system is placed in a given classical field one assigns no
mass to the external potential energy ([8], Sec. 2.1). He examines then
a system of two uniformly charged spheres S′ and S′′ (my notations)
at rest of equal radii (= a) that are very small in comparison with the
distance r between the spheres ([8], Sec. 2.4.) and computes within CED
the interaction energy of the respective charges Q′ and Q′′ by integrating
~E′ ~E′′/4π throughout space, the result certainly being Eint = Q′Q′′/r. In
the particular geometry, the density of Eint turns out to be considerable
just quite close to the surface of the spheres, for which reason Brillouin
asserts that the rest mass of each free charged sphere must now be
increased by mint = 1

2Eint/c
2 ([8], Sec. 2.5.).

With respect to the point-charge model given by Eq. (5) his first
remark is answered by the argument at the end Sec. 3 justifying the
standard outlook. We may add that the external potential energy cannot
be interpreted as any interaction energy like Eint ∼

∫
~E′ ~E′′d3x 6= 0

since Epoint = 0 in Eq. (5). If the charged-point and/or external-field
concepts are irrelevant in a givent problem of CED, then one faces a
substantially different situation and has no employ, at least inexplicitly,
the Maxwell equations (generating concepts as Eint, ect). Brillouin’s
second remark (about Mint) applies to a situation of this kind (S′ and
S′′ are explicitly regarded as interacting field sources) but is subject
to critique too. Indeed, the fact that in the geometry considered Eint
is practically equipartitioned among the close vicinities of S′ and S′′
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does not mean that these portions are attached to (carried by) only the
respective individual spheres (i.e. that, say, S′ and E′int ≈ Eint/2 form
a unique body). Really, E′int would just vanish if S′′ would recede to
infinity, which means that E′int is carried by both S′ and S′′, the same
applying to E′′int. CED is a linear theory in which the EM fields obey the
principle of linear superposition and what matters in it are just overall
vector sums of fields created by (and belonging to) all field sources.

The discussion in Sec. 3 offers a counterargument to the one of
Brillouin. Namely, the above case represents one more example of type(ii)
interaction : we have here interpenetration of the electrostatic field of
S′ and S′′. Therefore, Eint is again a measure of the indefiniteness of
the individual-mass conception for systems whose masses M ′ and M ′′

were sharply defined at infinite separation. The said indefiniteness be
noticeable in principle in pertinent experiments.

5. The size-of-charge parameters

The EPI order-of-magnitude estimate D ∼ ~/mc of the rest-
frame size of elementary charges coincides with the one known from
hadron experiments but appears to be strikingly large for electrons :
De ∼ 3.86.10−11 cm. Nonetheless, apart from conceptual advantages
of such a De [6], it can be assessed in experiment too ; Thomson
scattering of low energy photons (that could little affect the kernel’s
size) on electrons is the pertinent method. Indeed, the cross section
6Th = (8π/3)(e2/mec

2)2 = (2/3)α24π(~/mec)2, α = e2/~c ≈ 1/137,
and a standard interpretation of α2 as the probability for absorption
and emission of a photon by the charge [9] yields a ”radius” ∼ ~/m2c of
the electron.

A large De as this would not make the quantum electron insensitive
to the structure e.g. of the proton (p) whose Dp is by three orders of
magnitude smaller than De. Really, sensitivity to details is determined
by the de Broglie wavelength which tends to zero as |~v| → c (and is
then of the same order of magnitude as the Lorentz-contracted size of
the kernel [6] !), thus rendering the elctron sensitive to arbitrarily small
details.

An illustration of the role of the charge-size parameter D for
answering questions of principle may also be found in the unique decay
mode n→ p+e+ ν̄e of the neutron : it could be asked whether n consists
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of p and e, bound by some non-electromagnetic force prior to decay. One
standard answer would be : no, since this would lead to non-conservation
of lepton number in the decay. The latter requirement, however, is an
empiric rule known from experiment. The EPI offers a first-principle
answer : no, because Dn is smaller than De by three orders of magnitude,
whereas any recognizable constituent of well defined mass m of the
neutron should have a size D ∼ ~/mc ≤ Dn = ~/mnc ¿ ~/mec ; for
mass we have correspondingly, mÀ me.

We hope that the above considerations illustrate the useful character
of the EPI for discussing problems in various branches of physics, CED
in that number.
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