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Bell's Locality Assumption in Clauser-Horne Inequality
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ABSTRACT. The author previously identified lack of required symmetry
and ill-defined nature of Bell's inequality. Violation of quantum mechanical
predictions in Bell's type inequalities, here Clauser-Horne's, had been treated
as a proof of the inapplicability of given assumptions, such as Bell's locality,
or hidden variable theory, the latter also implying EPR's notion of physical
reality, to quantum phenomena. This has led to implausible speculation of
possible communication between detectors at a speed faster than light. No
critical examination has been made on Clauser-Horne inequality which were
actually defined in terms of conditional probabilities given polarizer
orientations fixed. The corresponding subensembles of linearly polarized
photon pairs over which they were respectively defined have not been
identified. Unless these subensembles were exactly identical, different
conditional probability values could not be intermingled in numerical sense
in inequalties. In the special case of interest examined herein, the specified
subensembles were found to be all different. The conditional probabilities
defined given specific subensembles including mirror image subensembles
indicated ill-defined nature of Bell's locality assumption.

RESUME. Dans une communication précédente, l'auteur avait identifié une
lacune dans la symétrie requise et une nature mal définie de l'inégalité de
Bell. La violation des prédictions de mécanique quantique dans les
inégalités du type Bell, plus précisément ici du type Clauser-Horne, a été
utilisée comme preuve de l'inapplicabilité pour les phénomenes quantiques
des hypothéses données, telle que la localisation de Bell, ou la théorie des
variables cachées, cette derniére impliquant aussi notion EPR de réalité
physique. Cette situation a donné naissance a une spéculation peu plausible
de communications possibles entre détecteurs a une vitesse plus grande que
la vitesse de la lumiére. Aucun examen critique n’a été fait des inégalités de
Clauser-Horne, qui étaient en fait définies en termes de probabilités
conditionnelles, des orientations fixes de polarisation étant données. Les
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sous-ensembles correspondants de paires de photons linéairement polarisés
(sur lesquels ces sous-ensembles étaient respectivement définis) n'ont pas
été identifiés. A moins que ces sous-ensembles ne soient exactement
identiques, des valeurs différentes des probabilités conditionnelles ne
pouvaient pas étre calculées dans toutes ces inégalités: ces valeurs ne
pouvaient pas avoir une signification mathématique. Dans le cas spécial
examiné ici, les sous-ensembles spécifiés se sont avérés étre tous différents.
Les probabilités conditionnelles définies a partir de sous-ensembles
spécifiques (comprenant des sous-ensembles qui sont des images inverses
l'un de l'autre) exemplifient un autre aspect de la nature mal définie de
I'hypotheses de localité de Bell.

1 Introduction

Bell's type inequality [1-4] was initially considered a tool for
demonstrating that predictions in quantum mechanics (QM) were
incompatible with local hidden variable theory [5], thus by implication also
the notion of physical reality as proposed by Einstein-Podolsky-Rosen (EPR)
[6]. When violations of the inequalities were found in idealized cases, some
doubted applicability of Bell's locality assumption, but no positive proof
existed for the acceptability or rejection of the simple postulate. In this paper
the author identifies numerous mathematical problems and deficiencies found
in Clauser-Horne inequality and demonstrates that Bell's locality assumption
was ill-defined and logically inconsistent with the standard method of
specifying a probability model.

In order to refute the applicability of hidden variable theories in general or
in particular cases, Bell should have specified the exact identities of the said
hidden variable(s) and how such variable(s) could operate only locally with a
specific probability distribution in paired particle experiments. Without such
required specifications Bell's type inequalities should have been criticized for
the vagueness and insupportable mathematical development. For some
reasons, perhaps influenced by the standard theory, a strong tilt towards
acceptance of Bell's work has existed in academic circles to this date. The
author could fondly remember an incidence of receiving a referee's comment
stating that Bell's inequality was inviolable, perhaps for his personal reasons,
from a prominent journal. Canals-Frau stated that Bell's inequality was based
on speculations, and was not an expression of verifiable physical facts [7-9].
Lochak noted that Bell's contention about hidden variables theories placed de
Broglie's wave mechanics under suspicion, because an indeterminate
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singularity point on u wave was supposed to represent an exact position of a
particle obviously forming a hidden variable [10-12]. He correctly identified
the need to distinguish a subensemble of particle pairs from another, but he
focused his investigation on aspects of hidden probability which was assumed
to apply to Bell's argument. Because of these experiences he strongly urged
readers to investigate and clarify the underlying logical problems. It has been
well known that photon pairs maintained the matched polarizations intact
until they reached the polarizers/detectors, as experimentally verified in
agreement with QM prediction by Aspect [13-14] and subsequently by Gisin,
et al, over extended distances [15]. Some QM theorists tried to explain this
fact by suggesting a possible communicating between each photon pair or
between detectors at a speed faster than that of light at the time of actual
measurements. Note that this argument is based on the locality assumption
being held between each photon pair. Therefore a questioning Bell's locality
assumption becomes suddenly an important logical inquiry by itself to clarify
such a myth.

Against these backgrounds the author recently identified lack of required
symmetry and ill-defined nature of Bell's 1964 inequality showing that it was
mathematically meaningless [16,17]. Instead of Bell's locality assumption he
introduced a classical assumption that an undisturbed photon pair should
maintain the respective polarizations until they reached polarizers/detectors
consistently with known experimental results avoiding the speculative notion
of superluminous communication. The analysis of conditional subensembles
of spin ' particles given orientations of detectors fixed could not be used to
investigate Clauser-Horne inequality defined with respect to correlated
photon pairs. A different model was developed in the following. In this paper
the inequality obtained by Clauser, Horne, Shimony, and Holt in testing QM
predictions is examined as presented in Shimony [18]. In this simple example,
six probability values appear as functions of polarizer orientation angles.
Different subensembles of photon pairs must then be identified in order to
define conditional probability values given the polarizer settings fixed. This is
the place where Bell's locality assumption, i.e. the independence between two
detector outcomes, as one detector outcome does not influence the outcome
of the other, and vice versa, becomes entangled with the standard practice of
specifying a probability model.
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2 Preliminary

In case of a correlated photon pair, QM predicts with certainty that, if
measurement on the x-component o, (1) of the photon-1 polarization yields a
detection result (+), or 1, the measurement on o, (2) also yields (+), or 1, for
the partner photon-2. However, the amplitude of an actual measurement
yielding a positive detection result decreases in proportion to the cosine au(i)-x
of the angle between the true polarization orientation unit vector ai) of the i-
th particle, i=1,2, and the polarizer orientation unit vector x. This fact is
incorporated in QM treatment of photon pairs in the comparison between the
predictions using a hidden variable and the QM.

As stated previously the exact role of the hidden variable A appearing in
p.(x) and in p(x,y) in Clasuer-Horne inequalities was not identified by Bell
or by others. Shimony described three types of hidden variables, "simple,
contextual, and stochastic", loc. cit., but EPR never introduced such a notion.
In this paper the author makes a classical assumption that each undisturbed
classical photon pair has the polarization orientation values a(i), i=1,2, which
remain unchanged until they reach polarizers and detectors. The a(i)'s may be
thought of representing the unidenfied A in the author's version of
simplification. This simple assumption does not violate EPR's notion of
physical reality, but it is not in agreement with and obviously violates Bell's
locality assumption.

To identify subensembles of photon pairs in four positive detection pairs,
the incorporation of the cosine detection amplitude simply complicates the
issue. It is the best to specify the angular range of photon polarization
orientation as within * n/2 of the polarizer orientation for yielding positive
detections. In this way, the derivation of probability with respect to random
polarization orientation of photon pairs for a given polarizer/detector can be
eliminated and substituted by an interval statement, which identifies a specific
ensemble of polarization pairs with no regards to actual measurement
outcomes. When a polarizer is positioned perpendicular to the photon
propagation paths spreading in opposite directions, the true polarization
orientation (1) =a measured from a reference axis of the first particle can
be assumed uniformly distributed over [-n/ 2, 7/ 2], and similarly for the
second particle with o(2) = a+n. (The convention of a(2) =a +n is used
here to associate with the wrap around in excess of 2z in mirror images as
discussed later.) However, the assumption of uniform distribution over a's is
not required so long as the assumed density is continuous. Even with any
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arbitrary density of photon pairs the following argument still holds. If two
different polarizer settings are used for detecting polarization orientation of
each individual photon of pairs, a joint detection positive on both can occur
only in the intersection of the two angular ranges defined above in this
analysis scheme. The distinction between two subensembles can be visualized
by applying the cosine envelop of the polarizer throughputs over the two
different angular ranges.

In the next sections all mathematical or notational problems are listed
under the heading of "Note" with a consecutive number assigned for the ease
of identification.

3 Clauser-Horne inequality

For the purpose of avoiding misrepresentations, the general outline of the
argument presented in Shimony is used in the following [4,1820]. “Let
x,y,x,y' denote four polarizer orientation angles measured from a reference
line in the (x,y)-plane perpendicular to the photon paths spreading towards
the opposite directions. The detection systems 1 and 2 are spatially separated
and each system comprised of a polarizer and detector registering (+) or (-) (1
or 0) measurement outcomes for each incoming photon. A hidden variables
theory assumes that every complete set A of 1+2 assigns a definite probability

p 1/1 (X) to the (+) outcome of the test on 1 when the parameter has value X,

independently of what test is performed on 2 and independently of the
outcome of that test; and likewise it assigns the probability pi (Y) to the (+)
outcome of the test on 2 when the parameter has value Y independently of the
choice of X or the outcome of the experiment on 1. Shimony further

presented three comments, two of which are briefly outlined below:
Comment (i): By standard probability theory the probability of a (-)

outcome of the experiment on 1 is 1-p’, (X), and similarly 1-p3 (Y) on 2.

Because of the independence conditions the probability of a joint (+)(+)
outcome in an X-teston 1 and Y-teston2 is p’, (X)p3 (Y).

Comment (ii): The definition of a local hidden variables theory makes no
reference at all to the QM characterization of parts 1 and 2 and the projection
operators on these spaces. The definition merely refers to two families of
bivalent empirical tests ... (More comments on QM predictions appear.)”
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Clauser-Horne showed that for any set of four real numbers, r'r,ss;
0<r,r,s",s<1, the inequality

A8 s s —rs—1'-s'< 0 (3.1)

holds. If x' and x are two values of X, and y' and y are two values of Y in the
definition of a local hidden variables theory, then the p!, (x), pl, (x), p3(y),

p3(y) are said to be probabilities lying between 0 and 1, which may be
substituted for r', r, s', s of (3.1).

Note #1: In truth the p;(u)'s, i=1,2, u=x'xyly, are
conditional probabilities given one of the orientation angles X',
x, y, or y fixed, and they do not constitute unconditional
probabilities free from all the conditioning i's and u's. Such
conditional probabilities defined on different i's and u's cannot
be multiplied or added as suggested into the form of (3.1)
without having the u's exactly identical for i=1,2.

Note #2: The notation is confusing. Since the standard
expression of a conditional probability p of an event A given
B is denoted p(A[B) = ps(A), the above p’, (u) should represent
a conditional probability of an event u given the A fixed.
Since the u is a prechosen fixed orientation of polarizer
setting, it cannot be a random variable, while the said hidden
variable A is assumed to be the only plausible random variable
under the model consideration. If so, the required

mathematically correct notation should be pi () instead of

p’ (u) as given here.

Under the locality assumption (i) the probability of joint (+)(+) outcome is
givenasp , (X,Y) = p L (X)p2 (Y). Then (3.1) yields

1< pa(xLy) + paxy) + paxy) - paxy) -pL (x) - p3(y) <0 (3.2)
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It is then said that "in an experimental situation it is impossible to control
the choice of the complete state A of the pair 1+2, but it may be assumed that
experimental arrangement determines a probability distribution p over the
space of complete states. The averages of pl, (X), p3(Y), p,(X,Y) using

the distribution p are respectively denoted as p'(X), p*(Y), and p(X,Y).
Averaging over A's using such a distribution p and applying the new notation
to (3.2), the final inequality

-1 < p(x\y) + p(xLy) +p(xy) - p(xy) —p' (x) - p*(y) <0 (3.3)
is obtained.

Note #3:  The fact that x', X, y', y are prechosen fixed
values and A is the only random variable to deal with as stated
in Note #2 becomes apparent in this paragraph. Even at this
stage the exact identity of the A is still kept under shroud. No
probability distribution p is specified either. Without having
them completely specified, the said averaging operation is only
vacuously defined. Therefore the stated transition from (3.2) to
(3.3) must be deemed at most a figment of imagination.

Note #4: Under the Notes #2 and #3, the said independence
px(X,Y):pxl(X)pxz(Y) must be rewritten as
Pxay(M)=px'(M)py (L) implying that the conditional probability
of given XAY fixed is the same as the product of two
conditional probabilities of given X and given Y, totally
different from the original equation. Therefore (3.2) can never
be derived as shown.

Note #5: In a particular situation satisfying x'=x=y'=y as
described in Note #1, which makes the manipulation of (3.2)
possible, pAX,X) = pL (X)p3(X) = p ,(X)* should hold for

some p, (X). However, since pl, (X)=p 3 (X)=pi(X) for every

photon pair for a given X fixed under the author's classical
assumption, the sum of the six terms becomes zero satisfying
(3.2) trivially leading to a meaningless result.
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In case of an equivalent QM situation the state of each photon pair is
represented by the superposition of unit vectors

Y = [ud1) ua2) + ug1) ug2)y/ N2 (3.4)

where a and B are chosen orthogonal to each other. The QM probabilities for
(+) outcomes in an a-test on 1 and a B-test on 2 are then calculated to be

Pl ()= p2(B)= % (3.5)

and the QM probability for joint detection in an X-test on 1 and a Y-test on 2
after passing through two polarizers in arbitrary orientations X and Y is
given by

p, (X.Y)= (1/2)cos? (Y-X). (3.6)

In particular, if the polarizer settings are chosen as x'=n/ 4, x=0, y'=n/8,
and y=371/8 respectively, then a numerical contradiction of (3.3) in

p,®y)tp, &y +tp, xy)
-p, &xY)-p,(x)-p, ()=0207 (3.7)

is obtained using (3.6) showing a violation of the upper bound of (3.3)
according Shimony, loc. Cit

4 Subensembles of photon pairs

The same four polarizer settings as specified for (3.7) are used in the
following analysis. The angular ranges of photon polarization over which a
positive detection can be obtained for the given X', x, y', and y are then:
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for x=0, (x) =[-n/2, n/2]

for y'= /8, ") =[-3n/8, 51/8] 4.1
for x'= /4, (x") = [-/4, 3/4]

for y=371/8, (y) = [-n/8, Tn/8]

respectively, and p! (x"), p! (x), p% (¥"), and p2 (y) can tentatively be defined
over these specific ranges separately, provided that no joint probabilities,
such as p(x\y"), p(x,y), p(x,y') or p(x,y), do not appear simultaneously with
them. (The said requirement stems from the way a bivariate probability model
is specified as explained below.)

Joint detection outcomes with respect to pairs of polarizer settings, (x',y"),
xLy), (x¥), or (x,y) must be defined conditionally given the specific
combinations of selected polarizer orientations. For instance (+)(+) detections
for (x',y') can only occur over the intersection of the two angular intervals of
(x") and (y'), while other detections (+)(-), (-)(+), and (-)(-) can occur over
the union of these two intervals of (x') and (y'). Therefore it is necessary to
examine all the unions and intersections derived from these four intervals.
Let (XVY) and (XAY) denote the union and intersection of the respective
angular intervals for the polarizer settings of X and Y, where X=x'x, and
Y=yly, in (4.1). Then

xVy)=[-n/2, Tn/8] xAy) =[-8, /2]

(x V) = [-n/2, 51/8] (x AY) = [-30/8, 1/2] 4.2)
x'Vy)=[-1/4, Tn/8] x'Ay)=[-1/8, 3n/4]

(X'Vy') = [-3n/8, 3m/4] X' AY) = [-n/4, 51/8]

hold, clearly demonstrating that the events of joint detections are defined
over different subensembles of photon pairs in terms of the unions and
intersections. Note that the probability values, p(X,Y), p' (x), p* (¥)) in (3.2)
or (3.3) are now found conditionally defined over the respective
subensembles of (XVY), (x'), and (y'). (A potential problem of this tentative
statement is further discussed in Section 6.) Accordingly they can never be
added or subtracted numerically as given in (3.3) as if they are unconditional
probability values free from the conditioning on subensembles of (XVY), (x'),
or (y"). This was the most critical problem of (3.3) making it mathematically
meaningless as previously cautioned in Note #1.
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5 Wrap around

In the above (4.1) and (4.2) the angular intervals were specified in the
first, second, and fourth quadrants. By adding © to each bound, the mirror
images of the above angular intervals reflected upon the axis perpendicular to
X', X, y', or y respectively can be constructed. These mirror image angular
intervals define exactly identical subensembles of photon pairs as defined in
(4.1) and (4.2) due to the fact that the created photon pairs must have
polarization orientation of (o,o+m). The mirror image subensembles are
identified as:

for x=m: (x) =[n/2, 31/2]

for y'=97 /8: (y") =[57/8, 137/8]

for x'=5m/4: (x") = [31/4, Tr/4]

for y=111/8: (y) =[7n/8, 157/8]

and (5.1)
(xVy) =[n/2, 157/8] (xAy) = [Tn/8, 31/2]

(xVy") = [w/2, 131/8] (xAY') = [57/8, 3m/2]

(x'Vy) = [3n/4, 157/8] (xX'Ay) = [Tn/8, T/4]

(x'Vy") = [5n/8, Tn/4] (xX'Ay") = [3n/4, 131/8]

respectively. An examination shows that these intervals of the union, (uvv),
are actually overlapping with those given in (4.2). The overlapped angular
intervals are

xVy)'s: [7/2, 77/8] and [3m/2, 157/8]
(xXVy")'s: [7/2, 57/8] and [3m/2, 137/8] (5.2)
(x'Vy)'s: [3n/4, 7/8] and [7w/4, 157/8]
(x'Vy")'s: [57/8, 3n/4] and [137/8, Tm/4]

respectively. In each case these two overlapped angular intervals both have
the same size angular range, and the overlap of the (XVY)'s span over the
ranges of size 3n/8, /8, /8, and n/8 respectively. The overlaps cause the
following subtle mathematical problems.
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6 Inconsistency with standard probability model specification

When a joint distribution of X and Y is defined in a standard probability
model, the univariate distribution of X (or Y) must be obtained by integrating
out the other (so-called muisance' meaning unneeded) variable Y (or X) in
derivation of the marginal distribution of x' (or y'). This implies that p!(x')
or p?(y') must be derived as the marginal distribution from (XVY) given in
(4.2) and (5.1), not directly from (x') or (y') in (4.1) as previously indicated in
Section 4. However, these (XVY)'s have the overlapping angular intervals
identified in (5.2). The overlap implies that the photon pairs which have
polarization orientations falling into those intervals of (5.2) must be counted
twice. Such a practice is not permitted in standard specification of a
probability model.

In general a probability distribution must be assigned with respect to a
field (a mathematical jargon, not in the sense of a familiar physical field, but
it means an exhaustive class of all possible unions and intersections of distinct
disjoint subintervals including a null set in this case) generated from a set of
subintervals of a given interval. In the present case a class of angular
subintervals is generated over the 2r range of [-w,m]and each one of disjoint
subintervals must be counted only once. This practice of having each
subinterval counted no more than once is critically important to maintain a
logical consistency of a probability model. So, the double counting of photon
pairs over the overlapping angular intervals of (5.2) in the marginal

distribution of p', (x') or p3 (y') derived from the subensemble (x'Vy'), (x'Vy),

or (xVy') clearly violates the standard practice of probability model
specification.
The trouble started when the local independence assumption of p,(X,Y) =

pl (X)p3(Y) is introduced under (i), while the p,(X,Y)'s are integrated over

A's without specifying what the A is and what the probability distribution p is.
Note that no similar argument can be found in the original EPR paper. More
significantly both (3.2) and (3.3) have become mathematically meaningless
due to lack of attention to the detailed probability specification. The Notes
#1-5 further identified deficiencies of the mathematical presentation found in
Shimony's text. In particular Note #4 showed that (3.2) can never be derived.
The findings of the present paper shows that violations of Bell's type
inequalities are not due to the observable physical processes of quantum
phenomena analyzed using hidden variables theories as originally intended,
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but instead due to mathematical mistakes made by those investigators who
reported the findings.

7 Summary

A classical assumption of initial conditions for photon polarization pairs
(o,o+m) was first introduced specifying that undisturbed correlated photon
pair should maintain the original polarization orientation values until they
reached polarizers/detectors. The derivation of the Clauser-Horne inequality
in (3.3) required examination of the subensembles of photon pairs over which
the conditional probabilities were defined. A particular case of interest with
the polarizer settings at x'=m/4, x=0, y'=m/8, and y=37/8 showed that the
probabilities, p(x,y"), p(x,y)..., p'(x‘), pz(y‘), appearing in (3.3) were actually
conditional probabilities defined over given subensembles, (xVy'), (x'Vy),
etc., either as the joint probabilities or as marginal probabilities. Values of
conditional probabilities defined over different subensembles could never be
added or subtracted as given in (3.3). Consequently the validity of Clasuer
Horne inequality could not be upheld. A further investigation revealed that
the angular intervals of unions, (xVy'), (x'Vy), etc., including the mirror
image angular intervals, overlapped as shown in (5.2) beyond the 2r range.
This implied that p'(x') and p* (') counted those photon pairs falling into
those intervals in (5.2) twice in disagreement with the standard specification
of a probability model. This was a practice not permitted in probability
theory. One concludes that Bell's locality assumption itself has led to this
logical inconsistency.
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