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ABSTRACT. In this paper a new look on the electro-magnetic duality
is presented and appropriately exploited. The duality analysis in the
nonrelativistic and relativistic formulations is shown to lead to the idea
the mathematical model field to be a differential form valued in the 2-
dimensional vector space R2. A full R2 covariance is achieved through
introducing explicitly the canonical complex structure I of R2 in the
nonrelativistic equations. The connection of the relativistic Hodge ∗
with I is shown and a complete coordinate free relativistic form of
the equations and the conservative quantities is obtained. The duality
symmetry is interpreted as invariance of the conservative quantities
and conservation equations.

1 Introduction

The recent developments in superstring and brane theories show that
the concept of duality plays and probably will play more and more fun-
damental role in theoretical and mathematical physics. But the roots
of duality in field theory, as well as the roots of the whole field theory,
can be found in classical electrodynamics, i.e. in Maxwell equations.
Therefore, a detailed and thorough understanding of the duality nature
of classical electrodynamics seems to be a very important first step in
getting well acquainted with the duality notion.

At first sight the electromagnetic duality seems quite simple and not
much promising theoretical tool, but a closer look reveals the opposite.
In fact, as we shall see later, a careful study of the duality brings us
to the conclusion that the adequate mathematical model object of the
electromagnetic field should have a more complicated structure than
just the couple (E,B), or Fµν . As it is well known [1], one of the
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most frequently used ways of introducing duality makes use of complex
electro-magnetic vectors (E + iB) and transformation of the kind (E +
iB)→ eiϕ(E + iB), but such a formal step seems closer to a peculiarity
notice than to reveal an important feature of the theory, while the real
presence of the R2-complex structure inside the electromagnetic theory
seems to stay not fully understood as an important structure property
of this theory. Following the above mentioned complex vector approach
of consideration many questions stay unanswered, e.g. since on real
amnifolds there are only real vector fields where the complex vector fields
come from; why iB and not iE; why in the relativistic formulation i =√
−1 disappears and, instead, a complex structure (through the Hodge ∗)

in the 6-dimensional module of 2-forms on the Minkowski space appears,
etc.

As we shall see, an adequate (nonrelativistic or relativistic) formula-
tion of classical electrodynamics really needs complex structure, but not
complex vectors on real manifolds. The usual duality transformations
turn to be those linear isomorphisms of the standard complex structure
I in R2, which are also isometries of the standard euclidean metric in
R2. In our approach the duality transformations appear as closer related
to the invariance of the conserved quantities of the theory than to the in-
variance properties of the equations. And this should be expected since
we can treat them as natural extension of the usual space-time isome-
tries, which, as we know, are basic tools in formulating and computing
the conservative characteristics of any physical field.

The first man who noticed the duality properties of electromagnetic
equations was Heaviside [2]. A further development of Heaviside’s notice
was given later by Larmor [3]. A more detailed study of electromagnetic
duality was made by Rainich [4] in the frame of General Relativity.
A comparatively complete presentation may be found in the extensive
paper of Misner and Wheeler [5] also in the frame of General Relativity
in connection with their attempt to geometrize classical physics and to
give topological interpretation of charges. Electromagnetic duality has
always been in sight of those trying to introduce magnetic charges and
currents in the theory, [6],[7]. In [8] one may find duality considerations
in the frame of nonlinear electrodynamics of continuous media. A formal
generalization for p-forms is given in [9]. A modern consideration of
electromagnetic duality, directed to superstring and brane theories may
be found in [1]; the possible nonabelian generalizations are considered in
[10].



A New Look on the Electromagnetic Duality . . . 623

In this paper we pursue three main purposes. First, we are going
to give a brief nonrelativistic and relativistic reviews of what is usually
called electromagnetic duality in vacuum and in presence of electric and
magnetic charges, without referring to other physical theories. Second,
we shall present a new understanding of this duality, leading to a new
and, in our view, more adequate mathematical nature of the (nonrela-
tivistic and relativistic) model objects plus complex structure. Finally,
we shall represent classical electrodynamics entirely in terms of the new
nonrelativistic and relativistic mathematical model objects.

2 Electromagnetic Duality

2.1 Nonrelativistic consideration. We consider first the pure field
Maxwell equations

rotE +
1
c

∂B
∂t

= 0, divB = 0, (1)

rotB− 1
c

∂E
∂t

= 0, divE = 0. (2)

First we note, that because of the linearity of these equations if
(Ei,Bi), i = 1, 2, ... are a collection of solutions, then every couple of
linear combinations of the form

E = aiEi, B = biBi (3)

(sum over the repeated i = 1, 2, ...) with arbitrary constants (ai, bi) gives
a new solution.

We also note, that in the static case the pure field Maxwell equations
reduce to:

∗dE = 0, ∗dB = 0, ∗d ∗B = 0, ∗d ∗E = 0, (4)

where ∗ is the euclidean Hodge ∗-operator (see the Note at the end of
the paper), d is the exterior derivative and the vector fields E and B are
identified with the corresponding 1-forms through the euclidean metric g.
The substitution E → ∗E, B → ∗B, because of the relation ∗2 = ±id,
turns the first equation of (4) into the fourth one and vice versa, the
fourth - into the first one; also, the second equation is turned into the
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third one, and vice versa, the third - into the second one. Hence, in this
special case we can talk about ∗-symmetry of the equations.

The important observation made by Heaviside [1], and later consid-
ered by Larmor [2], is that the substitution

E→ −B, B→ E (5)

transforms the first couple (1) of the pure field Maxwell equations into
the second couple (2), and, vice versa, the second couple (2) is trans-
formed into the first one (1). This symmetry transformation (5) of the
pure field Maxwell equations is called special duality transformation, or
SD-transformation. It clearly shows that the electric and magnetic com-
ponents of the pure electromagnetic field are interchangeable and the
interchange (5) transforms solution into solution. In the transformed
solution the magnetic component is the former electric component and
vice versa, i.e. the electric component may be considered as magnetic
if needed, and then the magnetic component should be considered as
electric. This feature of the pure electromagnetic field reveals its dual
nature.

It is important to note that the SD-transformation (5) does not
change the energy density 8πw = E2 + B2, the Poynting vector 4πS =
c(E×B) , and the (nonlinear) Poynting relation

∂

∂t

E2 + B2

8π
= −divS.

Hence, from energy-momentum point of view two dual, in the sense of
(5), solutions are indistinguishable.

Note that the substitution (5) may be considered as a transformation
of the following kind:

(E,B)
∥∥∥∥ 0 1
−1 0

∥∥∥∥ = (−B,E). (6)

The following question now arises naturally: do there exist constants
(a, b,m, n), such that the linear combinations

E′ = aE +mB, B′ = bE + nB, (7)

or in a matrix form

(E′,B′) = (E,B)
∥∥∥∥ a b
m n

∥∥∥∥ = (aE +mB, bE + nB), (8)
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form again a vacuum solution? Substituting E′ and B′ into Maxwell’s
vacuum equations we see that the answer to this question is affirmative
iff m = −b, n = a, i.e. iff the corresponding matrix S is of the form

S =
∥∥∥∥ a b
−b a

∥∥∥∥ . (9)

The new solution will have now energy density w′ and momentum den-
sity S′ as follows:

w′ =
1

8π

(
E′2 + B′2

)
=

1
8π

(a2 + b2)
(

E2 + B2

)
,

S′ = (a2 + b2)
c

4π
E×B.

Obviously, the new and the old solutions will have the same energy and
momentum if a2 + b2 = 1, i.e. if the matrix S is unimodular. In this case
we may put a = cosα and b = sinα, where α = const, so transformation
(8) becomes

Ẽ = E cosα−B sinα, B̃ = E sinα+ B cosα. (10)

Transformation (10) is known as electromagnetic duality transforma-
tion, or D-transformation. It has been a subject of many detailed studies
in various aspects and contexts [1],[3]-[9]. It also has greatly influenced
some modern developments in non-Abelian Gauge theories, as well as
some recent general views on duality in field theory, esp. in superstring
and brane theories (classical and quantum). In the next section we shall
study this transformation from a new point of view, following the idea
that (E,B) are two vector components of one mathematical object hav-
ing some more complicated nature.

From physical point of view a basic feature of the D-transformation
(10) is, that the difference between the electric and magnetic fields be-
comes non-essential: we may superpose the electric and the magnetic
vectors, i.e. vector-components, of a general electromagnetic field to
obtain new solutions. From mathematical point of view we see that
Maxwell’s equations in vacuum, besides the usual linearity (3) men-
tioned above, admit also ”cross”-linearity, i.e. linear combinations of
E and B of a definite kind define new solutions: with every solution
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(E,B) of Maxwell’s vacuum equations a 2-parameter family of solutions
can be associated by means of linear transformations given by matrices
of the kind (9). If these matrices are unimodular, i.e. when a2 + b2 = 1,
then all solutions of the family have the same energy and momentum.
In other words, the space of all solutions to the pure field Maxwell equa-
tions factors over the action (8) of the group of linear maps S : R2 → R2

represented by matrices of the kind (9).
It is well known that matrices S of the kind (9) do not change the

canonical complex structure I in R2: we recall that if the canonical basis
of R2 is denoted by (ε1, ε2) then I is defined by I(ε1) = ε2, I(ε2) = −ε1,
so if S is given by (9) we have: S.I.S−1 = I. Hence, the electro-
magnetic D-transformations (10) coincide with the unimodular
symmetries of the canonical complex structure I in R2. This im-
portant in our view remark clearly points out that the canonical complex
structure I in R2 should be an essential element of classical electro-
magnetic theory, so we should not forget about it and in no way neglect
it. Moreover, in my opinion, we must find an appropriate way to
introduce I explicitly in the theory.

In presence of electric current je and electric charges ρe Maxwell
equations (1)-(2) lose this D-symmetry. In order to retain it magnetic
charges with density ρm and magnetic currents jm = ρmv are usually
introduced, and of course, the Lorentz force is correspondingly modified.
The new system of equations looks as follows:

rotE +
1
c

∂B
∂t

= −4π
c
jm, divB = 4πρm, (11)

rotB− 1
c

∂E
∂t

=
4π
c
je, divE = 4πρe, (12)

µ∇vv = ρeE +
1
c

(je ×B) + ρmB− 1
c

(jm ×E), (13)

where µ is the mass density of the particles and it is assumed that
particles do not vanish and do not arise. Now the whole, or extended,
D-transformation looks in the following way:

Ẽ = E cosα−B sinα,

j̃e = q̃ev = je cosα− jm sinα = (ρe cosα− ρm sinα)v
(14)
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B̃ = E sinα+ B cosα,

j̃m = q̃mv = je sinα+ jm cosα = (ρe sinα+ ρm cosα)v.
(15)

Hence, the 1-parameter family of transformations (14-15) is a symmetry
of the system (11-13).

The corresponding considerations concerning one particle carrying
electric and magnetic charges may be found in [6]. We shall omit this
simple case.

Finally we note that D-transformations change the two well known
invariants: I1 = (B2 −E2) and I2 = 2E.B in the following way:

Ĩ1 = B̃2 − Ẽ2 = (B2 −E2) cos 2α+ 2E.B sin 2α = I1 cos 2α+ I2 sin 2α,
(16)

Ĩ2 = 2Ẽ.B̃ = (E2 −B2) sin 2α+ 2E.B cos 2α = −I1 sin 2α+ I2 cos 2α.
(17)

It follows immediately that

Ĩ1
2

+ Ĩ2
2

= I2
1 + I2

2 ,

i.e. the sum of the squared invariants is a D-invariant.

2.2 Relativistic consideration. Recall Maxwell’s pure field equations
in relativistic form

dF = 0, d ∗ F = 0. (18)

The Hodge ∗-operator is defined by the relation

α ∧ ∗β = −η(α, β)
√
|det(ηµν)|dx ∧ dy ∧ dz ∧ dξ,

where α and β are a p-forms on the Minkowski spacetime M , ξ = ct is the
time coordinate, and the Minkowski metric η has signiture (−,−,−,+).

We note first 2 simple symmetries of (18).

1o. The transformation F → ∗F keeps the system (18) the same.
This follows from the property ∗(∗F) = −F of the ∗-operator when
restricted on 2-forms.
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2o. Any conformal change of the Minkowski metric η → f2η, where
f is everywhere different from zero function on the Minkowski space M ,
keeps the restriction of the Hodge ∗ to 2-forms on M the same, so (18)
is conformally invariant.

Recalling the explicit form of F and ∗F in canonical coordinates

F =B3dx ∧ dy −B2dx ∧ dz + B1dy ∧ dz
+ E1dx ∧ dξ + E2dy ∧ dξ + E3dz ∧ dξ

(19)

∗F =E3dx ∧ dy −E2dx ∧ dz + E1dy ∧ dz
−B1dy ∧ dz −B2dy ∧ dξ −B3dz ∧ dξ

(20)

we see that ∗ replaces E with −B and B with E, i.e. the action of
∗ gives the SD-transformation. On the other hand an extended SD-
transformation may be introduced by

(F, ∗F)
∥∥∥∥0 −1
1 0

∥∥∥∥ = (∗F,−F).

We note the difference: the ∗-operator transforms a p-form β into a
(4− p)-form ∗β, while the above SD-transformation transforms a couple
of forms to another couple of forms.

As in the nonrelativistic case, this SD-transformation is readily ex-
tended to the full D-transformation

(F, ∗F)→ (F , F̃) = (F, ∗F)
∥∥∥∥cosα − sinα

sinα cosα

∥∥∥∥ ,
i.e.

F = F cosα+ ∗F sinα, F̃ = −F sinα+ ∗F cosα. (21)

The above transformations transform solutions to solutions. Moreover,
in contrast to the nonrelativistic case, where linear combinations of E
and B of special kind transform solutions to solutions, here every linear
combination of F and ∗F, i.e. a transformation of the kind

Fg = aF + b ∗ F, F̃g = mF + n ∗ F, (22)

where the subscribe g means ”general”, with arbitrary constants (a, b,m, n)
gives again a solution. As we shall see this is because some of the special
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properties of S are now hidden in the ∗-operator through the pseudo-
metric η, and the components F and ∗F are interrelated.

It is important to note that transformation (21) keeps the energy-
momentum tensor

Qν
µ =

1
4π

[
1
4
FαβFαβδνµ − FµσFνσ

]
=

1
8π

[
−FµσFνσ − (∗F)µσ(∗F)νσ

]
,

(23)

and its divergence

∇νQν
µ = − 1

4π

[
Fµν(∇σFσν) + (∗F)µν(∇σ(∗F)σν)

]
(24)

the same: Qν
µ(F) = Qνµ(F), ∇νQν

µ(F) = ∇νQν
µ(F).

We see that the relativistic formulation of Maxwell theory naturally
admits general R2-covariance as far as transformations (22) are implied
to act on two 2-forms of the kind (F, ∗F). As for the D-transformations,
they are closely related to the symmetries of the energy-momentum
quantities and relations.

The two quantities

(4π)2QµνQ
µν = I2

1 + I2
2 , (4π)2QµσQ

νσ =
1
4

(I2
1 + I2

2 )δνµ

also enjoy the D-invariance. We note also that the eigen values of Qν
µ are

D-invariant, as it should be, while the eigen values of F and ∗F, given
respectively by

λ1,2 = ±
√
−1

2
I1 +

1
2

√
I2
1 + I2

2 , λ3,4 = ±
√
−1

2
I1 −

1
2

√
I2
1 + I2

2 ,

λ∗1,2 = ±
√

1
2
I1 +

1
2

√
I2
1 + I2

2 , λ∗3,4 = ±
√

1
2
I1 −

1
2

√
I2
1 + I2

2

are not D-invariant. Only when I1 = I2 = 0, the so called null field case,
the eigen values of F and ∗F are D-invariant since in this case they are
zero.

The relativistic generalization of equations (11)-(13) is

∇νFνµ = −4πjµe , (25)
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∇ν(∗F)νµ = −4πJµm, (26)

µc2uν∇νuµ = −Fµνjνe − (∗F)µνJνm, (27)

where µ is the invariant mass density, jµe = ρeu
µ, Jµm = (Jm, J4) =

(−jm,−ρm), and uµ is the 4-velocity vector field.
The above system (25)-(27) enjoys the following symmetry transfor-

mation:

F→ ∗F; je → Jm; Jm → −je.

This invariance is a particular case of the more general invariance trans-
formation given by relations (21) plus

j′e = je cosα− Jm sinα, J ′m = je sinα+ Jm cosα,

which is readily checked. It should be noted that these invariances
make use of the property ∗2 = −id of the restricted to 2-forms Hodge
∗-operator, and of the constancy of the phase angle α in the D-
transformation.

Finally we’d like to note the different physical sense of equation
(27) compare to equations (25)-(26): equation (27) equalizes changes of
energy-momentum densities, it is a direct differential form of the energy-
momentum balance relation between the field and the particles, carrying
mass and electric and magnetic charge; equations (25)-(26) are relativis-
tic forms of the differential equivalents of the time changes of the flows
through 2-surfaces of E and B, moreover, these two equations identify
quantities of different physical nature: it is hard to believe that differ-
entiating field functions (the left hand side) we could obtain currents of
charged mass particles (the right hand side).

3 The Suggestion and Developments

3.1 Nonrelativistic formulation. We summurize some of the D-
features of the field description through Maxwell equations.

1. The D-invariance of the field equations is a mathematical repre-
sentation of the dual electro-magnetic (E,B)-nature of the field. This
dual nature is explicitly seen in the nonrelativistic form of Maxwell’s
equations: E and B depend on each other but they can be always dis-
tinguished from each other.
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2. All energy-momentum quantities and relations are D-invariant.

3. The D-transformation is represented by a rotation in a 2-
dimensional vector space and acts through superposing the electric and
magnetic components of the field and the corresponding currents.

4. The rotation angle α does not depend on the space-time coordi-
nates.

5. The electro-magnetic duality transformation keeps and emphasises
the field’s united nature.

The following suggestion comes from these notices: the electromag-
netic field, considered as one physical object, has two physically distin-
guishable interrelated vector components, (E,B), so the adequate mathe-
matical model-object must have two vector algebraically distinguishable
and differentially interelated (through the equations) components and
must admit 2-dimensional linear transformations of its components. In
particular, the 2-dimensional rotations should be closely related to the in-
variance properties of the energy-momentum characteristics of the field.
But every 2-dimensional linear transformation requires a ”room where
to act”, i.e. a 2-dimensional real vector space has to be explicitly pointed
out and incorporated in the theory. This 2-dimensional space has al-
ways been implicitly present inside the electromagnetic field theory, but
has never been introduced explicitly. We shall introduce it through the
following assumption.

The electromagnetic field is mathematically represented (nonrelativisti-
caly) by an R2-valued differential 1-form ω, such that in the canonical
basis (ε1, ε2) in R2 the 1-form ω looks as follows

ω = E⊗ ε1 + B⊗ ε2. (28)

Remark. In (28), as well as later on, we identify the vector fields and 1-
forms on R3 through the euclidean metric and we write, e.g. ∗(E∧B) =
E×B. Also, we identify (R2)∗ with R2 through the euclidean metric.

Now we have to present equations (11)-(13) correspondingly, i.e. in
terms of R2-valued objects.
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We begin with the electric ρe and magnetic ρm densities, considering
them as components of an R2 valued function Q, i.e.

Q = ρe ⊗ ε1 + ρm ⊗ ε2. (29)

The two currents je and jm, considered as 1-forms, become components
of an R2-valued 1-form J as follows

J = je ⊗ ε1 + jm ⊗ ε2. (30)

As we mentioned earlier, the above assumption (28) requires a gen-
eral covariance with respect to transformations in R2, so, the complex
structure I has to be introduced explicitly in the equations. In order
to do this we recall that the linear map I : R2 → R2 induces a map
I∗ : ω → I∗(ω) = E ⊗ I(ε1) + B ⊗ I(ε2) = −B ⊗ ε1 + E ⊗ ε2. We
recall also that every operator D in the set of differential forms is nat-
urally extended to vector-valued differential forms according to the rule
D → D×id, and id is usually omitted. Having in mind the identification
of vector fields and 1-forms through the euclidean metric we introduce
now I in Maxwell’s equations (11)-(13) through ω in the following way:

∗dω − 1
c

∂

∂t
I∗(ω) =

4π
c
I∗(J ), δω = −4πQ, (31)

where δ = ∗d∗ is the codifferential. Two other equivalent forms of (31)
are given as follows:

dω − ∗1
c

∂

∂t
I∗(ω) =

4π
c
∗ I∗(J ), δω = −4πQ,

∗dI∗(ω) +
1
c

∂

∂t
ω = −4π

c
J , δω = −4πQ.

In order to verify the equivalence of (31) to Maxwell equations (11)-(13)
we compute the marked operations. For the left-hand side of the first
(31) equation we obtain

∗dω − 1
c

∂

∂t
I∗(ω) =

(
rotE +

1
c

∂B
∂t

)
⊗ ε1 +

(
rotB− 1

c

∂E
∂t

)
⊗ ε2,

and the right-hand side is

4π
c
I∗(J ) = −4π

c
jm ⊗ ε1 +

4π
c
je ⊗ ε2
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The second equation δω = −4πQ is, obviously, equivalent to

divE⊗ ε1 + divB⊗ ε2 = 4πρe ⊗ ε1 + 4πρm ⊗ ε2

since δ = −div. Hence, (31) coincides with (11)-(13).
We shall emphasize once again that according to our general as-

sumption (28) the field ω will have different representations in the dif-
ferent bases of R2. Changing the basis (ε1, ε2) to any other basis
ε1′ = ϕ(ε1), ε2′ = ϕ(ε2), means, of course, that in equations (31) the
field ω changes to ϕ∗ω and the complex structure I changes to ϕIϕ−1.
In some sense this means that we have two fields now: ω and I, but I
is given beforehand and it is not determined by equations (31). So, in
the new basis the I-dependent equations of (31) will look like

∗dϕ∗ω −
1
c

∂

∂t
(ϕIϕ−1)∗(ϕ∗ω) =

4π
c

(ϕIϕ−1)∗(ϕ∗J ).

If ϕ is a symmetry of I : ϕIϕ−1 = I, then we transform just ω to ϕ∗ω,
so if ω is a solution then ϕ∗ω is also a solution.

In order to write down the Poynting energy-momentum balance re-
lation we recall the product of vector-valued differential forms. Let
Φ = Φa⊗ea and Ψ = Ψb⊗kb are two differential forms on some manifold
with values in the vector spaces V1 and V2 with bases {ea}, a = 1, ..., n
and {kb}, b = 1, ...,m, respectively. Let f : V1 × V2 → W is a bilinear
map valued in a third vector space W . Then a new differential form,
denoted by f(Φ,Ψ), on the same manifold and valued in W is defined
by

f(Φ,Ψ) = Φa ∧Ψb ⊗ f(ea, kb).

Clearly, if the original forms are p and q respectively, then the product
is a (p+ q)-form.

Assume now that V1 = V2 = R2 and the bilinear map is the exterior
product:
∧ : R2 ×R2 → Λ2(R2). Let’s compute the expression ∧(ω,dω).

∧(ω,dω) = ∧(E⊗ ε1 + B⊗ ε2,dE⊗ ε1 + dB⊗ ε2)
= (E ∧ dB−B ∧ dE)⊗ ε1 ∧ ε2 = −d(E ∧B)⊗ ε1 ∧ ε2

= −d(∗ ∗ (E ∧B))⊗ ε1 ∧ ε2 = ∗δ(E×B)⊗ ε1 ∧ ε2 =
= − ∗ div(E×B)⊗ ε1 ∧ ε2 = −div(E×B)dx ∧ dy ∧ dz ⊗ ε1 ∧ ε2.
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Following the same rules we obtain

∧
(
ω, ∗1

c

∂

∂t
I∗ω

)
=

1
c

∂

∂t

E2 + B2

2
dx ∧ dy ∧ dz ⊗ ε1 ∧ ε2,

and

4π
c
∧ (ω, ∗I∗J ) =

4π
c

(E.je −B.jm) dx ∧ dy ∧ dz ⊗ ε1 ∧ ε2.

Hence, the generalized Poynting energy-momentum balance relation is
given by

∧
(
ω,dω − ∗1

c

∂

∂t
I∗ω

)
=

4π
c
∧ (ω, I∗J ) . (32)

As for the generalized Lorentz force ~F , staying on the right-hand side of
eq.(13), it is presented by

~F ⊗ ε1 ∧ ε2 =
[

1
c

(je ×B− jm ×E) + ρeE + ρmB
]
⊗ ε1 ∧ ε2

=
1
c
∗ ∧ (ω,J ) + ∗ ∧ (ω, I∗Q) .

(33)

Since the orthonormal 2-form ε1∧ε2 is invariant with respect to rotations
(and even with respect to unimodular transformations in R2) we have
the duality invariance of the above energy-momentum quantities and
relations.

Hence, in our approach we have achieved a full covariance of the equa-
tions, given in the form (31). Indeed, the covariance with respect to ar-
bitrary transformations in R3 is obvious, so we show now the covariance
of (31) with respect to nonsingular linear transformations ϕ : R2 → R2.
Let ω satisfies (31), so we have to show that ϕ∗(ω) = E⊗ϕ(ε1)+B⊗ϕ(ε2)
also satisfies (31). We apply ϕ from the left on (31) and obtain

ϕ

(
∗ dω − 1

c

∂

∂t
I∗ω

)
=
(
∗dϕ∗ω −

1
c

∂

∂t
ϕ∗I∗ω

)
=
(
∗dϕ∗ω −

1
c

∂

∂t
ϕ∗I∗ϕ−1

∗ ϕ∗ω

)
=

=
(
∗dϕ∗ω −

1
c

∂

∂t
(ϕIϕ−1)∗ϕ∗ω

)
=
(
∗d− 1

c

∂

∂t
I ′∗
)
ϕ∗ω,
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where I ′ = ϕIϕ−1. For the right-hand side of (31) we obtain

(ϕI)∗J = (ϕIϕ−1)∗ϕ∗J = I ′∗ϕ∗J ,

so, our assertion is proved.
Note the following simple forms of the energy density

1
8π
∗ ∧ (ω, ∗I∗ω) =

E2 + B2

8π
ε1 ∧ ε2,

and of the Poynting vector,

c

8π
∗ ∧(ω, ω) =

c

4π
E×B⊗ ε1 ∧ ε2,

the D-invariance is obvious. As for the general R2 covariance of the
second equation of (31) it is obvious.

Resuming, we may say that pursuing the correspondence: one physi-
cal object - one mathematical model-object, we came to the idea to intro-
duce the R2-valued 1-form ω as the mathematical model-field. This, in
turn, set the problem for general R2 covariance of the equations and this
problem was solved through introducing explicitly the canonical complex
structure I in the dynamical equations (31) of the theory. The duality
transformation appears now as an invariance property of the energy-
momentum quantities and relations.

3.2 Relativistic formulation. As it was mentioned in the previous
section in the relativistic formulation of Maxwell equations we have got
already a general R2-covariance, but the two components, subject to the
general R2-linear transformation, are not algebraically independent, in
fact they are (F, ∗F). We look now at the situation from another point
of view.

First we note that we shall follow the main idea of the nonrelativistic
formulation, namely, to consider as a mathematical-model field someR2-
valued differential form, being closely connected to the canonical complex
structure I in R2. But in contrast to the nonrelativistic case here we
consider anR2-valued 2-form on the Minkowski space-time M = (R4, η).
In general such a 2-form Ω looks as Ω = F1 ⊗ ε1 + F2 ⊗ ε2 = Fa ⊗ εa.
Let now we are given two linear maps:

Φ : Λ2(M)→ Λ2(M),
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ϕ : R2 → R2.

These maps induce a map (Φ, ϕ) : Λ2(M,R2)→ Λ2(M,R2) by the rule:

(Φ, ϕ)(Ω) = (Φ, ϕ)(Fa ⊗ εa) = Φ(Fa)⊗ ϕ(εa).

It is natural to ask now is it possible the joint action of these two maps
to keep Ω unchanged, i.e. to have

(Φ, ϕ)(Ω) = Ω.

In such a case the form Ω is called (Φ, ϕ)-equivariant. If ϕ is a linear
isomorphism and we identify Φ with (Φ, id) and ϕ with (id, ϕ), we can
equivalently write

Φ(Ω) = ϕ−1(Ω).

If we specialize now: ϕ = I we readily find that the (Φ, I)-equivariant
forms Ω must satisfy

(Φ, I)(Ω) = −Φ(F2)⊗ ε1 + Φ(F1)⊗ ε2 = F1 ⊗ ε1 + F2 ⊗ ε2,

Hence, we must have Φ(F1) = F2 and Φ(F2) = −F1, i.e. Φ2 = −id. In
other words, the defining property of the complex structure I: I2 = −id,
is carried over to a linear map Φ in Λ2(M): Φ2 = −id. Since the Hodge
∗, restricted to 2-forms in Minkowski space, satisfies this condition, and
according to expressions (19)-(20) in standard coordinates its action co-
incides with the special duality transformation, it is a natural candidate
for Φ. Hence, working with (∗, I)-equivariant 2-forms on Minkowski
space, we can replace the action of I with the action of the Hodge ∗-
operator. And that’s why in relativistic electrodynamics we have general
R2 covariance if we work with forms Ω of the kind Ω = F⊗ε1 +∗F⊗ε2.
In the nonrelativistic formulation this is not possible to be done since we
work there with 1-forms on R3 and no map Φ : Λ1(R3)→ Λ1(R3) with
the property Φ2 = −id exists, and we have to introduce the complex
structure through R2 only.

Having in view these considerations our basic assumption for the
algebraic nature of the mathematical-model object must read:

The electromagnetic field is (relativistically) represented by a (∗, I)-
equivariant 2-form Ω on the Minkowski space-time:

Ω = F⊗ ε1 + ∗F⊗ ε2. (34)
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The relativistic pure field Maxwell equations (18), expressed through
the
(∗, I)-equivariant 2-form Ω have, obviously, general R2 covariance and
are equivalent to

dΩ = 0. (35)

In presence of electric and magnetic charges, making use of the defini-
tions in the previous section, we introduce the generalized relativistic
current Jr as follows

Jr = je ⊗ ε1 + Jm ⊗ ε2.

Hence, equations (25)-(26) acquire the form

dΩ = −4πJr. (36)

The generalized Lorentz force is given by

− ∗ ∧(Jr,Ω) =
(
−Fµσjσe − (∗F)µσJσm

)
dxµ ⊗ ε1 ∧ ε2. (37)

The divergence of the energy-momentum tensor Qν
µ is given by

∗ ∧
(
δΩ,Ω

)
= − 1

4π

[
Fµν∇σFσν + (∗F)µν∇σ(∗F)σν

]
dxµ ⊗ ε1 ∧ ε2.

(38)

The energy-momentum tensor Q, considered as a symmetric 2-form
Qµν = Qνµ, is given by(

Q⊗ ε1 ∧ ε2
)

(X,Y ) =
1

8π
∗ ∧
(
iXΩ, ∗iY I∗Ω

)
, (39)

where X and Y are 2 arbitrary vector fields, and iX is the inner product
by the vector field X. Indeed,

iXΩ = XµFµνdxν ⊗ ε1 +Xµ(∗F)µνdxν ⊗ ε2,

∗iY I∗Ω = ∗
[
Y µFµνdxν

]
⊗ ε2 − ∗

[
Y µ(∗F)µνdxν

]
⊗ ε1.

∧
(
iXΩ, ∗iY I∗Ω

)
= −XµY ν

[
FµσFσν + (∗F)µσ(∗F)σν

]
dx ∧ dy ∧ dz ∧ dξ ⊗ ε1 ∧ ε2.
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So, we obtain

1
8π
∗ ∧(iXΩ, ∗iY I∗Ω) = − 1

8π
XµY ν

[
FµσFσν + (∗F)µσ(∗F)σν

]
ε1 ∧ ε2.

The presence of the 2-form ε1 ∧ ε2 introduces invariance with respect to
unimodular transformations in R2.

Another definition of the energy-momentum tensor, making no use
of the complex structure I, is through the canonical inner product g in
R2 as a bilinear map instead of ∧. Indeed, it is easy to see that the
right-hand side of the relation

QµνX
µY ν =

1
2
∗ g
(
i(X)Ω, ∗i(Y )Ω

)
is equal to

−1
2
XµY ν

[
FµσFσν + (∗F)µσ(∗F)σν

]
.

Resuming, we note the main differences with respect to the nonrela-
tivistic formulation. First, the mathematical model-object is a 2-form Ω
on Minkowski space with values in R2, second, Ω is (∗, I)-equivariant.
As for the usual duality transformations, they appear as particular R2-
invariance properties of the conserved quantities and of the correspond-
ing conservation relations.

The general conclusion of this section is that the R2 valued nonrel-
ativistic 1-form ω and the relativistic 2-form Ω seem to be natural and
adequate mathematical model-objects of electromagnetic fields, while
the duality transformations characterize the invariance properties of the
conversed quantities and the corresponding conservation relations.

4 Conclusion

Here we are going to mention those points of the paper which from our
point of view seem most important.

Classical electrodynamics works mainly with two concepts: charge
and field. The charge carriers (called also field sources) are considered as
point-like (or structureless) objects. The field is considered as generated
by static or moving charges, and it is not defined at the points of its
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own source, hence, the point charges acquire topological sense. Passing
to continuous charge distributions we write down currents on the right
hand sides of Maxwell equations and forget about the topological nature
of charges. Moreover, this identification of characteristics of the field
represented by the left hand sides of the equations with characteristics
of mass objects carrying electric (and possiply magnetic) charges, seems
not well enough motivated from theoretical point of view. It would be
more natural to write down equations which identify quantities of the
same nuture, e.g. some energy-momentum balance relation between the
field and the particles (recall our remark at the end of Sec.2).

The duality properties of the solutions reveal the internal structure
of the field as having two vector components, which are

-differentially interrelated (through the equations), but

-algebraically distinguished.

Moreover, the adequate understanding of the duality properties re-
quires explicitly introduced complex structure in the equations.

This resulted in making use of R2-valued differential forms, ω and Ω,
as mathematical model objects, and corresponding complex structures I
and the relativistic Hodge ∗ restricted to 2-forms. The equations admit
a full R2 covariance, while the duality properties appear as invariance
properties of the conservative quantities and conservation relations. In
fact, the action of the D-transformations in the linear space of vacuum
solutions separates classes of solutions with the same energy-momentum.

Finally, we may expect that recognizing the structure of the field
as a double vector-component one through its duality properties may
open new ways of considerations and may generate new ideas and devel-
opments towards an appropriate nonlinearization of classical electrody-
namics.

Note.

The Hodge ∗-operator in the 3-dimensional euclidean case in standard
coordinates acts as follows:

∗1 = dx ∧ dy ∧ dz, ∗dx = dy ∧ dz,
dy = −dx ∧ dz, ∗dz = dx ∧ dy;
(dx ∧ dy) = dz, ∗(dx ∧ dz) = −dy,
∗(dy ∧ dz) = dx; ∗(dx ∧ dy ∧ dz) = 1.
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