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ABSTRACT. In a few previous papers, we developed a so-called clas-
sical fluctuation model, which revealed remarkably effectual in the task
of approaching quantum mechanical results by the means of classical
expressions. This paper is the second one of a series of four, intro-
ducing developments of the model. In paper I we provided some basic
thermodynamic properties of the so-called Bernoulli oscillators: these
are classical oscillators perturbed by the action of a ”hidden” degree
of freedom (HDF). In the present paper II, the mechanical properties
corresponding to the thermodynamic model are investigated. HDF
is identified physically as an oscillation superimposed to the particle
classical degree of freedom. It is driven by an external, time-dependent
force taking its origin in the quantum ”vacuum”, and is submitted to
Heisenberg’s principle as to a parametric constraint. The principle
takes, in our framework, a peculiar classical-like interpretation. HDF
perturbs the classical motion, so that an external (time-averaged) po-
tential must be accounted for in the expression of the mechanical en-
ergy theorem. We give an analysis of the time-dependent forcing and
a HDF-potential expression, as a function of an unknown parametric
function whose identity will be made clear in the following paper IV.
The HDF-potential is able to drive the particle throughout a barrier
jump, thus providing us with a classical-like concept of the tunnelling
phenomena. In some following papers, the discussed equations will
be compared to both the contexts of our previous models and wave-
mechanical physics.

1 Introduction

In the previous paper I [1] we discussed the thermodynamic properties
of the Bernoulli oscillators, and showed that they are consistent with a
standard classical thermodynamics framework if we assume that a so-
called hidden degree of freedom HDF is intermediary between the purely
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classical, mechanical oscillator and the external physical environment
(the quantum vacuum). This last can be assumed as an active (or more
properly reactive, as will be advanced in the sequel) medium generat-
ing an excitation field (1). A few HDF thermodynamic properties have
been brought to evidence, and a generalized apparatus has been set up
to describe the overall system thermodynamic behavior. In the present
paper II, we will not discuss generalities - these last can be found in [1].
Here we will set up a mechanical model for the Bernoulli oscillators, and
make advances in the identification of the HDF properties and mechan-
ical behavior. This last will be shown to be the basis to understand the
energy transfer mechanism to the particle in a tunnelling process - thus
providing a classical-like interpretation of such a phenomenon. As will
be displayed in a next section, our program also includes accounting for
Heisenberg’s indetermination principle (particles space and momentum
co-ordinates relation) within a classical-mechanics framework. Accom-
plishing this task will provide us with a peculiar (proposed) interpre-
tation of the principle itself. As final results in this paper, expressions
for the mechanical energy theorem and its statistical counterpart - this
last in the form of the flow-mass theorem for a microcanonical particles
ensemble - will be given. These expressions are for comparison with the
corresponding ones which are given - by independent analyses - both in
paper I and in the following paper denoted III. In this last, the compar-
ison will be shown to result into what we believe is a peculiar insight
into the physical behavior of systems. The investigation will provide us
with an interpretative frame where the possibility of a Newtonian-like
background behavior of quantum particles is evidenced - demonstrations
and discussion about this last point are deferred to a final paper denoted
IV.

2 Theoretical background

We will give here further details about the Bernoulli oscillators. Interest
will first be focused into the mechanical properties appearing compatible
with the thermodynamic properties we investigated already. Thermody-
namics is indeed some sort of statistical mirror for mechanical effects,
and the thermodynamic FEOM model [3] we refer as a basis all through-
out our work has a definite mechanical counterpart which we are now
challenged to find out.

1The idea that quantum properties may be explained by a vacuum interaction is
first due to Vigier [2].
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2.1 The Bernoulli oscillators and the fluctuation field

The Bernoulli oscillators are essentially, in our thinking, classical os-
cillators, but they are affected by the action of HDF and this last is
assumed to be excited by the fluctuation field. Some properties of this
action have been discussed already in previous work [3 ÷ 5], taking a
mechanical point of view. We found our oscillators, perturbed by the
fluctuation field, able to approach a few quantum properties (as the
Bohr-Sommerfeld rule displayed [3] and tunnelling capability [5]). Their
characteristic physical behavior is, at the present investigation stage,
that the oscillators energy fluctuates consequent to the interaction with
HDF+the fluctuation field. In different circumstances, we were able to
understand some features of this interaction, although we did not know
the exact time-law affecting the fluctuation. In order to provide ourselves
with some other investigative tools we consider the following.

The fluctuation time-law is likely to display a chaotic behavior.
In the present simple framework, we will not be sophistical, and the
word ”chaotic” will be used to describe up to a very irregular time-
behavior - but we will limit to a concept not exceeding the boundary
set by a deterministic time-dependence which can be described by ordi-
nary Fourier-transformable functions, just to be definite. It is obvious,
therefore, that in such simple type of ”chaos” meaningful recurrences
can hopefully be found to set up a description matching the thermody-
namic and other properties we identified already. More precisely, when
appropriate, we can use theoretical instruments we have available as the
ergodicity postulate, to extract useful information starting by the dis-
played statistics - as is clear it may occur, f.i., when investigating slow
time-scale behavior of the perturbed oscillators. We believe indeed that
either slow, or even fast fluctuations of physical quantities - although
by the effect of Heisenberg’s principle they are able to escape easily to
experimentation as well as to a detailed theoretical analysis - always
follow a classical law of motion. If this is so, therefore, what is really
defecting to the description of physical reality which is proposed to us
by the framework of quantum mechanics is the right way to account for
the effects of some oscillation of quantities, causing typical consequences
on the particle motion. Some effects, to be specific, like the known, so-
called ”zitterbewegung” [6] if velocity is, f.i., the relevant fast-perturbed
quantity. We believe that these effects are not a priori impossible to
describe theoretically, nor incomprehensible in their substance as a re-
strictive interpretation of the indetermination principle would appear to
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state. To be practical, it is clear that - as far as long time-scale effects
in particle motion perturbed by fluctuations are concerned at least - the
ergodicity postulate can help us in displaying them, provided they have
proper counterparts which can be identified within the statistical or ”en-
semble ” behavior of systems. We will give in paper III an example of
fruitfulness of this point of view. In the present paper II, we will assess
the reference framework for the following analysis, by investigating the
behavior of a classical oscillator when submitted to the action of external
- slow and fast - time-dependent forces.

2.2 The forced classical oscillator and the hidden degree of freedom

The mechanical oscillator we investigate in this paper is by assumption
submitted to the following classical motion law

− dΦ(x*)
dx*

+ F*(t,ξ(t,x*,v*,a*))− α*v * = ma* (1)

Here m is the oscillator mass, x* is its (linear) space co-ordinate, v*
and a* are its velocity and acceleration, respectively. In equation (1) we
assume that a classical conservative force −∇x∗Φ acts on the oscillator.
It is clear that the dynamical variables here (and henceforth as well)
introduced must be considered as the appropriate components along the
relevant x*-axis of the corresponding precursory vector quantities - we
do not need to display the index x* because our model is uni-dimensional.
The hidden degree of freedom is assumed to be effective within this equa-
tion, and will be soon identified by the deployment of distinguished terms
- which we will call xz and vz - within the oscillator space and momen-
tum co-ordinates x*, v* set. In our framework, HDF is driven by the
time–varying force F*(t,ξ(t,x*(t),v*(t),a*(t))) . This force is assumed to
come from the external environment (this is the quantum ”vacuum”),
much alike some kind of noise pervading the space. We called it, in pre-
vious papers, the fluctuation field. It might also be considered as the
reaction of the ”vacuum” to the assessment of the oscillator motion itself
- this interpretation will be made clear in paper IV. The force excites
HDF and is responsible for the appearance of quantum-mechanical ef-
fects in our framework. Concurrent to this effect, a viscous force −α*v*
with a (constant, by simplicity) coefficient α* is included in equation
(1) for the sake of completeness. The viscous force also takes its origin
in the vacuum. This last is therefore seen as an active medium able
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to provide, through the time, some extra energy ∆E(t) to the oscilla-
tor via the fluctuation force field F*, and to recover it via the friction
term - the overall transfer process occurring within the limits allowed by
the constraint of Heisenberg’s principle. The choice of a friction −α*v*
to insure the return energy flow is a standard assumption in linearized
forced oscillators models. Note, for the sake of completeness, that the
same term might be thought to account (at least approximately) for a
radiation reaction effect if the particles we are considering are charged
ones - the framework we are developing in these papers is, however, not
intended to include specifically the radiation problem.

The overall term F* −α*v* is the net vacuum action on the oscillator
and will be here called, to be definite, the quantum field.

A dependence on a hidden, mechanical parametric function ξ(t,x*)
whose identity and (time-averaged) expression will be determined in this
work (paper IV) is displayed into the expression of the force F*. By as-
sumption, this unknown parameter is taken to depend on the particle
kinematic variables set. This last, by completeness, includes position,
velocity and acceleration; but the two last variables need not to be dis-
played in the sequel because they both depend on x*(t). Therefore, the
simple notation F*(t,ξ(t,x*)) will be used in the following. Although
this forcing is to explain the appearance of quantum mechanical effects
- so that, as will be seen later, it is in a peculiar way submitted to the
Heisenberg indetermination principle - the time- function F*(t,ξ(t,x*))
is taken to depend deterministically on the initial conditions of motion
assigned for the particle. This is consistent with the requirement we
have to remain within a classical physics scheme, and also demands for
a ”classical interpretation” of Heisenberg’s principle itself. This last will
be found in equations (27)÷(30). The initial conditions set of param-
eters also includes a specification for the hidden parameter ξ . Since
the relevant physical apparition of this last will be found to depend on
the particle velocity and acceleration space-derivative, this specification
will take a peculiar form involving the velocity field derivatives, to be
shown in paper IV. The initial conditions to be taken when a particles
ensemble is considered are distributed at random according to appropri-
ate statistical laws. Ensemble averaging procedures will be initiated in
the final section of this paper, but major performances, in this respect,
are reserved to the paper III of this work.

In the present paper II, instead, we want to perform time-averages
to the purpose of obtaining an expression of the energy theorem for the



666 G. Mastrocinque

particle submitted to the classical potential, plus the quantum field ac-
tion, in the stationary motion assumption. The final target we want to
approach by performing both time and ensemble averages in equation
(1) is displaying the expression of the flow-mass theorem for a (micro-
canonical) ensemble of particles. This is for the sake of comparison with
independent expressions given in papers I and III, and with the sta-
tionary Schrödinger equation in paper IV. By means of the consequent
analysis, the quantum field physical origin and behavior will be identified
and discussed in paper IV.

It is useful to have equation (1) put in the form

1
2
mv*2 + Φ(x*) = E(t) = E +

∫
[F*(t,ξ(t,x*))− α*v *] v*(t)dt =

= E− Φ∗(t,ξ(t,x*),α*) (2)

In this equation,
∫

F*(t,ξ(t,x*))v*(t)dt is the (time-dependent) work
performed by F*(t,ξ(t,x*)) on the oscillator and −Φ∗(t,ξ(t,x*),α*) is
the overall work stored by the oscillator when accounted for the energy
lost by friction.

2.3 Energy fluctuations, Newton’s law and the Kapitza theorem

We have to consider that the time fluctuations of Φ∗(t,ξ(t,x*),α*) can be
strong ones, so that the particle velocity and position can display strong
fluctuations in their turn. The fluctuations can be taken responsible for
the thermodynamic behavior we described in reference [3], but in this
paper we will not deep into this topic and we take a different investigation
strategy. We want to focus on mechanical effects.

We will assume first that the fluctuations are fast. We will average
them out by integrating the motion equation over a small-scale of time
around some space position x, as is generally done within a standard
classical framework first introduced by Kapitza [7 − 9]. If the particle
velocity can be split into two components - the first one is slowly variable
with time (here v, no index) and the second one is the fast-varying part
of it (here vz, z ≡ zitterbewegung) then it is easy to state the following
equations :

x*(t)= x(t) + xz(t) (3)
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v*(t) =
d
dt

[x (t) +xz (t)] = v (t) + vz (t) (4)

a*(t) =
d
dt

[v (t) +vz (t)] = a (t) + az (t) (5)

The time averages of the fast varying quantities performed over a small
time-scale around a co-ordinate value x(t) will be taken equal to zero:

<xz(t)> |x= <vz(t)> |x= <az(t)> |x= 0 (6)

We want to perform a time-average of expression (2) and we have :

−<
∫

[F*(t,ξ(t,x*))− α*v *] v*(t)dt> |x =<Φ∗(t,ξ(t,x*),α*)> |x
(7)

<
1
2
mv*2> |x +<Φ(x*)> |x +<Φ∗(t,ξ(t,x*),α*)> |x = E (8)

Here E is the relevant mechanical energy constant. In order to provide
some specific expressions when we perform these averages, we consider
the following topics.

2.4 Constitutive equations for the forcing term

Let us write

F*(t,ξ(t,x*)) = F∗s(t,ξ(t,x)) + F∗z(t,ξ(t,x*)) (9)

The force F* is assumed to have two components: a (zero order) ”slow-
varying” one F∗s, and a ”fast-varying” one F∗z. The slow-varying one is
taken not dependent of the fast-varying part of the oscillator co-ordinate
xz, while the fast-varying one depends in principle both on an explicit
fast time variation and on x*. It may therefore display a slow component
itself by non-linear coupling. To see this with some useful details, let
us consider the following equations. First we can write, by a series
development :

F*(t,ξ(t,x*)) = F*(t,ξ(t,x)) +
∂ (F∗z(t,ξ(t,x)) + xzRz2(t,x,xz))

∂x
xz (10)
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Rz2(t,x,xz) =
∞∑
n=2

∂n−1 F∗z(t,ξ(t,x))
∂xn−1

xn−2
z

n!
(11)

We are also brought to set

F*(t,ξ(t,x)) = F∗s(t,ξ(t,x)) + F∗z( t,ξ(t,x)) (12)

This means that F*(t,ξ(t,x)) is given, in its turn, by the sum of slow-
varying and fast-varying components :

F∗s(t,ξ(t,x)) =<F*(t,ξ(t,x))> |x (13)

<F∗z(t,ξ(t,x))> |x = 0 (14)

Now our final ansatz will be as follows:

F*(t,ξ(t,x*)) = Fs(t,ξ(t,x)) + Fz(t,ξ(t,x)) (15)

Here Fs(t,ξ(t,x)) and Fz(t,ξ(t,x)) are the effective slow and fast parts of
the forcing, respectively. Using equation (10) we find

F*(t,ξ(t,x*)) = F∗s(t,ξ(t,x)) + F∗z(t,ξ(t,x)) + xz
∂

∂x
F∗z(t,ξ(t,x)) +

+x2
z

∂

∂x
Rz2(t,x,xz) (16)

Fz(t,ξ(t,x)) = F∗z(t,ξ(t,x*))−<F∗z(t,ξ(t,x*))> |x (17)

Fs(t,ξ(t,x)) =<F*(t,ξ(t,x*))> |x = F∗s(t,ξ(t,x)) +

+<xz
∂

∂x
(F∗z(t,ξ(t,x))+xzRz2(t,x,xz))> |x (18)

Fs(t,ξ(t,x)) = F∗s(t,ξ(t,x)) +<F∗z(t,ξ(t,x*))> |x (19)

These last equations give the effective forcing slow-part. As concerns
the fast part, we consider the following. The external fast forcing may
generally display a spectrum of frequencies. Within this spectrum, we
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are first interested to a fundamental pulsation ω0 able to resonate with a
oscillator fundamental frequency, and to its harmonics. By assumption,
we will take

dξ(t,x(t))
dt

<<ω0(x)ξ(t,x(t)) (20)

As is seen in this equation, we let the pulsation ω0 depend on the co-
ordinate x so that it appears as a ”local” characteristic pulsation. Now
we see that the fast forcing Fz(t,ξ(t,x)) is constituted by the fundamental
frequency and by the spectrum of its harmonics :

Fz(t,ξ(t,x)) =
∞∑
n=1

F∗ϕn(nω0,ξ(t,x)) sin (nω0t+ϕn(x)) (21)

Here the ϕn(x) are appropriate phase functions. We have also :

F∗ϕn(nω0,ξ(t,x)) =
ω0

π

∫ π
ω0

− π
ω0

F*(t,ξ(t,x*)) sin (nω0t+ϕn) dt =

=
ω0

π

∫ π
ω0

− π
ω0

{
F∗z(t,ξ(t,x))+xz

∂

∂x
(F∗z(t,ξ(t,x))+xzRz2(t,x,xz))

}
sin (nω0t+ϕn) dt

(22)

Then the comprehensive force F*(t,ξ(t,x*)) can be re-normalized to the
action of a fast oscillating force Fω0

z (t,ξ(t,x)) (”resonant component”) at
the pulsation ω0:

Fω0
z (t,ξ(t,x)) = F∗ϕ1

(ω0(x),ξ(t,x)) sin (ω0t+ϕ1) (23)

plus the action of a fast oscillating force
∑
n>1R

nω0
z (t,ξ(t,x)), containing

ω0 multiples (off resonance), due to the rest of F*(t,ξ(t,x*)) xz-series
development :

∑
n>1

Rnω0
z (t,ξ(t,x)) =

∞∑
n=2

F∗ϕn(nω0,ξ(t,x)) sin (nω0t+ϕn) (24)

Fz(t,ξ(t,x)) = Fω0
z (t,ξ(t,x)) +

∑
n>1

Rnω0
z (t,ξ(t,x)) (25)
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plus the action of the effective slow-varying force Fs(t,ξ(t,x)) :

Fs(t,ξ(t,x)) = F∗s(t,ξ(t,x))+<xz
∂

∂x
(F∗z(t,ξ(t,x))+xzRz2(t,x,xz))> |x

(26)

Conclusively, the external force effective on the oscillator can be de-
scribed by the three distinguished parts : a slow action Fs, a resonant
action Fω0

z and an off-resonance action
∑
n>1R

nω0
z depending on the

non-linearities of the oscillator behavior.

By the following analyses in this paper, we will be brought to expect
that even sub-harmonic terms (with respect to the pulsation ω0) should
be included into the forcing constitutive expressions. It is however not
necessary to include them already in the present context. The treatment
we are giving here is indeed just a reference framework, to be improved
by the means of subsequent considerations.

In a next section we will give elements for the solution of the motion
equation (1) submitted to the fluctuation field as described in this sec-
tion. Before introducing this topic, however, we believe convenient to
provide the physical interpretation we give to the distinguished fast and
slow parts of the particle motion. This can be found in the next section.

3 Physical interpretation and analytical developments

3.1 The Heisenberg’s principle in a ”classical interpretation”

In order to attempt a description of quantum phenomena within the
present context, as a key point displaying our thinking, we note that
the maximum absolute values |xz0 |, |vz0 | assumed by the quantities
xz, vz lend themselves to be interpreted as indices of the particle po-
sition and velocity incertitudes. The slow motion components x,v are
instead the particle local oscillation-center position and velocity respec-
tively . We can introduce, more precisely, the following quantities (SF≡
single frequency spectrum) :

∆x =
√
< (2xz)

2
> |x →|SF≈

√
2 | xz0 | (27)

∆p = m
√
< (2vz)

2
> |x →|SF≈

√
2m | vz0 | (28)
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∆x∆p = m
√
< (2xz)

2
> |x < (2vz)

2
> |x →|SF≈

≈ 2m | xz0vz0 |= 2mωx2
z0 (29)

A ≡ ∆x∆p & h (30)

Equations (27)÷(30) clearly show our philosophy here - it consists in
interpreting Heisenberg’s principle as a constraint effective on the fast
motion components, but not as an a priori epistemological limit. The
quantities xz(t) and vz(t) = dxz(t)/dt are indeed in our frame classical,
deterministic time-dependent variables. They can be considered as the
position and velocity co-ordinates pertaining to HDF. The HDF physi-
cal behavior therefore can be first (but not always, see later) identified
with a ”zitterbewegung” oscillation excited by the quantum vacuum ac-
tion, superimposing to the particle slow motion components, and finally
resulting in the quantum incertitudes affecting the motion. The quan-
tities xz,vz will be called the quantum displacements. The slow motion
components will instead be referred to as the classical degree of freedom.

In orthodox quantum mechanics, the incertitudes product ∆x∆p is
defined ≥h/2. In the present framework, instead, we have taken a repre-
sentative value for the minimal action equal to h. This is not only a mat-
ter of quantities definition in the sense that we have chosen non-minimal
coefficients. It is clear indeed that, if we want these variances defined
equal to the quantum mechanical ones, we are able to re-normalize the
equations all our paper throughout, keeping our formal results essen-
tially unperturbed - but the relevant fact is that our incertitudes ∆x
and ∆p are different physical quantities from the standard quantum
mechanical ones. They describe the particle fluctuation motion around
the oscillation center. The quantum mechanical ones originate instead
from (root-mean) ensemble averages, taken by means of the appropriate
wave-functions, of squared space and momentum co-ordinates. The in-
terpretation we give in our work to such quantities is that they refer to
the classical degree of freedom statistical behavior. We support indeed
the hypothesis that a quantum mechanical density is the space distribu-
tion of the particles oscillation centers, to which we have attached space
and momentum co-ordinates x and v.
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To be definite, we called A the quantity ∆x∆p. A very simple remark
is that when the action A→ 0, then the purely classical case is attained
and the HDF motion extinguishes.

In the previous paper I we introduced the quantities ∆x and ∆p
in the sense of thermodynamic parameters. In the present frame, they
are instead single-particle mechanical parameters, but no confusion may
arise. These parameters will not change their names when taking their
statistical appearances. In this context, it is clear that equations (27) and
(28) represent time-averaged expressions, featuring the incertitudes ∆x
and ∆p as (twice) the time-variances assumed by the quantum displace-
ments. In the same equations, it is indicated by the symbol →|SF that,
in the limiting case when a sharp frequency spectrum (in practice a sin-
gle frequency, SF) is exhibited by the zitterbewegung oscillation, the
assumed definitions converge into simple expressions proportional to the
absolute values of the maximum oscillation amplitudes pertaining to the
variables xz,vz respectively.

Equations (29)÷(30) show that in a single frequency limit the Heisen-
berg principle takes the form of a parametric constraint on the quantum
displacements pulsation ω and the oscillation amplitude | xz0 |.

As is quite obvious and will be better seen later on, in order to dis-
tinguish between a classical part of the motion x(t) and a ”quantum”
perturbation xz(t) we will not limit ourselves to the assumptions that
the former is slow-varying and the second fast-varying. We intend to
drop off in the following these assumptions, but the equations (27)÷(30)
- as well as the basic interpretation here introduced - will essentially be
maintained. We believe useful, however, to make first clear the funda-
mentals of our analysis starting with the ”zitterbewegung” model.

Moreover, it is clear that the Heisenberg principle ”interpretation”
here expounded is, by practical constraints in this paper, limited to the
case of space-momentum conjugate variables - but it can be generalized
to other couples.

It is also obvious that this proposed interpretation of the incertitude
relations must be considered, at present, only as some kind of compu-
tative simulation, useful to the sake of an attempt; limited to the range
of this investigation, and far from being in any way ”demonstrated”
even within the present framework. We believe that interest in new in-
terpretative schemes may only arise as a consequence of the capability
they display to produce positive results. On the other hand, it is clear
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that even a partial survival of our concept (as a quasi-classical effect)
could be usefully accommodated within our knowledge of physical events.
Amongst our purposes here therefore, there will be showing that some
degree of consistency is displayed by our statements when tested against
the deployment of a few aspects of the physical reality as described at
present by the quantum mechanical theory .

3.2 A development for the forced oscillator equation

In order to obtain solutions of equation (1), we give here some develop-
ments. We have first of all

dΦ(x*)
dx*

≡ Φ
′
(x*) (31)

Φ
′
(x*) ≡ Φ

′
(x+xz) = Φ

′
(x)+xzΦ

′′
(x) +

∞∑
n=2

xnzΦ
(n+1)(x)
n!

(32)

∞∑
n=2

xnzΦ
(n+1)(x)
n!

= Φ′an (33)

Here Φ′an is the rest of the Φ
′
(x) series development. This term is non-

linear in xz and is due to the classical potential Φ possibly being anhar-
monic. It will be found constituted by a slow-varying part Φ

′
s, a resonant

part at the ω0 frequency Φ
′ω0 , and an off-resonance part

∑
n>1 Φ

′nω0 :

∞∑
n=2

xnzΦ
(n+1)(x)
n!

= Φ′an = Φ
′

s+Φ
′ω0+

∑
n>1

Φ
′nω0 (34)

We have:

Φ
′

s = <

∞∑
n=2

xnzΦ
(n+1)(x)
n!

> |x (35)

Φ
′nω0 =

{
ω0

π

∫ π
ω0

− π
ω0

∞∑
m=2

xmz Φ(m+1)(x)
m!

sin (nω0t+ψn) dt

}
sin (nω0t+ψn)

(36)
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Using the previous equations, the motion equation (1) writes

F*(t,ξ(t,x*))− α*(v+vz) − Φ
′
(x)− xzΦ

′′
(x) − Φ′an= ma+maz (37)

Taking into account equations (9)÷(19) we find that this last equation
can be split into two parts:

Fz(t,ξ(t,x))− β(x)
∑
n=1

Φ
′nω0 − xz

(
K∗(x)+Φ

′′
(x)
)
− (α* + γ(x)) vz= maz

(38)

F(x,t)+Fs(t,ξ(t,x))− Φ
′
(x)− Φ

′

s − α*v= ma (39)

F(x,t) = (β(x)− 1)
∑
n=1

Φ
′nω0 + xzK∗(x) + γ(x)vz (40)

In these equations, we introduce the functions β(x), K∗(x), γ(x), F(x,t)
which are not all to be determined here, but reveal useful ansatzs for
purposes to be discussed next. Here we have to discuss equation (39)
first. This one describes the behavior associated with the slow-varying
co-ordinate x(t), so that we recognize that

F(x,t) = 0 (41)

By equation (40) it is clear indeed that we named F(x,t) a combination
of fast-varying functions. Now using equations (40), (41) and (38) we
find

Fω0
z (t,ξ(t,x)) +

∑
n>1

Rnω0
z (t,ξ(t,x))− xzK(x)− α(x)vz = maz (42)

To write this equation, we took the following ansatzs:

K(x) = K∗β(x)+Φ
′′
(x) (43)

K∗β(x) =
K∗(x)

1− β(x)
(44)

α(x) = α* + α̃(x) (45)
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α̃(x) =
γ(x)

1− β(x)
(46)

Here we understand that our choice in the splitting (38)÷(39) has
made the variable xz to depend directly on the external fast forcing,
which is tantamount to say that the anharmonic term Φ′an is taken into
account only for his contribution to the elasticity and friction terms
which will finally result effective in equation (42). This is better under-
stood when considering that the result shown in equation (42) is such
that the HDF oscillation - i.e. the xz(t) time-law - simply turns out as a
harmonic oscillation with effective elastic constant given in (43), forced
by Fz. On the other hand, we advance here that - within the same as-
sumption (41) plus the following equation (54) - the resulting equation
(53) for the slow-varying part x(t) of the oscillator co-ordinate will be
found independent on the classical potential anharmonicity Φ′an. This
property looks interesting because it is consistent with the fact that, in
quantum mechanics, the Bohm potential in the Schrödinger equation is
indeed independent of such very peculiar term.

As a further comment to equations (42) and (53) (to be introduced
next), however, we remark that the overall framework we are setting up
here is not to be interpreted as the display of absolute arguments, but
rather as the deployment of what we found the attractive, strategical,
sometimes conjectural, ones. These are developed in the attempt to
provide key indications about the HDF behavior, so that - once we have
enough understood about that within some limited framework - then we
can promote more rigorous analysis. Therefore, some of the assumptions
as the ones we are considering here could also be dropped off in favor
of a more general model. For instance, it could be seen that setting
the function F(x,t) in equation (40) different from zero would bring our
equations to interesting correspondences with both the thermodynamic
non-stationary FEOM model and time-dependent quantum-mechanical
matter-wave equation.

Equation (42) splits into a number of equations governing the Fourier
components x(n)

z of the displacement xz :

Fω0
z (t,ξ(t,x))− x(1)

z

(
K∗β(x)+Φ

′′
(x)
)
− αv(1)

z = ma(1)
z (47)

Rnω0
z (t,ξ(t,x))− x(n)

z

(
K∗β(x)+Φ

′′
(x)
)
− αv(n)

z = ma(n)
z (48)
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Formally, the solution to equation (42) can be written therefore

xz(t) =
∑
n

x(n)
z (nω0,ϕn) sin (nω0t+ χn) =

∑
n

x(n)
z (t) (49)

vz(t) =
∑
n

nω0x(n)
z (nω0,ϕn) cos (nω0t + χn) =

∑
n

v(n)
z (t) (50)

az(t) =−
∑
n

(nω0)
2 x(n)

z (nω0,ϕn) sin (nω0t + χn) =
∑
n

a(n)
z (t) (51)

On the other hand, equation (39) can be reduced as follows:

F∗s(t,ξ(t,x)) +<F∗z(t,ξ(t,x*))> |x −Φ
′
(x)− Φ

′

s − α*v = ma (52)

<xz
∂

∂x
(F∗z(t,ξ(t,x))+xzRz2(t,x,xz))> |x −Φ

′
(x) = ma (53)

F∗s(t,ξ(t,x)) = α*v + Φ
′

s (54)

As remarked already, these equations are consistent with the requirement
we have that the net HDF action displayed in the final equation (55)
is stationary (F(x,t) = 0) and not explicitly dependent on the classical
potential form via the anharmonic term Φ′an. By these means, the energy
theorem corresponding to equation (53) can be written indeed

1
2
mv2 + Φ(x) + ΦHDF(x,ξ(x)) = E (55)

ΦHDF(x,ξ(x)) = −
∫
<xz

∂

∂x
(F∗z(t,ξ(t,x))+xzRz2(t,x,xz))> |x dx (56)

These equations show our interpretation for the HDF effect. We iden-
tify the classical particle motion (as remarked, this is called the classical
degree of freedom) into the ”slow” motion component and deploy the
classical energy theorem form using the variables x,v into the appro-
priate kinetic and potential terms pertaining to it. Then the assumed
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existence of HDF brings to add to the classical energy terms a potential
energy ΦHDF(x,ξ(x)). Conclusively, this comes from the external, time-
averaged quantum field exciting the fast-motion component variable xz,
and resulting into a perturbation of the classical motion described by
x(t).

To expose clearly our interpretation of physical events and investi-
gation strategy, we add here that - in next developments - to the same
force F* constitutive of the fluctuation field we could add perturbation
forces coming from further external interactions or, most interesting,
from measurements. Then within our frame we might have knowledge
of the quantum displacements behavior and correlated influence on the
classical motion part when the oscillator is submitted, precisely, to mea-
surements or experimental apparatuses. This task would obviously be,
even partially, outside the possibilities of this paper.

The attempt we make in these papers is finding an expression for
ΦHDF able to explain some quantum effects at least, and bringing to the
Schrödinger equation when statistical averages are performed to describe
a particles ensemble behavior.

3.3 The energy theorem obtained by time-averaging

For the sake of completeness, we display here the alternative procedure
bringing to the energy theorem by time-averaging after integration. This
is also useful in order to better appreciate the assumptions we made on
the different quantities behaviors. In order to calculate the energies
carried by each term in equation (2) we note the following:

<v∗2(t)> |x =< [v (t) +vz (t)]2> |x =

= <v2 (t) > |x +<v2
z (t)> |x + 2<v (t) vz (t)> |x (57)

<v2 (t) > |x = v2(x) (58)

<(v (t) vz (t) )> |x = <vz (t)> |x v(x) = 0 (59)

<
1
2
mv∗2(t)> |x =

1
2

mv2 +
1
2
m<v2

z (t)> |x (60)
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<Φ(x*(t))> |x= Φ(x) +
1
2
<x2

zΦ
′′
(x)> |x +

∞∑
n=2

<
xn+1
z Φ(n+1)(x)

(n + 1)!
> |x

(61)

<Φ(x*(t))> |x= Φ(x) +
1
2
<x2

zΦ
′′
(x)> |x +<

∫
Φ
′

andxz> |x (62)

As concerns the force F*(t,ξ(t,x*)) we calculate the following (time-
averaged) work functions :

<

∫
F*(t,ξ(t,x*))v*(t)dt> |x=

=
∫

Fs(t,ξ(t,x))v(t)dt +<

∫
Fs(t,ξ(t,x))vz(t)dt> |x +

+<
∫

Fz(t,ξ(t,x))v(t)dt> |x + <

∫
Fz(t,ξ(t,x))vz(t)dt> |x (63)

<

∫
Fz(t,ξ(t,x))v(t)dt> |x = v(t)<

∫
Fz(t,ξ(t,x))dt> |x = 0 (64)

<

∫
Fs(t,ξ(t,x))vz(t)dt> |x = Fs(t,ξ(t,x))<

∫
vz(t)dt> |x = 0 (65)

We also have

<

∫
Φ
′

sdxz> |x = Φ
′

s<

∫
dxz> |x = 0 (66)

Then equation (2) becomes

1
2

mv2 +
1
2
m<v2

z (t)> |x +Φ(x) +
1
2
<x2

z>Φ
′′
(x)−

∫
Fs(t,ξ(t,x))v(t)dt

+<

∫ [
Φ
′ω0+

∑
n>1

Φ
′nω0

]
dxz> |x −<

∫
Fz(t,ξ(t,x))vz(t)dt> |x

+<

∫
α* v2dt +α*

∫
v2
z (t) dt> |x = E

(67)



Propositional bases for the physics of the Bernoulli . . . 679

Now we integrate the following equation in the variable xz, and per-
form the time-average:

Fz(t,ξ(t,x))− xz
(
K∗β(x)+Φ

′′
(x)
)
− α(x)vz = maz (68)

<

∫ {
Fz(t,ξ(t,x))− xz

(
K∗β(x)+Φ

′′
(x)
)
− (α* + α̃(x)) vz

}
dxz> |x=

=
1
2
m<v2

z> | x −ε(x)

(69)

Here ε(x) is inserted because the fast-motion energy constant must be
interpreted as a slowly variable function, i.e. a function of the slow
component x. Then we find :

1
2

mv2 + Φ(x) +<

∫ [
Φ
′ω0+

∑
n>1

Φ
′nω0 − xzK∗β(x)

]
dxz> |x +

−
∫

Fs(t,ξ(t,x))v(t)dt + α*
∫

v2dt−<α̃(x)
∫

v2
z (t) dt> |x +ε(x) = E

(70)

By the sake of congruence with previous analysis, we have to take :

ε(x) = Φs − 〈
∫ [

Φ
′ω0+

∑
n>1

Φ
′nω0 − xzK∗β(x)

]
dxz〉 |x +〈α̃(x)

∫
v2
z (t) dt〉 |x

(71)

so that by performing the derivatives we find again (use equations (54),
(18)):

<xz
∂

∂x
(F∗z(t,ξ(t,x))+xzRz2(t,x,xz))> |x −Φ

′
(x) = ma (72)

This equation is identical to equation (53) so that this last is also
found submitted to the conditions expressed by equations (59), (64),
(66), (71). These last can be appreciated in their sense by the reader
itself.
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4 Solution procedures

4.1 Solution of the linearized fast oscillation equation (resonant case)

Let us now consider the following simple model, describing the interac-
tion of the particle with the fast force component. We will make use
of the forced (harmonic) oscillator classical theory. Assume first that
only linear terms in xz are taken in our equations (small xz, implying
xz ≡ x(1)

z ) so that the fast force has a single frequency ω0 displaying
two components in turn, one in phase (p) with the oscillator space co-
ordinate and the other one out of phase (q).We have :

Fω0
z (t,ξ(t,x)) = F∗pz (t,x))+F∗qz(t,x)) (73)

F∗pz(t,x)= F̄(x) sin (ω0(x)t− ϕ(x))cosϕ(x) (74)

F∗qz(t,x)=F̄(x)cos(ω0(x)t− ϕ(x)) sinϕ(x) (75)

The quantity F̄(x) is the relevant excitation intensity and ϕ is an appro-
priate phase lag between the oscillator co-ordinate and the forcing. We
have therefore:

F∗pz(t,x) = maz+xz
(
K∗β(x)+Φ

′′
(x)
)

(76)

F∗qz(t,x)− αvz = 0 (77)

K∗β(x)+Φ′′(x) = m
(
ω2(x,ξ) + α2/4m2

)
= K(x) (78)

Here ω is the natural pulsation corresponding to the oscillation equation
(47). Now we have :

maz = −mω2
0(x)xz (79)

xz = xz0(x) sin (ω0(x)t− ϕ(x)) (80)

xz =
F∗pz(t,x))

K∗β(x)+Φ′′(x)−mω2
0(x)

=
F̄(x) sin (ω0(x)t− ϕ(x))cosϕ(x)

K(x)−K0(x)
(81)
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Here we use the standard stationary solution for the oscillation ampli-
tude. By the resonance condition we have

−mω2
0(x)+K∗β(x)+Φ

′′
(x) = K(x)−K0(x) = α2(x)/2m (82)

<F∗pz(t,x))2> |x= <x2
z (t)> |x

[
α2/2m

]2
(83)

Note that if - on the contrary assumption - there is not a resonance and
ω0>>ω (to preserve the fast motion hypothesis) then the result would
be

<F∗pz(t,x))2> |x= K2
0<x2

z (t)> |x= mK0<v2
z (t)> |x (84)

This expression fits the case studied by Kapitza, discussed in the
quoted reference [7].

4.2 Slow motion component energy theorem (resonant case)

Now we calculate the work associated to the slow component (use equa-
tions (53), (81), (82)):∫

<
∂ Fω0

z (t,ξ(t,x))
∂x

xz> |x v(t)dt =
∫
<
∂ F∗pz (t,x))

∂x
xz> |x v(t)dt =

=
∫
<

1
K−K0

∂F∗pz
∂x

F∗pz> |x dx = <
2m
α2

∫
∂F∗pz
∂x

F∗pzdx> |x=

=
m<F∗2pz> |x

α2
=
α2<x2

z (t)> |x
4m

(85)

Then we have (use equation (56)):

1
2

m v2(x) + Φ(x)+ ΦR
HDF(x,ξ) = E (86)

ΦR
HDF(x,ξ) = −α

2<x2
z (t)> |x
4m

(87)
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The superscript R means here that the corresponding expression for
ΦHDF has been calculated using the resonance condition between the
forcing and the oscillator. If equation(84) is assumed we find instead,
with K0 >> K :

ΦNR
HDF(x,ξ) =

m
2
ω2

0<x2
z> |x =

m
2
<v2

z> |x (88)

This expression can be called the Kapitza equation. NR stands for
non-resonant.

4.3 Solution of the non-linear fast oscillation component equation (non
resonant terms taken into account)

When we use the forced oscillator theory in the general case - which
means taking into account equation (48) with n>1 and the non-linear
term

<x2
z
∂
∂xRz2(t,x,xz)>|x in equation (56) - then we find the following

equations :

x(n)
z =

Rnω0
pz (t,ξ(t,x))

K∗β(x)+Φ′′(x)−mn2ω2
0(x)

≈ −
Rnω0
pz (t,ξ(t,x))

m (n2 − 1)ω2
0(x)

(89)

The terms Rnω0
pz (t,ξ(t,x)) are the in-phase forcing parts of the oscillator

displacement Fourier components. The contributions to equation (56)
due to these terms are as follows in the next section.

4.4 Slow motion component energy theorem (general case)

Here we have

xz(t) =
∑

x(n)
z (t) (90)

xz
∂

∂x

[
Fω0
pz (t,ξ(t,x))+

∑
n>1

Rnω0
pz (t,ξ(t,x)

]
=

= xz
∂

∂x
xzK(x) + mxz

∂

∂x

[
a(1) +

∞∑
n=2

a(n)
z

]
=
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= xz
∂

∂x

{[
x(1)
z +

∑
n>1

x(n)
z

]
K(x)−mω2

0

[
x(1)
z +

∞∑
n=2

n2x(n)
z

]}
=

= xz
∂

∂x

{
x(1)
z

[
K(x)−mω2

0

]
+

[
K(x)

∑
n>1

x(n)
z −mω2

0

∞∑
n=2

n2x(n)
z

]}
=

= xz
∂

∂x

{
x(1)
z

α2

2m
+

[(
mω2

0(x) +
α2

2m

)∑
n>1

x(n)
z −mω2

0

∞∑
n=2

n2x(n)
z

]}
≈

≈ α2

2m
xz

∂

∂x
xz −

∞∑
m=1

x(m)
z

∂

∂x

∞∑
n=2

(
n2 − 1

)
x(n)
z mω2

0 (91)

∫
<xz

∂

∂x

[
Fω0
pz (t,ξ(t,x))+

∑
n>1

Rnω0
pz (t,ξ(t,x)

]
> |x dx =

=
α2

4m
<x2

z> |x −
m
2

∞∑
n=2

<n2x(n)2
z ω2

0> |x +
m
2

∞∑
n=2

<x(n)2
z ω2

0> |x=

=
α2

4m
<x2

z> |x −
m
2

∞∑
n=2

<v(n)2
z > |x +

m
2
ω2

0

∞∑
n=1

<x(n)2
z > |x −

m
2
ω2

0<x(1)2
z > |x=

=
(
α2

4m
+

m
2
ω2

0

)
<x2

z> |x −
m
2

∞∑
n=1

<v(n)2
z > |x=

=
(
α2

4m
+

m
2
ω2

0

)
<x2

z> |x −
m
2
<v2

z> |x (92)
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Then we obtain

ΦHDF(x,ξ)=−
(
α2

4m
+

m
2
ω2

0

)
<x2

z> |x +
m
2
<v2

z> |x (93)

This equation (and the previous equations (87),(88)) show that the
stationary effect of the forcing on the oscillator is to introduce into the
energy theorem an effective potential ΦHDF(x,ξ), which depends on the
squared amplitudes of the position and velocity incertitudes. If only the
resonant component of the forcing is effective, than ω2

0<x2
z>|x= <v2

z>|x
and equation (87) is recovered. If, on the contrary, the effect of the
resonance is small, then the term

−
(
α2

4m
+

m
2
ω2

0

)
<x2

z> |x <<
m
2
<v2

z> |x (94)

will be found negligible and the potential ΦHDF(x,ξ) will be given by

ΦHDF(x,ξ) =
m
2
<v2

z> |x (95)

As remarked already, this last expression was first given, indeed, by
Kapitza for the case of non-resonant coupling between the fast and slow
oscillation components of the particle motion.

In all the expressions we have found for ΦHDF(x,ξ), the parameter ξ
is not displayed explicitly. It will be brought to evidence in the following.

5 Discussion of the results

5.1 A conclusive expression for ΦHDF and the parameter η

Equation (93) can also be written

ΦHDF(x,ξ) =− α2(η)
4m

<x2
z> |x +

η2(x)− 1
η2(x)

m
2
<v2

z> |x (96)

This is because we set :

m
2
<v2

z> |x= η2(x)
m
2
ω2

0<x2
z> |x (97)
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Here η(x) is a parameter defining the energy content ratio between the
kinetic and potential degrees of freedom pertaining to HDF and making
thrust on the oscillator. Note that in equation (96) we evidenced a
α−function form also dependent on this parameter. This is some kind
of ansatz simply due to the fact that we are developing a one-parameter
theory in this work, and implies no loss of generality. However, the
function α itself will be left unspecified here - we will calculate it by the
means of congruence in paper IV. This remark also makes clear that the
parameter ξ in the ΦHDF expression must be strictly correlated to η. We
might have chosen some function of the parameter η itself to replace ξ or
vice-versa, but we found more comfortable to keep them distinguished -
so that we can give to ξ some physical dimension as will be made clear
in the following paper IV.

When the out-of-resonance terms are negligible, we see that η2(x)
→ 1 and equation (87) is recovered. If we take a rough but simple view,
we can say that η is the dominant harmonic index value in the fluctua-
tion field spectrum; but note that this last might be largely broadened,
so that this interpretation may fail - we understand consequently that η
is an effective parameter able to fit our expressions into some equivalent
of a single frequency limit, and it might display even values smaller than
unity. In our simple treatment, indeed, we assumed a ordinary Fourier
spectrum with resonant frequency and harmonics displayed by the fluc-
tuation field; but, in a generalized treatment, either sub-harmonics or
any other independent, suitable excitation might be introduced as well.
This is precisely a very interesting point in our analysis, because in case
η is smaller than unity ΦHDF attains negative values. This case might
occur in the neighborhood of the classical motion boundaries - by this
effect we might be able to explain the tunnelling phenomena. Actually,
negative ΦHDF-values may also be attained depending on the values of
the α(x) function represented in equations (45) and (46) - but concerning
this specific effect we will give some other interpretation (as a negative
mass effect, see equations (106) and (107)) produced in the next section.
Here we have to recall, however, that our discussion is to investigative
purposes. We keep in mind that, in a tempted treatment as the present
must be considered, different effects might be found mixed into compli-
cated or inextricable expressions, so that our purpose is rather trying to
identify them for further insight than insure rigour of distinctions (con-
sider f.i. the structure of the function f(ρ) in equation (24), paper IV).
Papers III and IV will give us more insight into the previous points.
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Now let us refer to equations (29), (30) and write

16m2<v2
z> |x <x2

z> |x= A2 ≡ ∆x2∆p2 & h2 (98)

If only one harmonic (SF) is dominant in the fluctuation field spectrum
this equation can be written

A2 = 4m2v2
z0x

2
z0 = 4m2η2(x)ω2

0(x)x4
z0 (99)

Introducing the variable A into the expression of ΦHDF brings us to write

ΦHDF(x,ξ) =− α2(η)
4m

<x2
z> |x +

η2(x)− 1
η2(x)

A2

32m<x2
z> |x

(100)

In the full quantum limit we will take A = h, <x2
z>|x≡ ∆x2/4 and we

find

ΦHDF(x,ξ) =− α2(η)
16m

∆x2 +
η2(x)− 1
η2(x)

h2

8m∆x2
(101)

5.2 The high-frequency limit and the perfect transformation

In order to have an insight into our model descriptive capability for
physical effects, we have to take now some assumptions about the in-
certitude ∆x - what we want to do is correlating this quantity to the
slow velocity field v(x). To obtain such a correlation, we consider the
following. In the previous paper I it was shown that, in the thermody-
namic limit, a particles system may undergo a ”perfect” transformation
where the thermodynamic incertitude ∆x behaves proportionally to the
specific volume. Therefore, we can exploit known correlations between
the density and the eulerian velocity field.

We can first consider that the incertitude ∆x (remember here it is a
time-averaged quantity calculated for a single-particle) in a deep quan-
tum limit (small quantum numbers) is comparable to the specific volume.
We will then set it in equation (101) equal to 1/

√
2 times the inverse of

the statistical density ρ(x) (in a single frequency limit, this is consistent
with taking 1/ρ(x) ≈ | 2xz0 | ). Here we are estimating a single-particle
parameter by the means of a comparison with the correspondent sta-
tistical ensemble average quantity. Major comment about such a kind
of procedure will be found in the next paper III. We remark here that
this mentioned case would just be attained when pressure is effective on



Propositional bases for the physics of the Bernoulli . . . 687

the system, i.e. when this last is an ensemble of interacting particles
in thermodynamic equilibrium, and ∆x is the statistical expression of
the incertitude. Note, yet, that although the present treatment is for a
single-particle, we are in the limit of fast fluctuating forces effective on
it - the case can therefore be thought homologous to a situation where
some kind of thermal pressure or hard-shock collisions are present, thus
providing some consistency to our reasoning. We will write:

ΦHDF(x,ξ) ≈ −α
2(η)

32m
1

ρ2(x)
+

h2

4m
η2(x)− 1
η2(x)

ρ2(x) (102)

In this equation, however, we are going now to consider not a
quantum-mechanical-like density, but rather a classical one. This is for
the same reason than before - our energy theorem here is for the sin-
gle particle, while in the present context we would rather look to the
quantum density as to an ensemble density (the quantum density is a
single-particle density only in the probabilistic sense given by the or-
thodox Copenhagen interpretation). The classical density is however a
statistical quantity and is correlated to the Eulerian (single particle) ve-
locity field v(x) by the continuity equation, which we will write in the
form

ρc(x)v(x) = 2ν0 (103)

Here ν0 is the (constant) mass flow exhibited by a stationary ensemble of
all-identical, non-interacting particles oscillating around the same center,
so that is equal to the inverse of period. The factor 2 is to account
for the effective density constituted by particles traveling both in the
forward and backward directions of motion during the oscillation. Using
equation(103) in equation(102) we get

ΦHDF(x,ξ) =− α2(η)
32m

v2

4ν2
0

+
h2

4m
η2(x)− 1
η2(x)

4ν2
0

v2
(104)

and the energy theorem (55) can be written

1
2

meff (η)v2+Φ(x) +
h2

m
η2(x)− 1
η2(x)

ν2
0

v2
= E (105)
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meff (η) = m
[
1− δm(η)

m

]
(106)

δm(η)
m

=
α2(η)

16m24ν2
0

(107)

We can also write, using a new variable P(v,η):

1
2

meff (η)v2 + Φ(x)± P2(v,η)
2m

= E (108)

±P2(v,η)
2m

=
h2

2m
η2(x)− 1
η2(x)

2π24ν2
0

v2
(109)

The ± sign in these equations is taken to keep the cases η2(x) ≷ 1
distinguished. Discussion about these equations is reserved to the next
section.

Here note that, by the previous analysis, the single-particle position
incertitude ∆x has been conclusively set equal to v(x)/

√
8ν0. This set-

ting is quite different from the one intrinsic to the matter-wave theory,
represented - in the quasi-classical case - by the de Broglie relationship
∆x≈ λ ≈h/mv. As it will be made clear in the following paper IV, in-
deed, in our framework the quantities ∆x and the de Broglie wavelength
h/mv are different physical quantities, and take different interpretative
roles.

5.3 The quantum field - sustained energy theorem and the tunnelling
phenomena

In this section, we want to discuss the result (105)/(108) we obtained
in the form of the energy theorem for a single-particle submitted to
the quantum field. First of all, we remark that the term depending
on the α−function in the ΦHDF expression converges into an effective-
mass term appearing in equations (105) and (106), thus substantiating
a previous remark. The induced mass coefficient −δm is negative, so
that an important effect of the quantum field is reducing the particle
inertia. We recall here that the function α is not only linked to some
friction coefficient value we may find effective into our equations, but
also to non-linearities (see equations (45) and (46) for the definition of
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α) of the oscillator behavior under the fluctuation field action. Note
that the effective mass found in equation (106) can even, in principle,
attain negative values, what might reveal not unrealistic at all. The
negative-mass concept first appeared in quasi-classical approximations
made in quantum solid-state physics [10], and is easily accommodated
into a classical theory because (as is exactly the case here) it is simply
due to some peculiarity of the external action on the particle that we can
easily appreciate. We will discuss again about the mass effect in paper
IV - but the possibility of a negative mass will not be investigated in
the present papers. Here we have to say that the mass effect cannot be
thought able to account for tunnelling phenomena, because the negative
kinetic term becomes negligible when the velocity goes to zero, i.e. just
in the neighborhood of the particle turning point - thus appearing unable
to provide the energy contribution necessary for tunnelling.

Tunnelling phenomena are of major interest here, and we expressed
already the opinion that they can be attributed to the second term in
the ΦHDF expression given in (100) or following equivalents. This can
be seen by means of equation (105)/(108) itself when we search for the
position x0 of the particle turning point - we can obtain it taking a zero
limit value for the velocity :

lim
x→x0

ΦHDF(x,ξ) = lim
v→0,x→x0

h2

m
η2(x)− 1
η2(x)

ν2
0

v2
=

= ± lim
v→0,x→x0

P2(v,η)
2m

= ±P2(0,1)
2m

= E− Φ(x0) (110)

From this equation, it is clear that the meaningful limit value for η(x)
is η(x0) = 1 - what can also be intended as the initial condition rele-
vant to the hidden parameter η itself. For an easy comparison, here the
corresponding purely classical equation is reported:

E− Φ(x0c) = 0 (111)

In this equation, x0c is the classical turning point. Equation (110) dis-
plays both the possibilities that limΦHDF, when the turning point is
attained, is a positive or a negative quantity. Since ΦHDF is the extra-
potential in the energy theorem with respect to the pure classical case,
we see that the turning point position x0 turns out to be different from
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the classical one, and is found in the classical region if the limit is positive
(the particle stops before attaining the classical position x0c) while it is
found outside the classical position (the particle enters the ”forbidden”
region, what we call tunnelling) if the limit is negative. In both cases we
will ask therefore - for the sake of consistency - that the limiting value
of η is unity; but the tunnelling case is attained when starting with η
values smaller than unity in some point of space near x0.

By the previous discussion, we have seen that the quantum field is
able to modify the expression of the classical motion energy theorem by
adding to it the term ΦHDF. This last distinguishes into two peculiar
terms - the first one introduces an effective mass of the particle, which
can be smaller than the real mass or even negative; the second one
introduces a perturbation whose major importance, at present, is in
the discussed possibility of describing tunnelling phenomena. We do
not attempt here to determine (by the means of further assumptions
we could take about the fluctuation field time-law) the effective mass
function, neither the effective additive potential P2/2m - they depend
on complicated non-linearities displayed both by the excitation source
and oscillator behavior; but the interpretation we have given to these
terms will survive when developing the next steps of our analysis. In
order to have more information about the functions ΦHDF and η, we
have indeed to evolve towards a more extended framework. The major
constraint we want to drop off is that the quantum displacement xz
is a fast oscillating quantity. Since the purely mechanical framework
to be set up in this case reveals too much complicated for analytical
investigation, we will follow another investigative path, to be shown in
paper III. This will consist in forming microcanonical ensembles of our
particles, while taking their mechanical properties as resulted from this
investigation - and fitting the result into the properties displayed by the
thermodynamic framework expounded in paper I. On the other hand,
we will also ask to our microcanonical framework to be consistent with
a quantum physics apparatus constituted by the Schrödinger equation
in the Madelung formulation. The results, to be expounded in papers
III and IV, will then include a definite expression for ΦHDF - so that it
will be conclusively produced the statement (submitted to the limits and
incertitudes of this investigation) that the wave mechanics is possibly the
microcanonical ensemble appearance of a Newtonian substrate. This last
will be identified into the equations of motion finally expressed in the
next section.
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6 Newton equation of motion for the Bernoulli oscillators

We resume here, for the sake of clarity, the complete set of motion equa-
tions we attribute to our Bernoulli oscillators, in the assumption that
the function F(x,t) (40) is zero, inclusive of the superimposed HDF os-
cillation, and of the Heisenberg constraint expressed in the form (98)
:

x*(t) = x(t)+xz(t) (112)

v*(t)=
d
dt

[x(t)+xz(t)] = v (t) +vz (t) (113)

xz(t) =
∑
n,ns

x(n)
z (t) =

∑
n,ns

x(n)
z (nω0(x),ϕn(x)) sin (nω0(x)t + ϕn(x))→|SF≈

≈ x(η)
z (t) = x(η)

z (ηω0(x),ϕη(x)) sin (ηω0(x)t + ϕη(x)) (114)

vz(t) =
∑
n,ns

v(n)
z (t) =

∑
n,ns

nω0x(n)
z (nω0(x),ϕn(x)) cos (nω0(x)t + ϕn(x)→|SF≈

≈ v(η)
z (t) = ηω0x(η)

z (ηω0(x),ϕη(x)) cos (ηω0(x)t + ϕη(x)) (115)

16m2<v2
z> |x <x2

z> |x= A2 →quantum limit→ h2 (116)

1
2
mv2 +Φ(x)+ΦHDF(x,ξ(x)) = E (117)

In equations (114)÷(115) we extended our sums to some special non-
integer indices ns - not included in the previous equations set (49)÷(51)
- to take into account the (now recognized) possibility of sub-harmonic
terms being raised by the fluctuation field in the oscillator response. We
also show the peculiar form taken by the HDF oscillation in the single fre-
quency approximation characterized by a value of the parameter η. More
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has to be stated however (in papers III and IV) about the expressions of
the different quantities (ΦHDF(x,ξ(x)),ξ(x),ω0(x) etc.) entering this set
of equations, so that further discussion about the Newtonian framework
here promoted is reserved to these next papers. Here we have to remark
that the pulsation ω0(x) can be written, in the full quantum limit :

ω0 =
h

mη(x)∆x2
≈ 8hν2

0

mη(x)v2(x)
(118)

Here we used equation (29) and the fact that η(x) is the effective har-
monic index in the SF interpretative scheme. Equation (118) charac-
terizes the parametric constraint the HDF oscillation is submitted to as
a consequence of Heisenberg’s principle. Note - just to make a specific
point - that the equation indicates that for particles at rest (v = 0) the
pulsation ω ≡ ηω0 goes to infinity so that the HDF oscillation becomes
very fast (with zero amplitude however).

The assumption (41) appears here to limit practically the validity
of these equations to the case of fast oscillations; but note that even
when F(x,t) is different from zero then we can - either perform a time-
average on the energy spectrum provided by this residual field to at-
tain a stationary behavior description - or, in principle, taking hypothe-
ses about F(x,t), assume a time-law for the energy E and solve the
motion equations within non-stationary circumstances. We understand
therefore that the setting (112)÷(118) with associated interpretation can
conceptually survive the removal of some specific assumptions we have
done by simplicity. The important matter is indeed that we attribute
a deterministic time-behavior to the overall set of parameters. On the
other hand, the very important question we have to solve to affirm the
usefulness of this framework (and self-consistency first; comprehensive
consistency with quantum physics is a much wider subject) is whether
the Heisenberg principle really tolerates our classical interpretation and
formalism within some recognized, meaningful domain of physical cir-
cumstances. At the same time, one would ask the more specific question
whether the proposed motion equations, with associated solutions, are
always compatible with the Heisenberg constraint as expressed by equa-
tion (116). As far as the first question is regarded, it is obvious that
we will be able to attain some precise definition of this domain only by
future work. Concerning the second one instead, we advance the opinion
that the answer is linked to the possibility one has to define meaning-
ful integration time-intervals for the averages shown in equation (98) or
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(116) when the quantum displacements variables xz and vz display slow
time-variations. In these equations, indeed, the time-intervals for inte-
gration are small - over the time-scale of interest - only when the fast
motion approximation is taken. The real question actually is - is that a
possible issue, and what happens if we take vz equal to a stationary zero
?

Attempting an answer to both the questions would however bring us
to analyze very specific time and space correlations, inclusive of the ac-
tion of external constraints as measurements apparatuses. But concern-
ing the very last question stated above, one may be brought to answer
simply : that is not a possible issue, and if any other physical constraint
imposed will push towards it, then the system will pop out of quantum
world to become classic and the Heisenberg constraint will be broken.
Analyzing even partially the spectrum of the possibilities is obviously
outside the limits of the present work, but we want to give evidence to
the fact that investigating such very specific matter would be a difficult
task - both theoretically and experimentally - even if our classical in-
terpretation of the Heisenberg principle would consolidate and maintain
true in the deep of quantum phenomena. This is simply because, in
any case, the theoretical or experimental probes we could use to per-
turb our system - in order to trigger its reaction - would be submitted
to the same Heisenberg constraint. This is a quite standard argument
for those believing in such a kind of absolute barrier set to our scien-
tific knowledge. However, we want to promote the opinion that if the
classical interpretation could be maintained in the deep, then it would
be clear that the real difficulty in making successful calculations or in-
terpreting experiments would just be due to the (perhaps inextricable
?) complication of action-reaction effects and energy-momentum trans-
fer between the system and the probe; but dealing with such kind of
problem within a classical framework is quite a different matter than
surrender to the statement of an absolute limit imposed by nature as
an impossible barrier to overcome. We definitely want to add our ef-
forts to those promoting renovated investigations against the frustrating
interpretation of the absolute limit.

In order now to set up a background apparatus, useful for the task to
be done in the next papers, we will give in the following section elements
concerning the ξ−values distribution effective on the statistical average
we want to perform over the energy theorem expression.
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7 Elements for statistical averaging

7.1 The microcanonical distributions of ξ, η−values and the statistical
energy theorem expression

In our framework, the functions ξ(x) and η(x) must be considered statis-
tical variables because they depend on initial conditions to be assigned
on the basis of an appropriate distribution of values in some position
x0− much alike the Eulerian velocity field v(x) is a function depending
on the initial condition value v(x0) attributed to it. Within this context,
in order to match the quantum-mechanical case, we should just take
the energy value E in equation (117) equal to a quantum-mechanical
”eigenvalue” En. In equation (110) it is seen easily that assigning the
initial condition for η is tantamount to assume a value of the quantity
P2(0,1) once the position of one of the turning points has been given.
Using a probabilistic distribution Pη=1(x0) of turning points is therefore
the tool involved within the task to assemble a microcanonical system of
our particles. This distribution is unknown at the present investigation
stage; but we can equally have information about the result - because
this last has to match quantum-mechanical properties. To understand
more about this point, we note the following.

Taking one out of such distributions Pη=1(x0) should bring us prac-
tically (i.e., in a first approximation) to the same result that we would
obtain if - having not fixed the E value into a En value yet - a correspond-
ing distribution of energy values P(E) was assigned, at a constant P2(0,1)
value. It can be thought that such a kind of computative performance
could be obtained provided - as is obvious - one knew the correspondence
between the distributions themselves. This is because the turning point
position depends equally, and strongly, on the energy of the particle. We
understand therefore that distributing initial conditions for η is practi-
cally equivalent to distribute mechanical energy values E - according to
a sort of microcanonical distribution around some average value En. The
statistical ensemble we will have available as a consequence of such a mix-
ing will display different properties, depending on the kind and measure
of the interactions we may assume effective amongst our particles. The
statistical result will then be found submitted to the effect of the gen-
eralized pressures f, g, P we evidenced constitutive of a thermodynamic
state in paper I - the effect of these variables being displayed into the
flow-of-mass theorem expression given in the conclusive part of the same
reference. Another interesting property of the mixing can be forecast
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on the basis of the observation - also made in paper I - that the Gibbs
distribution of our system takes into account entropy terms −T lnρn at-
tached to the microcanonical ensemble average energy value En. We
can assume, therefore, that distributing initial conditions for η results -
in the average - in statistical states homologous to the ones we would
obtain by an energy broadening effect, and in introducing the quoted en-
tropy terms into the Boltzmann factors pertaining to the microcanonical
ensembles. In the following paper III, we will set up a simple statistical
model accounting for the mentioned effects; here we want to give evi-
dence to the case when interactions (and pressures) are zero, so that the
main effect we account for, while forming our ensembles, is simply an
inhomogeneous energy broadening. By the previous considerations, this
effect will imply considering a peculiar flow-of-mass rate law ν(x), deter-
mined by the inhomogeneity of the turning points within the ensemble.
As a consequence, at zero generalized pressures the mean statistical en-
ergy theorem (normalized to one-particle) displayed by our ensemble will
contain both the König term or center-of-mass kinetic potential and the
reactive thrust potential due to the variable-mass-equivalent effect ac-
counting for the variable mass flow. Both these effects will be accounted
for, in our framework, by the peculiar term we called ID (ν(x),0) in the
previous paper I, and will be calculated with details for the case of the
model introduced in paper III. Here we only make the important remark
that the transition from the single-particle energy theorem expression to
the statistical average expression in these conditions is characterized by
the appearance of the potential I

D
(ν(x),0). To be clear, we write :

1
2
mv2

i +Φ(x)+ΦHDF(x,ξi(x)) = En {single i-th particle}
(119)

1
2
mv2

D
+Φ(x)+<ΦHDF(x,ξi(x))> |x +I

D
(ν(x),0) = En {many particles}

(120)

We have used the unspecified expression for ΦHDF and it is clear
that what has been said in terms of η is transferred on the variable ξi.
In the last equation, the average <>|xis performed over an ensemble of
particles with different initial conditions values for ξi; v

D
is the center-

of-mass velocity of an ensemble of particles at position x. The use we
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will make of equation (120) is explained by the following consideration.
Whenever we have available - by a statistical model - an expression for
<ΦHDF(x,ξ(x))>|x consistent with that equation, then it is clear that
we can determine the corresponding expression ΦHDF(x,ξi(x)) effective
on a single-particle by the following procedure :

ΦHDF(x,ξi(x)) =
(i)

lim
I
D

(ν0,0)→0
<ΦHDF(x,ξi(x))> |x (121)

The limit expressed in this equation is affected by a superscript (i) be-
cause is one of the possible issues. It implies the limit ν(x)→ ν0 = const
due to the property of constant mass-flow assumed in the all-identical
particles, purely homogeneous statistical case. Use of the last equation
is reserved to the final paper IV.

7.2 An interpretative remark

As is also clear by the previous discussions, the main research strat-
egy we want to pursue within the following papers is comparing equa-
tion (120) with the basic quantum-mechanical wave equation, to find an
expression of the potential ΦHDF(x,ξi(x)) effective on a single-particle.
Here an interpretative remark must be evidenced: equation (120) is a
many-particles equation, while the quantum-mechanical wave equation
is known to hold even for a single particle. In order that equation (119)
(it will be finally found specified into the form (36) in paper IV) may
be able to represent what we call ”the Newtonian background” below
the wave-matter context, we will have to assume, conversely, that every
single particle is able to cross over many time-laws (different ξi-valued
solutions of the equation), up to totalize, along the time, the quantum-
mechanical density.

Major remarks about this point will be found in the following papers.

8 Conclusion

We developed in this paper a mechanical model for the Bernoulli oscilla-
tor, i.e. a classical oscillator forced by an external action which we call
the quantum field. We showed that this oscillator behavior can be de-
scribed by the evolution of two distinguished parts of both its space and
momentum co-ordinates, called the quantum displacements (or HDF)
and standard classical co-ordinates respectively. The influence of the
quantum displacements, driven by the quantum field, on the classical
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co-ordinates is displayed - first within the assumption of fast HDF oscil-
lation. Expressions are found for the energy theorem pertaining to the
classical part in order to show its evolution towards quantum proper-
ties. The main findings in this paper are represented by the indicated
possibility of a classical interpretation of Heisenberg’s indetermination
principle and a classical explanation of tunnelling effects, but the overall
framework results into an apparatus useful to accommodate an extended
description. This is expected, by further independent analysis to be de-
veloped in papers III and IV, to drop off the assumption of fast HDF
oscillation and provide generalized expressions and interpretation by the
means of a direct comparison of our results with a standard quantum-
mechanical framework.
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