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Propositional bases for the physics of the Bernoulli
oscillators

(A theory of the hidden degree of freedom)

III - Mechanical-Statistical framework

G. Mastrocinque
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Summary - This paper is the third one of a series of four. In the pre-
vious ones, we developed a thermodynamic and mechanical framework
introducing the properties of the so-called Bernoulli oscillators. These
last are classical oscillators submitted to an external force coming from
the quantum vacuum, and driving a distinguished part of the oscillator
motion itself which we call the hidden degree of freedom (HDF). In paper
II, an expression for the HDF-potential effective in the classical expres-
sion of the mechanical energy theorem has been given. In order to show
that this expression is consistent with a quantum mechanical context, a
few unknown functions must be determined. To this purpose, we set up
in this paper a mechanical-statistical framework for the system at hand.
By investigating the properties of the reference statistical ensemble of
oscillators we are able to find out the generalized state-equations needed
in the expression of the mass-flow-theorem we have given in paper I.
We produce the constitutive relations for the system pressure, (average)
HDF-potential and other relevant statistical quantities. These expres-
sions are for final comparison - to be performed in the following paper IV
- with a wave-mechanical context. Discussion and physical interpretation
of the framework here introduced are also provided.

1 Introduction

In previous papers denoted I and II [1,2] we introduced a few thermo-
dynamic and mechanical properties of the so-called Bernoulli oscillators.
These properties were enlightened by the (proposed) generalized inter-
pretation where the classical laws of mechanics are respected, and the
origin of deviations of physical behavior from the standard expected one
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(in turn, the origin of quantum effects) is attributed to the so-called
fluctuation field. This last is an external source of energy, taking its
origin in the quantum ”vacuum” and driving a peculiar, distinguished
part of the particle motion which we call the hidden degree of freedom
HDF. HDF can be viewed as an oscillation (of position and velocity)
superimposed to the classical motion of the particle, able to influence
this last by the effect of a perturbational potential energy which we call
ΦHDF - the HDF potential. Both the HDF oscillation and the oscillation
center motion (this last substantiates what we call the classical degree of
freedom) are newtonian. The HDF motion is submitted to Heisenberg’s
indetermination principle, which takes in our framework a (proposed)
peculiar ”classical” form and interpretation. This form is equivalent to
a constraint effective on the mean squared values of the HDF position
and velocity co-ordinates, thus evidencing some sort of parametric os-
cillation. To make a specific point, it can just be noted here that - in
case a single frequency (SF) is dominant within this time-behavior, the
Heisenberg constraint results into a relation between the oscillation fre-
quency and the (classical degree of freedom) velocity (equation (118),
paper II). In the present paper denoted III, we set up a reference statis-
tical ensemble of oscillators, whose properties will allow us to find out
- using some induction - the generalized state-equations needed in the
expression of the mass-flow-theorem we have made available in paper I.
We will provide here the constitutive relations for the so-called ”micro-
canonical temperature”, system pressure, (average) HDF-potential and
other relevant statistical quantities. The resulting expressions will be
compared - in a following paper IV - with a wave-mechanical context,
to the final purpose of excerpting the proper mechanical expression of
the HDF-potential and investigating its influence on the single-particle,
classical energy theorem expression .

2 The microcanonical classical oscillators ensemble

We are going to set up here a model of stationary, statistical ensemble
of classical oscillators displaying ”local” properties. This will be named
the microcanonical classical oscillators ensemble, and will be useful as a
reference system.

We want to advertise the reader that here we just start by setting
up the ensemble of purely classical oscillators, but this last will evolve
throughout the paper up to include an HDF effect (see next equation
(61) and associated comment). At that moment, we will call the ensem-
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ble ”microcanonical Bernoulli oscillators ensemble”. Our purpose while
investigating the classical/Bernoulli oscillators ensemble properties is es-
sentially to become able to perform the statistical averages invoked in
the previous paper II (for further application to the generalized case).
This task should be achieved making use of properties as near as possible
to those displayed by the FEOM model [3].

2.1 Constitutive equation for the ensemble statistical density

The energy fluctuations effective in the FEOM model [3] have a contin-
uous energy spectrum which is represented by the following probability
density (see equations (1), (6) and (10) in paper I):

P(E) =
1

∆E
{Ei ≤ E ≤ Ef} (1)

P(E) = 0 {Ei > E , E > Ef} (2)

To be definite, the energy variable is simply named E here and we
have taken Ei < Ef .

Let us consider an ensemble of classical oscillators whose attractive
centers have a coincident position in space (x = 0). They display differ-
ent mechanical energy values E, collected in agreement with equations
(1),(2). Assume they have their initial phases of motion distributed
at random - yet in such a way that the space included in the volume
V∗, pertaining to the energy value E, is filled homogeneously and in
a stationary way by the class of particles with that energy value. If
the energy interval ∆E is not too large, this can be considered a sort
of microcanonical ensemble, displaying energy values inside the interval
(Ei,Ef ). This particle system can also be referred to as the inhomo-
geneously energy-broadened system, with energy broadening ∆E. Let
us now simply superpose the stationary statistical (classical) densities
ρc(E,x), pertaining to each of the energy values involved, to obtain the
resulting density ρ(x). To do this, we start with the purely classical
energy theorem expression, inclusive of the potential energy Φ(x) :

1
2

mv2
c + Φ(x) = E (3)



12 G. Mastrocinque

We define the particles classical (numerical) density ρc(E,x) as follows

ρc(E,x) =
2νc(E)
vc(E,x)

=
ωc(E)

π
√

2/m
√

E− Φ(x)
(4)

∫
V∗
ρc(E,x)dx =

1
2

∮
ρc(E,x)dx = 1 (5)

In these equations, νc(E) = ωc(E)/2π is the frequency of the classical
motion for a particle with mass m and velocity vc.The factor 2 appearing
there is because the term ρc(E,x) accounts, by definition, for both the
two countermoving streams (forward and backward motion) of particles.
This choice allows us to correlate the integration over the volume V∗ for
density normalization to half the circuit integral taken over a full oscil-
lation - what is consistent with the standard normalization we usually
find employed in quantum mechanical calculations. Now we define

ρ(Ei,Ef ,x) ≡ ρ(x) = ν0 Re
∫ Ef

Ei

ρc(E,x)P(E)
νc(E)

dE =

= 2 ν0 Re
∫ Ef

Ei

P(E)
vc(E,x)

dE =
2ν0

√
2m

∆E
Re
{√

Ef − Φ(x) −
√

Ei − Φ(x)
}

(6)

As is clear from this equation, we take an average of the classical densities
over the relevant energy domain using the probability density (1) with
an additive weight 1/νc(E) as a (rough, but effective) instrument to have
comparatively uniform distribution of particles on different energy levels
in the same regions of space. This is tantamount to insure the local
distribution of particles to be stationary. The quantity −lnνc(E) can be
thought as a sort of entropy associated to the distribution P(E).

In these equations, ν0 is a normalization constant so that

∫
V∗f

ρ(Ei,Ef ,x)dx = 1 (7)
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We also have :

ρ(x) =
2ν0

√
2m

∆E
Re
{√

Ef − Φ(x)−
√

Ei − Φ(x)
}

=
2ν0

∆E
Re [pf (x)-pi(x)]

(8)

Here pi(x) and pf (x) are the classical expressions of the particles
Eulerian momenta corresponding to the initial and final energy values
pertinent to the definition interval, respectively. We have furthermore :

∫
V∗f

ρ(Ei,Ef ,x)dx =
ν0

∆E

∮
Re [pf (x)-pi(x)] dx =

=
ν0

∆E

[∮
pf (x)dx−

∮
pi(x)dx

]
= 1 (9)

If we take ∆E = hν0 , Ei = (n−1/2)hν0 we recognize in this equation
an expression of the Bohr-Sommerfeld rule. This is found here equivalent
to the normalization condition (7) for the total density of our statistical
ensemble. This finding appears to us as a further, interesting correlations
between our fluctuation model and (WKB) quantum mechanics. We
will set ∆E = hν0 in the sequel. Now another remark is the following.
Expression (6) can also be written:

1
2

m
4ν2

0

ρ2(x)
+ Φ(x) +

h2ρ2(x)
32m

=
Ef+Ei

2
(10)

x : {Φ(x) ≤ Ei} ≡ {Region I }

3h2ρ2(x)
32m

− ∆E
2

+ Φ(x) +
h2ρ2(x)

32m
=

Ef+Ei
2

(11)

x : {Ei ≤ Φ(x) ≤ Ef } ≡ {Region II}

These expressions display the form of an energy theorem. They are
written by distinguishing two regions of space within the overall vol-
ume occupied by the particles ensemble. The Region I is defined as the
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space domain where the potential energy Φ(x) is smaller than Ei, while
in Region II the potential values are included into the energy interval
(Ei,Ef ). In the two regions of space different analytical expressions will
hold. This is due to the fact that in Region I all the particles belong-
ing to the ensemble are present - because all of them have available,
by construction, the necessary mechanical energy. At every position of
space in Region II, instead, only the particles supported by sufficient
mechanical energy will be found. To have better insight into this and
other points in our analysis, one may refer to fig.(1). This last has been
drawn taking a harmonic potential energy Φ(x) as a reference, but the
framework we set up in this paper is largely independent of the form
of the potential - provided it has a somewhat regular form. In case the
tested potential Φ(x) displays large anharmonicity or irregularities, it
might be found necessary to develop more appropriate investigation or
to apply corrections to some details of the proposed analysis.

Fig.(??) shows that the inhomogeneously energy broadened system
statistical density ρ(x) differs from the classical one ρc(x) chiefly by
the erasure of poles in the turning-points positions. The density ρ(x)
shows evanescent tails at the boundaries. This can be interpreted in
the sense that particles are found in regions of space which would be
forbidden to classical particles with the mean energy (Ef+Ei) /2, thus
evidencing some sort of ”tunnelling” effect (the point will be discussed
with more details in the following). Although ρ(x) does not display
any intermediate zero within the definition domain, it looks similar to
a quantum-mechanical density. In our framework, we promote the idea
that a quantum-mechanical density is also, indeed, the statistical ensem-
ble expression of single-particles (classical degree of freedom) behavior -
the inhomogeneity parameter in the quantum case being not the energy
but the parameter ξ (or equivalently, η) introduced in paper II. This
interpretation, which will be found supported by the general analysis
developed in paper IV, looks to us not in contrast with the Copenhagen
one (see a remark given in the last section of paper II).

2.2 Volume-flow balance equation

Before processing the previous equations, let us add to them the corre-
sponding volume-flow balance equations. We first write down the expres-
sion for the total volume flow ν (Ei, Ef ,x) corresponding to (one out of
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the two) particle streams

ν ( Ei,Ef ,x) ≡ ν ( x) = ν0

∫ Ef

Ei

ρc(E,x)vc(E,x)P(E)
2νc(E)

dE = ν 0 { I}

(12)

ν (Ei, Ef ,x ) ≡ ν ( x) = ν0

∫ Ef

Φ(x)

ρc(E,x)vc(E,x)P(E)
2νc(E)

dE =

= ν0
Ef − Φ(x)

∆E
=

hρ(x)2

8m
{ II}

(13)

These equations allow us to calculate the drift velocity of the ensem-
ble by the means of the general relation

2ν ( Ei,Ef , x) ≡ 2ν (x) = ρ(Ei,Ef ,x) v
D

(x) (14)

so that we find

v
D

(x) =
2ν0

ρ(x)
{ I} (15)

v
D

(x) =
hρ(x)
4m

=
1
2

vc(E,x)

√√√√ ν(x)(
ν (x) − Ef−E

h

) { II} (16)

3 The mechanical energy theorem for the classical ensemble

Using equations (10), (11), (15) and (16) we find :

1
2

mv2
D

+ Φ(x) +
h2ρ2(x)

32m
=

Ef+Ei
2

{ I} (17)

1
2

mv2
D

+
h2ρ2(x)

16m
− ∆E

2
+ Φ(x) +

h2ρ2(x)
32m

=
Ef+Ei

2
{II} (18)
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In this section we want to show that our equations can be fitted into
a general form holding in both regions I and II. To this purpose, first
note that

<K> = <
1
2

mv2
c> =

1
2

mv2
D

+ <K′> =

<K> =
∫ Ef

Ei

[E− Φ(x)] P(E)dE =
Ef + Ei

2
− Φ(x) {I}

(19)

<K> =

∫ Ef
Φ(x)

[E− Φ(x)] P(E)dE∫ Ef
Φ(x)

P(E)dE
=

Ef − Φ(x)
2

{II}

(20)

This is remarked because the following equation is worthy to be dis-
played (use equations (13)÷(16)) :

<K′> =
h2ρ(x)2

32m
Re gion {I+II}

(21)

The quantity <K′> is the ensemble average of the particles kinetic en-
ergy in the frame of the drifting center-of-mass. Let us now consider
the following expression KVMRE (a comment about this quantity will
be found in the next section):

KVMRE =
∫ x

0

[m
2

v2
D

+<K′>
]

dlnν(x) = 0 {I}
(22)

KVMRE =
∫ x

0

[m
2

v2
D

+<K′>
]

dlnν(x) =
h2ρ2(x)

16m
− ∆E

2
{II}
(23)
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Note that in the point x* at the boundary between the region I and
region II we have by continuity

1
2

mv2
D

(x*) |I=
1
2

m
4ν2

0

ρ2(x*)
=

1
2

mv2
D

(x*) |II=
h2ρ2(x*)

32m
(24)

hρ2(x*)
8mν0

= 1 (25)

These last equations enlighten the continuation property by which
the value of the integral KVMRE in region II is matched to the value
attained at the boundary of region I.

On the other hand, we note that

<E> =

∫ Ef
Ei

EP(E)dE∫ Ef
Ei

P(E)dE
=

Ef+Ei
2

{I}

(26)

<E> =

∫ Ef
Φ(x)

EP(E)dE∫ Ef
Φ(x)

P(E)dE
= −h2ρ(x)2

16m
+

∆E
2

+
Ef+Ei

2
{II}

(27)

As is clear from the last equations, the ensemble average of the mechan-
ical energy can be given by means of the general expression

<E> =
Ef+Ei

2
−KVMRE { I+II} (28)

Taking into account the previous equations, we finally find

1
2

mv2
D

+
∫ x

0

[m
2

v2
D

+<K′>
]

dlnν(x) + Φ(x) +<K′> =
Ef+Ei

2
{ I+II}

(29)

This equation also writes

1
2

mv2
D

+ I
D

(ν(x),0) + Φ(x) =
Ef+Ei

2
{ I+II}

(30)
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where the potential I
D

(ν(x),0) is defined as

I
D

(ν(x),0) = KVMRE +<K
′
> { I+II}

(31)

Equation (30) is the energy theorem general expression we will base
upon to describe extended model cases, with generalized distributions
and different potential forms, in the following. To have insight into a
next development, note that the potential I

D
(ν(x),0) will change into

I
D

(ν(x),κ) when the quantity κ (to be considered later) is assumed dif-
ferent from zero. This potential has been introduced already in papers
I and II.

3.1 Theoretical analysis

The equations in the previous section must be commented here in a
few details. This is also to acquire a conceptual basis to interpret the
generalized framework in the following.

The quantity KVMRE is originated by the fact that the mass-flow is
variable (by construction) as a function of x (in the previous example,
only in Region II). We will call it the ” virtual mass reactive energy
” (VMRE). The term describes the fact that the streaming particles
across a section in x are found gradually reduced in number as far as
x approaches the boundary of the space domain enclosing the system.
The mass flow decreases indeed after that part of the molecules have
attained their turning points. These points are obviously located, for
each particle, at the boundary of the space-domain classically allowed to
it by its own energy value E. The particles lost by a running stream will
join the countermoving stream afterwards. This behavior of particles is
in agreement with the stationary assumption.

We note, by the KVMRE expressions (22) and (23), that it is a zero
or negative quantity in the classical ensemble model. Consequently, the
quantity I

D
(ν(x),0) is also found able to assume negative values in some

region of space (Region II). This is an important remark to be reminded
when dealing with the corresponding generalized case in paper IV.

On a physical point of view, the appearance of the term <K′> in
equation (29) and its precursors means that the internal kinetic energy
of the ensemble of particles localized between x and x+dx is an effec-
tive potential for the (one particle equivalent) drift translational energy
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(1/2)mv2
D
. It can be seen as the (virtual, because no forces effective be-

tween particles have been introduced up to now into the model) reactive
effect, on the drifting group of molecules, due to their velocity dispersion.
The statistical ensemble is constituted by particles which, one by one,
follow the purely mechanical law of motion. Although their motions ini-
tial phases are distributed at random, no other thermal-like randomizing
effect is included for now. Then we can say that the potential <K′> - at
the present investigation stage - results from the effect of ”mechanically
ordered” motions, and that it is ”purely mechanical” in its origin. Just
to have insight into next developments, we remark here that in some
cases when internal forces (i.e. pressure) will be accounted for within
the framework, it will be found confluent into the standard expression
of the indicated work (these cases are exemplified by the next equations
(41) and (51)).We will refer to this occurrence by the term of pressure-
induced thermalization of the potential (1).

As is clear from our analysis, both the effects described by the term
I
D

(ν(x),0) only depend on the mechanical energy distribution inhomo-
geneity (represented by the quantity ∆E=hν0 in our equations), and do
not require any internal force field to be active between particles in order
to appear into the energy theorem. Therefore we called them ”virtual”.
In the contrary case, pressure effects and/or induced disorder have to be
taken into account in the framework. Then the energy distribution to the
particles will become affected by collisions (or other disorder sources), so
that a thermodynamic form should be adopted when full thermalization
is attained. We are not going, however, to consider distribution forms.
We are rather going to investigate the potentials forms. Concerning
thermalization, we are interested to investigate intermediate cases, i.e.
situations where mechanically ordered internal motions may - at a cer-
tain degree - survive the thermalization effects. Therefore, we propose
the following analysis.

4 Transition from mechanics to thermodynamics
1From a general point of view, ”thermalisation” of the potential <K′> might

also be caused by some additional feature of the external interaction not explicitly
accounted for in these papers. Note, indeed, that in the generalised context ex-
posed in a next section, the potential <K′> is not taken into account within the
pressure constitutive equation (74), but is left included into the expression of the po-
tential ID (ν(x),κ) appearing in equation (87).Whatever the origin, however, pressure-
independent thermalisation effects will make <K′> ineffective within the context of
the mass-flow theorem. They can instead be responsible for a particle being able to
jump across different trajectories in our theory (see paper IV).
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Within the following sections, we want to show the way we can corre-
late the energy theorem we found in the classical ensemble case with a
thermodynamic formalism. We start by introducing the microcanonical
temperature concept and discussing different cases at the interpretative
level.

4.1 The microcanonical temperature

Let us consider equation (21) again:

<K′> =
h2ρ(x)2

32m
≡ Tm

2
{I+II} (32)

If <K′> resulted from a standard Maxwell-Boltzmann distribution of
velocities or energies - i.e. if our system was canonical in a standard ther-
modynamic equilibrium state - then we would set this potential equal
(in the uni-dimensional model) to half the temperature (Boltzmann’s
constant =1). Here the statistical ensemble is a microcanonical one,
the velocity distribution is not at all a Maxwell one and we made clear
already that the <K′> constitutive parameters correspond to a mechan-
ically ordered situation - but by analogy with the thermodynamic case
we will call Tm, the microcanonical temperature, the quantity 2<K′>.
The microcanonical temperature is a peculiar parameter of the system
energy distribution : for the distribution given in equation (1) we find, as
expressed in equation (32), the temperature proportional to ρ(x)2. The
coefficient being h2/16m, we are dealing with a ”quantum ” quantity.
Although our position may at present look quite a non-orthodox one, we
find comfortable to use this temperature concept for the sake of compar-
ison with standard properties and behavior of known physical configu-
rations of systems. Note indeed - on one hand - that our microcanonical
temperature will be found useful as a basic parameter to express state
equations or other constitutive relations for the microcanonical ensemble,
just in the same way we do with the absolute thermodynamic temper-
ature in standard thermodynamics. On the other hand, instead, it is a
quantity different and independent of the absolute temperature - this last
is, obviously, the peculiar parameter of the canonical or grand-canonical
energy distributions. Using the microcanonical temperature will bring
us to a peculiar understanding of the ensemble properties we want to
display. In order to appreciate this point we introduce the following
sections.



Propositional bases for the physics of the Bernoulli . . . 21

4.2 The purely mechanical, classical interpretative case

The expression (30) holds for the case where no interactive forces are ef-
fective between the particles, so that it is the statistical appearance of a
purely mechanical case - statistics being here inherent to the inhomoge-
neous energy broadening effect. In order to approach a thermodynamic
formalism, we can write the same expression using the temperature def-
inition (32) and the following remarks :

The quantity <K′> has the role of an Helmholtz energy F0.
No pressure is effective on the system at the present stage.
According to some general ideas first introduced by Boltzmann, also

applied in our previous work [3], entropy can be defined even for a me-
chanical (non-thermalized) system. This fact allows us to fit our me-
chanical energy theorem into a thermodynamic formalism. We have to
choose, however, a constant value S0 in the present case. This is tanta-
mount to insure that the particles flow described by equations (29),(30)
is an ”adiabatic ” one.

To be consistent with standard requirements, we can write :

<K′> ≡ F0(x) =
Tm
2

= −Tm ln z(Tm,V) (33)

z(Tm,V) = exp (− 1
2

) ≡ const (34)

We also have

U = F0 + TmS0 = 0 (35)

P = 0 (36)

U is the thermodynamic energy, the pressure is zero and S0 is found to
be

S0 = − F0

Tm
= −1

2
(37)

Then we can write

1
2

mv2
D

+
∫ x

0

[m
2

v2
D

+ F0(x)
]

dlnν(x) + Φ(x) + F0(x) =
Ef+Ei

2
{ I+II}

(38)



22 G. Mastrocinque

The ensemble of these equations features the ” thermodynamic ” in-
terpretation which - limited to this section - we give to the mechanical
energy theorem (29) and associated potentials. It is consistent with tak-
ing the microcanonical sum-over-state z as a constant. If our calculation
had to evolve towards the classical canonical case, then accounting for a
continuous spectrum of mechanical energy values H

C
≡ [Ef + Ei] /2 we

would find ∫ ∞
0

z(Tm,V) exp (−H
C

(p,x)/T) dH
C
≡ const× T (39)

This would be indeed the classical expression (two degrees of freedom
case) but we have to note that in our framework it is only a local de-
termination at some position x. By completeness, we should therefore
integrate the expression over the x-co-ordinate domain so that the result
would be

Z(T,V*) =
∫

V*

∫ ∞
0

z(Tm,V) exp (−H
C

(p,x)/T) dH
C

dx ≡ const× TV*

(40)

The result (40) is however incongruent both with classical physics and
with our FEOM model in [3]. The reason is that in this section no
account has been taken of the HDF effect. Therefore the previous equa-
tions will not be maintained in the following - becoming able to account
for the HDF effect and showing congruence of the results is just our
purpose. In order to proceed towards the relevant cases to us, we have
yet to analyze the case when a pressure is introduced into our equations
first. This is shown in the next section.

4.3 The thermalized case

Assume now interactive forces are introduced into our particles system.
First, we want to introduce hard-shock, binary collisions. Since the
shocks last a time equal to zero and our particles are all identical to
each other, introducing such kind of collisions will only make the role of
collision partners to exchange locally. No perturbation of the system sta-
tistical density or energy potentials will be remarked as a consequence
of these collisions. Then our equations (29) and (30) will remain un-
changed, and the included parameters will remain the same functions of
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x in the equations themselves. Yet we can give different interpretative
roles to the energy potentials. If we look indeed to the system as to a
”thermalized” one now, then we can invoke the standard flow-of-mass
theorem expression and interpret the potential <K′> as an indicated
work (we are here in a pressure-induced thermalization case).

We can be more specific, and consider intermediate steps bringing the
system from the purely mechanical ordered state to the thermodynamic
state. In an intermediate situation, we can attribute to some fraction
κ of the potential <K′> the role of an indicated work. At the same
time, this potential κ<K′> can be thought equal to the thermalized en-
ergy fraction or thermodynamic energy U. That is why κ will be called
” the thermalization constant ”. It is a variable parameter, useful to
describe the rising of pressure with associated induced thermalization
effects in the model. It can assume values between 0 and 1, so that we
can set up interpolative expressions between the two extreme cases of
a purely statistical-mechanical system configuration with no interactive
forces (κ = 0, no pressure) and the thermodynamic equilibrium configu-
ration (κ = 1). Then we will write :

κ<K′> ≡
∫
dP
ρ
≡ U =

κTm
2

(41)

Since Tm ∝ ρ2 this equation implies

P ≡ ρβκTm =
1
3
ρκTm (42)

This last is the state equation holding for the hard-shock, binary colli-
sions case. The pressure is given by a perfect-gas-like expression ρκTm
modified by a constant factor β = 1/3.

We also have

<K′> = F0(1− κ) +
∫
dP
ρ

= F0(1− κ) + U = F0(1− κ) +
κTm

2
≡ Tm

2
(43)

Here we see that our microcanonical temperature concept starts to de-
tach from the non-orthodox correlation to mechanically ordered motions
we used to define it. When κ is taken equal to 1, both the quantities
Tm and <K

′
> will attain their full physical meaning as thermodynamic

potentials.
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The energy theorem expression (30) now takes the upgraded form :

1
2

mv2
D

+ I
D

(ν(x),κ) + Φ(x) + U =
Ef+Ei

2
≡ Inv (44)

I
D

(ν(x),κ) = KVMRE + F0(1− κ) (45)

On the other hand, we want to assume an entropy definition S for the
case at hand, and this should be done by formally respecting a First Law
expression :

−Pd
1
ρ

= dU− TmdS (46)

Then we obtain

U =
∫
dP
ρ

= −
∫

Pd
1
ρ

+
∫

TmdS =
1
2

P
ρ

+
∫

TmdS =
κTm

2
=

3
2

P
ρ
(47)

P
ρ

=
κTm

3
=
∫

TmdS (48)

S =
κ

3
ln Tm + S0 =

κ

3
ln Tm −

1
2

(49)

We have furthermore

z(Tm,V) = Tκ/3m exp
[
− κh2ρ(x)2

96mT
− κ

3
− 1

2

]
≡ ρ(x)

2κ
3 × const (50)

Yet this equation neither is congruent with known standard limit re-
sults. What is important to us, however, is following the evolution of
the framework towards the final correct definition. This last will be
shown in the next section to be the one where a HDF-dependent po-
tential is taken existent. It will be the term giving congruence to the
thermodynamic setting and interpretation associated with the mass-flow
theorem expression we are investigating in our papers.
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Now we proceed towards the general case where interactive forces
generate every kind of collisions. This is described by the equation

1
2

mv2
D

+ Φ(x) + KVMRE + F(κ) +
∫
dP
ρ

= Inv (51)

Here the quantities F(κ), U and P can be whatever - depending on the
constitutive relations we want to choose. To have more insight, suppose
we want to define a (generalized) pressure - what is of main concern in
this paper. This may be done by an extension of expression (42):

P = ρβ(ρ)κTm (52)

where the factor β is taken to depend on the density. The tempera-
ture definition also might attain a generalized constitutive expression -
although we will always refer to equation (32) in our present work.

Note that the term now named (by the sake of generality) F(κ) can
be interpreted as the residual potential - after (level κ) pressure-induced
thermalization - due to some ”degree of survival” of mechanically or-
dered motions as mentioned in a previous section (in practice, a residual
fraction of <K′>). It may look obvious that ”full” pressure-induced
thermalization, with κ = 1, should ordinarily cause this potential to dis-
appear. Yet by clarity (and by the sake of general analysis) we want
to note, here again, that setting up pressure into our system does not
necessarily imply a disappearance of ordered motions. This is because
the thermalization concept also requires, specifically, the assessment of a
thermodynamic state of disorder. This last might not be fully consequent
to the effect of interactive forces, and might require pressure indepen-
dent thermalization to be established (2). Therefore, limκ→1F(κ) might
not be zero in every circumstance. However, in our following framework,
the comprehensive quantity F(κ) will actually be found zero (but see
comments to equation (59)). In the sequel, the potential F(κ) will be
included into the expression of the potential I

D
(ν(x),κ) (as is shown, f.i.,

in the next equation (55)).
2As is clear, by the use of the parameter κ we actually account for pressure-induced

thermalisation in our paper. Whenever it will be necessary to point out the role of a
pressure-independent one, we may occasionally use an additional argument κ∗ in the
functions and/or give some comment in the text.
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4.4 The case with HDF (microcanonical Bernoulli oscillators ensemble)

Our discussion has been limited until now to the purely classical case
where the effective potential energy on the particles is Φ(x). If in the
start equation (3) we add the HDF contribution this equation becomes

1
2

mv2
c + Φ(x) + ΦHDF(x,ξ) = E (53)

We want to set up now a statistical ensemble based on equation (53).
We will call it the microcanonical Bernoulli oscillators ensemble. To
perform this task, our previous treatment might first be iterated for a
single value of ξ , letting ΦHDF(x,ξ) undetermined, and averaging over
energy values. Actually, we are interested to the case when an average
is performed over values of ξ. We remember, yet, from paper II of this
work, that averaging over ξ−values has - in a first approximation - the
same effect that averaging over energy. Therefore we understand that the
average over ξ will result into the following energy theorem expression
(pressure is inserted as well):

1
2

mv2
D

+ Φ(x) +<ΦHDF(x,ξ)> |x +I∗
D

(ν(x),κ) +
∫
dP
ρ

= E ≡ Inv

(54)

I∗
D

(ν(x),κ) = K∗VMRE + F∗(κ) (55)

Here <ΦHDF(x,ξ)>|xis an average over ξ−values performed at constant
x, and the definition of the potential I∗

D
(ν(x),κ) is analogous to what

previously expressed. The asterisks on the quantities in equation (55)
mean that they are calculated in presence of ΦHDF(x,ξ). Actually, all
the associated potentials, as well as quantities as pressure, drift velocity
etc. in this section should be defined as effective quantities in presence of
HDF. In the general case this will be tacitly understood, so that no other
index will be displayed - for the specific case here, a further comment
about this point is at the end of the section. The important topic now is
that in presence of HDF we can assume the congruent sum-over-states
expression given by ρ(x), as found in paper I (equation (85)) . Thus we
can write - using a somewhat general formalism :

z(Tm,V ≡ ρ−1) = exp
{[∫

Pd
1
ρ

]
/Tm +

∫
dTm
T2
m

∫
TmdS(Tm)

}
≡ ρ(x)

(56)
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From this equation, we find the expression of the entropy S(Tm) :

S(Tm) =|Tm∝ρ2,β=const=

=
1 + βκ

2
ln Tm − βκ ln ρ(Tm) + const =

1 + βκ

2
+ ln ρ (57)

We also find the expression of the thermodynamic energy :

U =
{

Tm +
P
ρ

}
d ln ρ
d ln Tm

= Tm {1 + βκ} d ln ρ
d ln Tm

(58)

U =|Tm∝ρ2=
βκTm(V)

2
+

Tm
2

=
1
2

P
ρ

+ cvTm (59)

The thermodynamic energy is found given by the sum of two terms
- the first one is volume-dependent, while the second one looks as an
(independently) thermalized part of it, with constant volume specific
heat cv = 1/2. In the present context, therefore, the potential <K′> is
fully thermalized, independently of the κ value. On the interpretative
level, this is an indication of the effectiveness of pressure-independent
thermalization as we have signalized in previous circumstances. When
we take, by equation (56), z = ρ (what we have correlated in paper I
to the HDF existence) for the sum-over-states expression, then we find
that the potential F(κ) is zero (3).

This situation will be found confirmed by the assessment of the fol-
lowing, more general context (exposed in a next section), where full
expressions will be used - both for the HDF potential and the pressure
- to expound our description of the full quantum case.

Comparing the case at hand with the previous equations (47) and
(50), we see that the HDF presence changes drastically the constitu-
tive expressions of the thermodynamic potentials - this situation even
occurs when we take β = 0, which is tantamount to take the quantity

3Still we remark here that modifying, in the present context, the z expression
into ρκ

∗
would bring us to a cv-value equal to κ∗/2 and to a F(κ)-value equal to

(1− κ∗)Tm/2. A very simple renormalisation of all our framework - inclusive of
the thermodynamic model in paper I - would therefore allow us to describe the
circumstance when partial (level κ∗) pressure-independent thermalisation has to be
taken into account. Deepening into this extended description is, however, demanded
to future work.
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(4) Φ̃HDF(x,ξ) = 0 (see next equations (101),(102) or (104),(105) to un-
derstand this point: they make clear that the pressure P is originated
by HDF itself (5)). This case holds indeed when resonance (η = 1)
is attained, so that HDF is ineffective (at the corresponding point in
space) into the flow-of-mass theorem expression; but its presence is al-
ways signalized by the condition z = ρ which dominates our equations
in the present section.We conclude here that the HDF influence on the

thermodynamic equations specifies into two independent effects: these
last can be represented by the modification of the Gibb’s distribution
(as remarked in paper I) and of the thermodynamic energy constitutive
expressions. Since into this last potential the term βκTm/2, which is
strictly correlated to the potential P/ρ, is found introduced, we might
also say that the distinguished potentials signalizing the ΦHDF presence
are the Helmholtz energy and P/ρ. This result will be used later on.

By our equations, if we still take a pressure proportional to ρ3, the
expression of the sum-over-states z for the Bernoulli oscillators ensemble
at hand is finally found

z(Tm,ρ−1) ≡ ρ(x) ≡ T
1
2
m exp

{
−βκh2ρ(x)2

32mTm
− 1

2
ln

h2

16m
+
βκ

2

}
(60)

The necessary comment to this expression is that it is now - by con-
struction - congruent with the generalized thermodynamic framework
we introduced in paper I.

Writing this expression we have, by simplicity, neglected the contri-
butions of the generalized variables directly associated to HDF, i.e. f,
∆x, g and k as introduced in paper I. The generalized formalism can be
restored easily using equation (85) in paper I as well.

Note that the structure of the energy theorem has formally evolved
throughout the last sections, according to the improvements we have
made while giving interpretation to the different potentials involved in
the precursory equation (30) up to the expression (54). Yet if we as-
sume equations (42) and (45), the functional dependences of some key
potentials involved (Tm,P/ρ, F0, I

D
) on the density ρ, as well as the

function ρ(x) itself, can be maintained exactly the same than required

4This quantity can be found defined in equation (62).
5The particles interact with each other at their real positions x+xz , and the pres-

sure P is the resulting effect on the classical degree of freedom at the position x.
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by the previous equations (32) and (6). To this end, we also have to take
the following assumption:

<ΦHDF(x,ξ)> |x +I∗
D

(ν(x),κ) = I
D

(ν(x),κ) (61)

This equation, holding in the Bernoulli oscillators ensemble case, orig-
inates from the following remarks. Our mixing procedure was first de-
veloped without accounting for ΦHDF, i.e. precisely in the ”purely clas-
sical” case (note that the Planck’s constant was simply inserted in the
first model by means of the assumption ∆E = hν0). Now the quan-
tity <ΦHDF(x,ξ)>|x + I∗

D
(ν(x),κ) (representing the appearance of the

quantum field effects in the context) is instead accounted for. Equation
(9), however, can be interpreted as the Bohr-Sommerfeld rule. We are
brought to think that this second constitutive procedure for the statis-
tical (Bernoulli oscillators) ensemble must bring to expressions for the
energy theorem and potentials coincident with the ones we found in the
former case. In other words, if we start again the ensemble constitutive
procedure by adding to the potential Φ(x) a potential ΦHDF(x,ξ), then
we expect as a result the equation (54); but if we want to keep the same
ρ(x) holding, that was found in the classical ensemble case - because it
respects the Bohr-Sommerfeld rule and is the most reliable expression at
the Bernoulli oscillators stage too - then we are obliged to write equation
(61). In this way the functional dependences of the mentioned quanti-
ties remain identical to the former case. We might say that the classical
ensemble is just one showing a peculiar ”degeneration” property: it is
able to hid a quantum effect into the corresponding energy theorem and
density expressions. By equation (61) we can find the expression for
I∗
D

(ν(x),κ) if we have one available for <ΦHDF(x,ξ)>|x.
From this section, stems indeed the requirement to find an appropri-

ate expression for the quantity <ΦHDF(x,ξ)>|x, first consistent with the
present framework (this is done in the next section) - but, what is most
important to us, able to evolve into the more general one. To this end,
further investigation is now pursued .

4.5 Ergodicity and the factor 8

Consider equations (96), (102) and (104) in paper II of the present work:

Φ̃HDF(x,ξ) ≈ η2(x)− 1
η2(x)

1
2

m<v2
z> |x=

η2(x)− 1
η2(x)

h2ρ2(x)
4m

(62)



30 G. Mastrocinque

For the present purposes, in this equation we only take into account the
second term in the full ΦHDF expression (this circumstance is expressed
by the tilde). The first one will be discussed separately later on, and can
be easily recovered in the final result.

In agreement with a previous remark in paper II, in this equation a
classical-like density should be considered. Here, however, we are inter-
ested to find out an expression for the Φ̃HDF statistical average, taken
over an ensemble of ξ-values. We can exploit the remark we have made,
that the result of such a kind of averaging should be found equivalent
to the issue of an energy-averaging procedure. Therefore an ”inhomo-
geneously energy broadened system density” can be considered to this
purpose. Using equation (32) and taking first a high frequency (HF)
limit (η>>1) in equation (62) we find :

< lim
η>>1

Φ̃HDF(x,ξ)> |x≡ lim
η>>1

1
2

m<<v2
z> |x > ≈ lim

η>>1

1
2

m<v2
z> |x≈

≈ h2ρ(x)2

4m
≡ 8

Tm
2

(63)

As is clear, the averages are taken over ranges of ξ, η values. In writing
down these equations, we used the same reasoning as we used already
to find equations (101)÷(104) in paper II, and we will use in the se-
quel again. It is based on an ”easy” technique : we estimate sometimes
in our papers single-particle-relevant potentials, or quantities resulting
from time-averaging, by the means of comparison with their counter-
parts resulting instead from an ensemble-averaging procedure (or vice-
versa). Major discussion about this point must be provided, and will be
found in the sequel. Using equation (63), an approximate expression for
<Φ̃HDF(x,ξ)>|x can be given :

<Φ̃HDF(x,ξ)> |x≈ 8<
η2(x)− 1
η2(x)

> |x
Tm
2

(64)

This expression is some sort of extrapolation we set up by attaching
the most reasonable coefficient to the high-frequency limit expression.
An improved <Φ̃HDF(x,ξ)>|x expression will be found in the following
equation (104) and further comment can be found in the next section,
but we want to use expressions (62)÷(64) to give some discussion here.
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To find these equations we used the correlations between <x2
z>|x, ∆x2

and ρ(x)2 displayed in paper II. We can interpret equation (63) saying
that when we estimate the mean kinetic energy pertaining to the fast
oscillating quantum displacement (or HDF co-ordinate) as discussed in
paper II, we find it eight times greater than expected - in the assumption
it should be comparable to Tm/2. This last assumption might be made
if we think to the HDF kinetic-part energy, in the high-frequency limit,
as to that pertaining to a thermalized, single degree of freedom - just in
agreement with the concept expressed by the equipartition principle in
classical thermodynamics. Then we conclude that the HDF kinetic-part
energy content is almost one order of magnitude greater than expected if
it had to be replenished by the simple effect of a classical statistics. This
fact can be considered anyway not surprising, because we attribute the
HDF excitation to the mechanical, external quantum field action. At the
same time, since in the limit η>>1 the quantity 1

2m<v2
z>|x equals Φ̃HDF,

we see that the HDF mechanical action on the residual slow motion part
of the particle is a factor 8 times greater than expected by the simple
energy broadening effect which is the classical ensemble peculiarity. The
interesting thing, here, is that our quantities are found different by a
brute factor 8 but are identical as concerns their constitutive expressions,
depending on parameters h, m and ρ(x). If we do not care too much
about the 8 here, we may say that some ”ergodicity ” seems to apply.
The single-particle, time-averaged quantities turn out proportional to
the corresponding statistical ensemble averages. Yet these respective
averages are the attributes of distinguished co-ordinate parts (the HDF
and the classical degree of freedom co-ordinates) in our model. This
fact, however, can be easily understood considering that a key feature of
quantum mechanics is just that the particle momentum incertitude ∆p
is indeed of the same order of the momentum p itself.

Some comment more about our invoked ”ergodicity ” concept will be
found in the next section. Now we have to make some other remarks.

It is clear that if f.i. η2 = 8/7 our expression for Φ̃HDF becomes of the
order of Tm/2 and we can say in this case that Φ̃HDF is the equivalent of
a thermalized degree of freedom. Our previous result will however apply
to the kinetic energy HDF content 1

2m<v2
z>|x. The major interest for

the case η>>1 in this section is because, by the means of equation (63),
we have a more reliable expression for Φ̃HDF to discuss than by equation
(64).

A distinguished interpretation we can give to the peculiar case with
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η2 ≈ 8/7 is that the Bernoulli oscillators statistical model is equiva-
lent, by ”ergodicity”, to the case of a particle in a classical potential
Φ(x), driven by a fluctuation field which can be represented by a single
pulsation ω(x) given by the equation

ω(x) ≈ 2hρ(x)2

m
(65)

In the present context, the expression (65) is a statistical estimation so
that ρ(x) should be intended as an ”inhomogeneously energy broadened
system density” or a quantum-like one. The same expression can be
usefully compared to the expression (118) given in paper II - i.e. to the
expression we assume to hold for the single-particle case.

The quantum field amplitude might also be estimated considering
forced oscillator expressions in the hypothesis of single-frequency exci-
tation, once an expression for the function α(ξ) is assumed. We do not
deepen here into this analysis, and only note conclusively that the quan-
tum field determines the HDF kinetic energy content, which last turns
out to be of the order of hω(x):

1
2

m<v2
z> |x≈

h2ρ(x)2

4m
≡ π

4
hω(x) ≡ 8

Tm
2

(66)

5 Interpretation of results and investigation strategy

Those who appreciate such a kind of correspondences, will easily note
that a factor 8 can be excerpted from the Bohr-Sommerfeld rule when
we use it to express the incertitude relation between ∆x and ∆p .This
is shown in the following equations:

∣∣∣∣∮ pf (x)dx−
∮

pi(x)dx
∣∣∣∣ ≈ |< |pf (x)|>−< |pi(x)|>|<

∮
|dx|> ≈

≈ |< |pf (x)|>−< |pi(x)|>| 2 (xz0i + xz0f ) ≈ h (67)

Let us set

∆x ≈ (xz0i + xz0f )√
2

(68)
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We can write, furthermore

∆p ≈ |< |pf (x)|>−< |pi(x)|>| ≈ mω∆x (69)

These equations are consistent with some corresponding relations used
in paper II. Using the previous equations we obtain

A2 ≡ (∆p∆x)2 ≈ [< |pf (x)|>−< |pi(x)|>]2
(xz0i + xz0f )2

2
≈ h

8

2

(70)

Comments about this equation will be found accommodated into the
following interpretative framework.

We are at an investigation stage which, to resume, can be described
as follows: when we quit the single particle classical mechanics and in-
troduce the classical/Bernoulli oscillators ensemble models with energy
distribution given in equation (1), then the particle density modifies into
a statistical pattern ρ(x) which looks similar to a quantum-mechanical
one. Although the pattern does not display intermediate zeros, indeed,
it shows a behavior analogous to some sort of tunnelling, because the
statistical ensemble is able to flow out of the classical region of space
which would be reserved to particles having the mean statistical energy
(Ef+Ei)/2 (see equation (18) and fig.(1)). At the same time, a property
identical to the Bohr-Sommerfeld rule is found displayed in equation (9)
- although it first explains in our framework as a normalization con-
dition. The result (70) shows us that, at this level, a quasi-classical
interpretation would introduce statistical incertitudes ∆x and ∆p such
that an action ∆p∆x is first seen to emerge with a representative value
h/
√

8. Then an interesting correspondence between the Bernoulli oscil-
lators ensemble case and the quasi-classical quantum mechanical case is
in the fact that the microcanonical temperature value assumed in equa-
tion (32) is found 8 times smaller than expected on the basis of the full
formulation of Heisenberg’s relation.

These considerations still will hold when a hard-shock, ”binary”
pressure with associated (virtual) thermalization is introduced into the
model, or moreover when a HDF effect is added to the potential energy
Φ(x) - provided <ΦHDF(x,ξ)>|x respects the equation (61).

We think therefore that the microcanonical ensemble of particles we
have set up as expressed in equations (8), (17) and (18) is strongly - if
only in a first, quasi-classical approximation - correlated to a quantum
mechanical configuration.
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The microcanonical Bernoulli oscillators ensemble, based on a collec-
tion of classically-moving particles submitted to the potential Φ(x)+ΦHDF(x,ξ),
is a good - although rough - representative of the physical model and
interpretation we want to promote in our papers. This is showing that
the quantum physics is the formulation of statistical properties of sys-
tems whose background behavior is Newtonian (driven by an excitation
source called the fluctuation or quantum field, from which ΦHDF(x,ξ)
results). The model expounded till now is the prototype one, submitted
to the simple energy distribution given in equation (1), able to approach
quantum mechanical properties. It looks to substantiate a quasi-classical
approximation where the quantum action A effectiveness may be esti-
mated equal to h/

√
8.

We have to remark, however, that the important matter we are facing
when attempting a classical description of quantum phenomena is that
properties such as the ones we are discussing here - and most important
the tunnelling capability - cannot simply be considered as the properties
of a statistical ensemble of particles, but must result from the (statistical)
behavior of every single particle. In the previous paper II of this paper,
we remarked that values of η smaller than unity lead to negative values
for Φ̃HDF(x,ξ), so that tunnelling is recognized indeed in our theory as
an effective issue for the physical behavior of single particles.

Our investigations throughout, we meet with the problem of excerpt-
ing from the many-particles ensemble case (particles are all identical in
our frame) the single-particle behavior and vice-versa. We want to make
clear that some steps of our analysis are just carried on by the means
of comparisons between time-averaged, single-particle-defined quantities
and their statistical-average counterparts. As specific examples, we have
used the technique to identify the mechanical oscillation high-frequency
limit with the statistical result effective in a many-particles, pressurized
system; we use a similar procedure to calculate an effective velocity for
momentum transfer in the next equation (71). Using these procedures
arises the question how reliable the expressions for ΦHDF(x,ξ) or other
quantities which we find are.

Concerning this point, we have the following remarks. We do not use
at all in this paper a proper definition of what is called ” ergodicity ”
(see [4] for a handy review) - but use this word when commenting on
the previously quoted equivalence. This is simply because the concept
is able to illustrate, very peculiarly, our feeling about some physical be-
havior which we want to bring to evidence. More specifically, we simply
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call for ergodicity when we state comparable some ensemble- and time-
averages. Our invoked ergodicity provides sometimes rather conjectural
results, as occurs in the case of equations (62)÷(66). Waiting for more
rigorous analysis, the reader may appreciate or criticize the procedures
we use; but we have to note that many of these are only useful to us as
indicators - just helpful to find, at each stage, the further investigative
steps. These last will take, at the subsequent stage, a rather independent
formulation. In this way, we are brought to the key equations (1)÷(14)
in paper IV, and these equations with associated interpretation will be
found to constitute the basic, conclusive thesis we advance - on quite an
independent ground with respect to the previous partial results we have
stated before.

By the previous analysis, we are brought to think that statistical
ensembles different from the prototype here presented might exist, for
which the factor 1/

√
8 may transform into unity, the potential <K′>

takes higher values and the full quantum mechanical case is attained.
Here we understand that a very interesting investigation strategy is in-
dicated to us by this conceptual result. As is clear at a glance, however,
attempting to find out detailed properties of such ensembles might re-
veal a very hard matter to be accomplished. This is, first, because the
good starting point should not be simply taken as the purely classical
case, but detailed account should be taken of the mechanical and statis-
tical influence of HDF into the single-particle energy theorem. Second,
because the procedure would imply investigating the effects of many dif-
ferent distributions, including the hidden parameters, up to the end of
finding the resulting energy theorem coincident with the expression of
the Schrödinger equation.

Whether such an investigation strategy might be pursued by analyt-
ical means we do not know at present, but we let the problem of finding
generalized forms for ξ-, η- or E-distributions apart and follow, in this
paper, a different investigation path. This has been advanced in papers
I and II of the work. It consists in determining generalized state equa-
tions for a particle system, with pressure or not - then writing down
the corresponding expression of the mass-flow theorem and comparing it
with the quantum-mechanical hydrodynamic equation. By this compar-
ison, an expression for the single-particle effective HDF energy potential
will be excerpted, so that a mechanical energy theorem expression, in
Newtonian form, will be found. These investigation steps will be found
deployed throughout the next sections.
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6 Generalized state equations

A generalized form for the pressure constitutive equation (52) has been
introduced already in the present context, and will be specified for the
full quantum case we are going to investigate in the next sections. More-
over, we want to introduce a few other equations which we have found by
correlating different system parameters, as the elastic function k0 with
the associated pressure g and the ΦHDF(x,ξ) expression itself with the
pressure P.

6.1 The P-state equation in the full quantum case

We need here to define a pressure field P(x) consistent with a quantum
mechanical framework. To do this, we note that in quantum mechanics
the momentum field pq(x) = −i h∇Ψ/Ψ is encountered (∇ ≡ d

dx ), where
Ψ(x) is a wave-function (here taken real so that it is equal in turn to
±√ρ) . Unless otherwise specified, ρ(x) will be a quantum-mechanical
density in the following. Now a pressure in our uni-dimensional model
is dimensionally a force, and can be obtained by a constitutive equation
where the characteristic particles velocity v∗z is multiplied by a fraction
γ*κ of the quantity ∇pq(x). The coefficient γ*κ accounts in our frame-
work for the effective coupling between the quantum momentum field
and the collision regime, so that κγ*v∗z∇pqdx is the statistical average
of the momentum deposited by the effect of collisions between particles
with velocity v∗z in the space extension dx. Now we take v∗z equal to the
following time-averaged expression (see equation (63)):

v∗z = < | vz | > |x=
ω

π

∫ π
ω

0

√
2<v2

z> |x | sinωt | dt =

=
ω

π

∫ π
ω

0

√
16Tm

m
| sinωt | dt =

8
π

√
Tm
m

=
2
π

√
h2ρ(x)2

m2
=

4hρ(x)
m

(71)

This expression accounts for the HDF motion of particles. We write:

P = Im {κγ*v∗z∇pq(x)} = −κγ*
2h2ρ(x)

m

(
ρ′

ρ

)′
(72)
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This equation provides our definition for the pressure of the system.
It has been clearly obtained by generalizing the standard definition of
pressure for the case of perfect gases. Now if we take the coefficient γ*
just equal to 1/8 we find

P
ρ

= −κ h2

4m

(
ρ′

ρ

)′
(73)

This expression is coincident (for κ = 1) with the one found within
various hydrodynamic models [5− 7]. Equation (73) also writes∫

dP
ρ

= −κ h2

2m

√
ρ′′
√
ρ

= κUB(x) (74)

The choice γ∗ = 1/8 has brought us to an expression for the indicated
work coincident - for κ = 1 - with the Bohm potential expression UB(x)
one is used to find into the Madelung formulation of the Schrödinger
equation. This last can be written, using the pressure P:

∇S2

2m
+ Φ(x) +

1
κ

∫
dP
ρ

= En (75)

ρ∇S = const (76)

The associated quantum mechanical wave-function is Ψ(x) = ± √ρ
exp(iS(x)/ h), with S(x) ≡ phase function, also entering the continuity
equation (76).

It is very interesting to consider this equation in the special case
κ = 1, because it shows a peculiar way to look at the wave-mechanical
equation as to a simple expression of the mass-flow theorem.

Once the pressure is known, we can find the thermodynamic energy
and entropy easily by equation (56). If we keep the temperature Tm ∝ ρ2

as given by equation (32), then we find the results (note that β(ρ) is a
variable function now)

S =
1
2

+
1
2

P
ρTm

+ ln ρ =
1
2
− κ 1

2π2ρ2

(
ρ′

ρ

)′
+ ln ρ (77)
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U =
1
2

[
Tm +

P
ρ

]
(78)

Note here, in agreement with some previous remarks, that the term Tm/2
can always be interpreted as the appearance of the pressure-independent-
fully-thermalized potential <K′>.

To these equations, we can add the full expression of the thermody-
namic potential given in equation (85), paper I (with f = 0), accounting
for the variable k :

ψ = −lnz(Tm,ρ−1,k) =

= − ln

√
h

{mωρ−2} + h(Tm)−
∫

Pd 1
ρ

Tm
− {PV}+ G0(Tm)

Tm
ln

k
k0
≡ − ln ρ

(79)

These equations contribute to the thermodynamic set characterizing our
full quantum case. We are going however to investigate it with further
details in the following sections (concerning thermodynamics, we have
still to calculate some other quantities as G0(Tm) and k0(ρ). This will
be done in the following).

Note here finally that in our treatment, the coefficients 4,8,16 are
recurrent. They appear to imprint equations (32), (63), (70), (73), the
following ones (103)÷(106) and our overall treatment. We have the opin-
ion that these coefficients are statistical weights correlating the present
uni-dimensional model to a three-dimensional framework (8 = number of
octants). This is in agreement with the remark that quantum mechanics
is properly a description of three-dimensional reality, as is dictated by
the nature of the Planck’s constant h - an angular momentum.

6.2 A generalized property of the pressure and the g-state equation

Consider again the general expression (52) for the P-state equation:

P = ρβκTm (80)

Here, yet, we will still be exploiting the (previous) Bernoulli ensemble
case, so that the factor β will be taken constant. The important matter
we will next infer from this equation will however be found independent
of this constant value.
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In this context we can write

P
ρ

= βκTm = 2βκ <K′> ≡ 2βκ
h2ρ(x)2

32m
≡ cκρ(x)2 (81)

The quantity c is a constant whose definition is clear from the equation
itself. We have (also for later use) :∫

dP
ρ

= −3
∫

Pd
1
ρ

=
3
2

P
ρ

=
3
2
cκρ2 (82)

Now we define the quantity G(P/ρ, ρ, κ) :

G(P/ρ,ρ,κ) =
5− κ
κ

∫
ρα(κ)d

(
P
ρ
ρ−α(κ)

)
+ f(ρ) (83)

Here we let the function f(ρ), at present, undetermined. The expression
of α(κ) is

α(κ) =
15 + κ

5− κ (84)

Using the expression for P/ρ given in equation (81), it is easy to check
the validity of the following equation :

G(P/ρ,ρ,κ)−G(P/ρ,ρ,0) = −
∫
dP
ρ

(85)

This equation will be found not limited to our ”prototype” (β =
const) case, but will assume the role of a generalized property of the
pressure in our paper. One can easily check that it is indeed satisfied
by our general definition of pressure, equation (73), too. It will be ex-
ploited in the following section. It will be shown there that the function
G(P/ρ, ρ, κ) can be identified with the quantity

∫
k0(ρ,κ)dg(ρ,κ) intro-

duced in paper I of this work. For this reason, taking into account the
G(P/ρ,ρ,κ) expression (83) we will also be able to write

g(ρ,κ)k0(ρ,κ) =
5− κ
κ

P
ρ

+ k0

∫
df

k0
(86)

This will be called the system g-state equation.
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6.3 The matter-wave interference experiment and the g-state equation

Here we start with equations (93) and (94) established in paper I :

1
2

mv2
D

(ρ,κ) +<ΦHDF(x,ξi(x))> |x +
∫

k0(ρ, κ)dg(ρ,κ) + I
D

(ν(x),κ) +

+Φ(x) +
∫

dP
ρ

= Inv (87)

1
2

mv2
D

(ρ,0) +<ΦHDF(x,ξi(x))> |x +
∫

k0(ρ, 0)dg(ρ,0) +

+I
D

(ν(x),0) + Φ(x) = Inv |P=0 (88)

Among other thing, in these equations we indicate that the quantities
v
D

, k0, g themselves depend on the density and on the thermalization
constant κ signalizing the pressure ”level”. We want to treat the full,
stationary quantum case, so that we have taken the quantity f→ 0 as
remarked in paper I. The framework in paper I calls for a isentropic
transformation in the variable k - when this last is calculated along the
isentropic we called it k0 and the same holds in the present context. The
corresponding index 0 for g has instead been dropped off for the sake
of simplicity. Now we introduce the following and most important re-
mark. Equation (87) represents the expression of the mass-flow theorem
holding for an ensemble of particles interacting with each other - this
means that we have some pressure in the system so that the indicated
work term is effective into the equation. Equation (88) gives instead
the corresponding expression holding for essentially the same ensemble,
but no pressure is effective between the particles - this means that the
equation simply describes the statistical behavior assumed by many non-
interacting particles. By the experiment on matter waves interference,
we know that the quantum density pattern exhibited as the result of
many particles flowing together (these are likely to exercise pressure on
each other) is the same that exhibited as the final result of many single-
particles individually flowing across the same space, one after one. In
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other words, a key feature of quantum physics is that the collective be-
havior of many particles together is equivalent to that totalized by the
iterated action of many of them, although they are at each time effective
as singles. On this peculiar behavior the matter-wave concept is based,
because each particle is able to behave following interference laws even
when it is isolated from the others. Our physics of the ”Bernoulli” oscil-
lators, therefore, turns out to promote the appropriate name to indicate
this property. Now it is precisely this reported remark which we want to
exploit here, to state the concept that equations (87) and (88) must be
identical to each other, because the energy theorem expression holding
for a single-particle cannot be different from the many-interacting parti-
cles expression. This is also tantamount to say that the Inv constitutive
expression is independent of κ. Using the quoted equations we obtain :

1
2

mv2
D

(ρ,κ) +
∫

k0(ρ, κ)dg(ρ,κ) + I
D

(ν(x),κ) +
∫

dP
ρ

=

=
1
2

mv2
D

(ρ,0) +
∫

k0(ρ, 0)dg(ρ,0) + I
D

(ν(x),0) (89)

Equation (89) can be split into the following two ones∫
k0(ρ, κ)dg(ρ,κ)−

∫
k0(ρ, 0)dg(ρ,0) = −

∫
dP
ρ

(90)

1
2

mv2
D

(ρ,κ) + I
D

(ν(x),κ) =
1
2

mv2
D

(ρ,0) + I
D

(ν(x),0) (91)

The first one must be compared to equation (85). In the previous
paper I, we have seen that the quantity k0 is an elastic function per-
taining to the hidden degree of freedom, and can be calculated here as a
function of density using the indetermination principle in the form (116)
given in paper II - in the high-frequency limit at least. Since we have
calculated the relevant frequency already (see f.i. equation (65)), and
we can think the (high-frequency) zitterbewegung model confluent into
a situation with κ = 1, we have

k0(ρ, 1) = mω2(ρ, 1) =
(2h)2

ρ(x)4

m
(92)
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This is an expression of the statistical elastic function relevant to our
system for the case κ = 1. Now we remark that equation (90) is of the
same form of equation (85). This last equation has first been written for
the case when P=cκρ3 (equation (81)) but since it holds for the quantum
pressure (73) as well, we find easily∫

k0(ρ,κ)dg(ρ,κ) = G(P/ρ,ρ,κ) =
5− κ
κ

∫
ρα(κ)d

(
P
ρ
ρ−α(κ)

)
+ f(ρ)

(93)

From this equation, it is inferred that

k0(ρ,κ) = mω2(ρ, κ) =
(2h)2

ρ
[4−α(κ)]
0 ρ(x)α(κ)

m
(94)

where ρ0 is a characteristic constant parameter, and

gk0 = −P
ρ

+
5
κ

P
ρ

+ k0

∫
df

k0
(95)

These equations give the generalized expressions for the elastic function
k0(ρ) and correlated g-state equation, respectively.

We introduce here some comment about these two results.
If we insert the expression (94) for the HDF oscillation frequency into

the Heisenberg constraint equation (116) in paper II, we are brought to
an expression for <mv2

z> ∝ ρα(κ)/2. For κ 6= 1, this expression behaves
differently from the quantity Tm ∝ ρ2.We might say that in this case we
have not ” ergodicity ”, and note that the P-state equation (73) (which
must be maintained even for κ 6= 1) shall now be definitely based on the
use of the statistical ensemble average Tm, also appearing in the primary
equation (71).

Concerning equation (95), this last can be usefully compared with
the corresponding expression we found in paper I (equation (47)) for
the FEOM model case. We have to take care, however, that the FEOM
model is a purely thermodynamic one, intended for a canonical ensemble
with κ = 1, T≡ absolute temperature etc. Here note that in a next
section it will be found that the function f ≈ ρ−2so that the explicit
expression for gk0 turns out to be

gk0 = −P
ρ

+
5
κ

P
ρ

+
2

α(κ) + 2
f(ρ) (96)



Propositional bases for the physics of the Bernoulli . . . 43

Using equation (47) in paper I we would find by analogy

G0m(Tm) = −PV− gk0 = − 5
κ

P
ρ

(Tm)− 2
α(κ) + 2

f (ρ (Tm)) (97)

Here the Gibbs potential G0m(Tm) is a microcanonical correspondent of
the quantity defined in paper I. This expression may be useful for next
extensions of our model.

In this section, some comment has been made about the wave behav-
ior of particles. Major comment will be found in a next section.

Concerning equation (91), it will be revisited and discussed in the
following paper IV.

6.4 The HDF-state equation

Let us consider here again equation (64) :

<Φ̃HDF(x,ξ)> |x ≈ 4<
η2(x)− 1
η2(x)

> |x Tm =
h2

4m
<
η2(x)− 1
η2(x)

> |x ρ2(x)

(98)

As remarked already, this is only an approximate expression we could
set up by rough induction - because it is able to display the correct high-
frequency limit expression; but it lends itself to handling for improve-
ments. Using the state equation

P
ρ

= βκTm ≡ cκρ(x)2 (99)

we find

βκ<
η2(x)

η2(x)− 1
> |x <Φ̃HDF(x,ξ)> |x≈ 4βκTm = 4

P
ρ

(100)

Note that, if the assumption β = const is abandoned and a variable
factor β(ρ) is considered for generality, we may have the case

β(ρ(x)) = <
η2(x)− 1
η2(x)

> |x (101)
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This expression for β is interesting to us - first because in the high-
frequency limit we expect β → 1 indeed, and second because it makes
the pressure only dependent on <Φ̃HDF(x,ξ)>|x. We have:

κ<Φ̃HDF(x,ξ)> |x≈ 4
P
ρ

(102)

From a previous remark, however, we remember that one should be
able to express the Φ̃HDF(x,ξ) action by the means of two thermody-
namic potentials, which should be strongly correlated to the P/ρ poten-
tial and to the Helmholtz energy. Now this last can be represented by
the quantity

∫
Pd (1/ρ). In the prototype case with P ∝ ρ3 we take into

account equation (82) and are able to fit the pressure expression into the
following one:

4
P
ρ

= c1
P
ρ
− c2

∫
Pd

1
ρ

=
[
c1 +

c2
2

] P
ρ

= −4
P
ρ
− 16

∫
Pd

1
ρ

(103)

Here we have introduced a linear combination of the relevant potentials
with coefficients c1 and c2, and chosen moreover c2 = c21 - what finally
brings to the values displayed in the last term.

At the present investigation stage, we are brought to the mentioned
choice by the requirement that the coefficients are correlated to the num-
ber of octants 8, and by some inspection of the mathematical relations
implied into the constitutive expression of the Bohm potential via the
pressure (see equations (73) and (74)); yet we cannot ”demonstrate”
here that it is the good choice. It can just be said, at present, the fortu-
nate one: in the following paper IV we will instead demonstrate - by an
independent analysis - that the general expression for <Φ̃HDF(x,ξ)>|x,
argued here already, is indeed, definitely:

<Φ̃HDF(x,ξ)> |x= − 4
κ

P
ρ
− 16

κ

∫
Pd

1
ρ

(104)

This equation shows that there is a sound correlation between ΦHDF

and the pressure P. It can be viewed and referred to as the HDF-state
equation.

We want to remark that some of the equations ((81)÷(82) and
(98)÷(103)) displayed until now in this section reflect the specific prop-
erties of our prototype model , with P∝ ρ3 and Tm ∝ ρ2 (concerning
equation (32), it is assumed by us to hold in the general case however).
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All the other equations appearing in the section, from (71) to (107) -
except the quoted ones - will instead be found to survive at the end of
the (independent, and more general) analysis given in the next paper
IV.

Equation (104) has been said already the HDF-state equation. By
the peculiar way we have found it, we can argue that it is independent of
the high-frequency approximation. This opinion will be consolidated by
the analysis in paper IV; but concerning this specific point we have to
remark that further analysis - to ascertain the proper validity domain of
the expression - is out of the possibilities of this work, and is still waited
for.

Actually, one might prefer to look at equation (104) (reversed) as
just the constitutive relation for P, which can be written

P = −κ
4
ρ5

∫
ρ−4d<Φ̃HDF(x,ξ)> |x (105)

As noted before, this equation directly shows that the pressure in a
quantum system is ”transmitted” to the classical degree of freedom by
HDF.

Equations (98)÷(105) have however been written by using only the
Φ̃HDF part of the potential. In order to have a complete expression
for <ΦHDF(x,ξ)>|x, we have still to add to the expression (104) a term
associated to the mass effect we encountered in paper II. At present
we will simply name this term as −f(ρ), thus identifying this function
with the one introduced already in equation (83). By inspection of the
following equations the consistency of the procedure is easily recognized.
An explicit expression for f(ρ) will be found in paper IV so that the
general expression relevant to this section can now be written

<ΦHDF(x,ξ)> |x= − 4
κ

P
ρ
− 16

κ

∫
Pd

1
ρ
− f(ρ) (106)

If now we use our expression (73) for the quantum pressure P we can
have an expression for the potential <ΦHDF(x,ξ)>|xassociated to the full
quantum case. Performing calculations, this turns out to be:

<ΦHDF(x,ξi(x))> |x= − h2

2m
ρ−2′′

ρ−2
− f(ρ) (107)
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This expression is just the final one to rely on in this paper - is remarked
again that we have further analysis to deploy in order to confirm this
result. It will be given in the next paper IV.

7 Conclusion

In this paper, we introduced a reference statistical ensemble whose prop-
erties lend themselves to simple analytical discussion. These properties
are used as a basis to develop some induction and provide extended ex-
pressions for the state-equations relevant to a generalized model. Specifi-
cally, we were able to find out expressions for the pressure, the statistical
elastic function, the HDF-potential fields and some other associated po-
tentials and quantities. A discussion of the approximations we have used
to find out results, as well as of the key ideas governing our investiga-
tive path, has been given: it includes an analysis of the wave-behavior
featuring a quantum mechanical system and of its consequences within
our framework context. Our purpose is evidencing a renovated possi-
bility to affirm a classical concept of particle motion. To this end, a
detailed comparison of our resulting framework with a quantum me-
chanical framework will be demonstrated fruitful in the following paper
IV of this work.
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Figure 1. (qualitative) behavior of the classical density ρc(x) for a sys-
tem of particles with energy E in a harmonic potential. It exhibits poles
at the turning points (x0’s).(B): (qualitative) behavior of the inhomoge-
neously energy broadened system density ρ(x) for a system of particles
with energies E included in the interval Ei, Ef . It exhibits an undulating
shape and tails at the boundaries. All quantities are in arbitrary units.




