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Symmetry Properties of Photon Eigenstates of

Generalized de Broglie-Bargmann-Wigner Equations

H. Stumpf

Institute of Theoretical Physics, University Tübingen, Germany

ABSTRACT. Generalized de Broglie-Bargmann-Wigner equations are
relativistically invariant quantum mechanical many body equations
with nontrivial interaction, selfregularization and probability interpre-
tation. In accordance with de Broglie’s fusion theory the photon is
assumed to be the fusion product of two fermionic constituents leading
to a partonic substructure of the photon. For this case exact photon
eigenstates of the generalized fusion equations are studied. In partic-
ular the relativistic transformation properties of such states are dis-
cussed and it is demonstrated that the internal part of the photon
wave function is invariant under these transformations. In addition it
is proved that the photon wave function is antisymmetric under per-
mutations of space-time coordinates and algebraic indices which is a
necessary property for selfconsistency of the formalism.

1 Introduction

In numerous high energy experiments a partonic substructure of photons
has been detected, [1]. Usually this behavior of the photon is qualita-
tively explained by fluctuations of the photon in other states, [2]. But as
was discussed in [3] such an interpretation leads to various difficulties.
Thus another hypothesis is likely, namely that the photon possesses a
permanent partonic substruture which is revealed in these experiments.
This means that theoretically the photon has to be considered as a rel-
ativistic bound state.

The idea of the photon as a relativistic bound state has a long his-
tory. Seventy years ago de Broglie published his first papers on the
theory of fusion based on two Dirac equations for a second order spin
tensor, [4]. His aim was to obtain the photon as a fusion product of
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two neutrinos, i.e., to describe the photon as a relativistic bound state
of neutrinos. Later on de Broglie, [5] and Bargmann and Wigner, [6]
extended this formalism to the treatment of n Dirac equations for n-th
order spin tensors and these fusion equations were evaluated by many
authors afterwards, cf., [7], [8]. The principal success of this approach
was the derivation of Maxwell’s equations by de Broglie as an effective
theory for the composite photon, but its drawback was the absence of
interactions between the constituents in favor of a purely kinematical
treatment of the fusion process. On the other hand with the further
development of quantum field theory the de Broglie-Bargmann-Wigner
formalism was superseded by genuine quantum field theoretic methods
in order to obtain appropriate descriptions of relativistic bound states.
The most preferred version of such a quantum field theoretic formalism
was the theory of Bethe-Salpeter equations which was started fifty years
ago, [9] and was elaborated by numerous authors, [10],[11],[12]. But also
this approach leads to various difficulties, [10],[13]. So the construction
of relativistic two-body ( and many body ) equations and the comparison
between different methods are active areas of current research, [14].

In particular a quantum field theoretic formalism for relativistic
bound states can be based on the idea that de Broglie’s spin fusion
should be caused by direct interactions of fermions without the assis-
tance of bosons, because in this ( in de Broglie’s ) picture the latter are
fusioned objects and not elementary entities.

The corresponding theory which exclusively deals with spinorial in-
teractions is based on a nonperturbatively regularized nonlinear spinor
field with canonical quantization and probability interpretation. It can
be considered as the quantum field theoretic generalization of de Broglie’s
fusion theory and as a mathematical realization and physical modifica-
tion of Heisenberg’s approach, [15], and is expounded in [16],[17]. Owing
to this generalization the basic ingredients of this theory are assumed to
be unobservable subfermions and not neutrinos, and only after having
derived the conventional gauge theories as effective theories it is possi-
ble to introduce the corresponding ( composite ) gauge bosons into the
dynamical interplay of matter.

In the following sections the results of these calculations and inves-
tigations are used, as far as they are of importance for our discussion
which is concerned with the derivation of the symmetry properties of sin-
gle photon eigenstates of generalzed de Broglie-Bargmann-Wigner equa-
tions. The information about these symmetry properties is crucial in two
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different respects: first it has to be demonstrated that these eigenstates
are actual relativistic bound states and second a precise knowledge of
these properties is needed if by means of these states quantum electro-
dynamics is to be derived as an effective theory of photons with partonic
substructure. In spite of the fact that in this theoretical approach the
photon states represent the most simple case of relativistic bound states,
the investigation of their symmetry properties is rather extensive. Hence
the whole subject cannot be treated in one paper. Complementary ad-
ditional information to the treatment given here can be found in [18].

2 Partonic photon wave functions

By means of the field theoretic formalism wave equations for single com-
posite particles with partonic substructure can be derived. The general
theory is discussed in [16],[17] and details concerning photon states are
given in [3],[8],[18]. Referring to these references we start with the hard
core equations for composite photon states. We use the following nota-
tion in order to obtain clearly organized expressions:

r ∈ R3, x ∈ M4, and Z = (i, κ, α) where κ := superspin-isospin in-
dex, α := Dirac spinor index, i := auxiliary field index. The latter index
characterizes the subfermion fields which are needed for regularization.

Let ϕZ1Z2(x1, x2) be the covariant, antisymmetric state amplitude
of the composite particle or quantum , respectively. Then within the
general formalism for this amplitude the following set of covariant photon
equations can be derived:

[Dµ
Z1X1

∂µ(x1)−mZ1X1 ]ϕX1Z2(x1, x2) =

3UZ1X2X3X4FX4Z2(x1 − x2)ϕX2X3(x1, x1)
(1)

and

[Dµ
Z2X2

∂µ(x2)−mZ2X2 ]ϕZ1X2(x1, x2) =

− 3UZ2X2X3X4FX4Z1(x2 − x1)ϕX2X3(x2, x2)
(2)

with the following definitions

Dµ
Z1Z2

:= iγµα1α2
δκ1κ2δi1i2 (3)

and

mZ1Z2 := mi1δα1α2δκ1κ2δi1i2 (4)



68 H. Stumpf

and

FZ1Z2(x1 − x2) :=−iλi1δi1i2γ5
κ1κ2

[(iγµ∂µ(x1) +mi1)C]α1α2∆(x1 − x2,mi1)
(5)

where ∆(x1 − x2,mi1) is the scalar Feynman propagator. The meaning
of the index κ can be explained by decomposing it into two parts κ :=
(Λ, A) with Λ = 1, 2 superspin index of spinors and charge conjugated
spinors and A = 1,2 isospin index, which can be equivalently expressed
by κ = 1,2,3,4 .

The vertex terms in equtions (1) and (2) are fixed by the following
definitions:

UZ1Z2Z3Z4 := λi1Bi2i3i4V
κ1κ2κ3κ4
α1α2α3α4

(6)

where Bi2i3i4 indicates the summation over the auxiliary field indices
and where the vertex V is given by a scalar and a pseudoscalar coupling
of the subfermion fields:

V κ1κ2κ3κ4
α1α2α3α4

:=
g

2
{[δα1α2Cα3α4 − γ5

α1α2
(γ5C)α3α4 ]δκ1κ2 [γ5(1− γ0)]κ3κ4}as[2,3,4]

(7)

The parameters λi originate from the regularization procedure and
fulfill the conditions

∑
i λi = 0 and

∑
i λimi = 0 which guarantee the

finiteness of the regularized expressions.

Similar equations but without auxiliary fields were treated by the
Heisenberg group, [15]. These equations suffer from singularities and
negative norm states, difficulties which are avoided by the present for-
malism. For vanishing coupling constant g = 0 de Broglie’s original
fusion equations for local photons are obtained, and for a solution of the
set (1), (2) only equation (1) has to be used if the wave functions are
antisymmetric.

Equation (1) admits exact solutions. We only give the result of such
calculations and refer for details to [8],[16],[17],[18].

Let ϕ be a solution of equation (1). Then ϕ describes a vector boson
with definite momentum k , if it is given by the following expression:

ϕZ1Z2(x1, x2) = T aκ1κ2
exp[−ik

2
(x1 + x2)]Aµχµi1i2

α1α2

(x1 − x2|k) (8)
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with the antisymmetric tensor T aκ1κ2
and the internal wave function

χµi1i2
α1α2

(x) :=
2ig

(2π)4
λi1λi2

∫
d4pe−ipx[SF (p+

k

2
,mi1)γµSF (p− k

2
,mi2)C]α1α2

(9)

( no summation over i1, i2 ) and SF (p,m) := (iγµpµ −m)−1 .
As equations (1) and (2) are homogenous equations their solutions

(8) lead to secular equations for the eigenvalues which in this case are
given by k2 as a function of the value of the coupling constant g. And
owing to the special structure of equations (1) and (2) the secular equa-
tions are finite and need no further regularization. As a consequence
these equations allow a physical interpretation, see [18]. On the other
hand the integral in (9) can be evaluated by standard methods and leads
to a singular behavior on the light cone. Therefore for a physical inter-
pretation a regularization is needed which has to be consistent with the
corresponding secular equations. And concerning the physical interpre-
tation of wave functions this clearly means that these functions must
admit a probability interpretation.

For the general theory this problem was treated and solved in [19].
In accordance with [19] we apply this regularization to the special case
of photon states under consideration. We define the physical, i.e. regu-
larized state amplitudes by summation over the auxiliary field indices

ϕ̂α1α2
κ1κ2

(x1, x2) :=
∑
i1i2

ϕZ1Z2(x1, x2) (10)

which is consistent with the secular equations. If these regularized
states are to be physical states they must obey probability conservation.
This proof was given in [19] and we refer for details to this paper, see
also [3],[18].

In order to derive a probability interpretation for the boson wave
functions their single time formulation has to be used. We decompose
the index Z := (α, κ, i) into Z = (z, i) and sum over i1, i2. Afterwards
the limit to equal times is performed by means of a special symmetrical
limit procedure. For the resulting amplitudes it is possible to derive
exact constraints using equations (1) and (2). From these constraints
one can derive a current conservation law for the density ϕ̂†ϕ̂, provided
that for mi = m+ δmi the limit δmi = 0 is considered.
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This means: in this limit the physical state amplitudes ϕ̂ describe
stable bound states and are elements of a corresponding Hilbert space
with the norm expression

〈ϕ̂|ϕ̂〉 =
∑
z1z2

∫
d3r1d

3r2ϕ̂z1z2(r1, r2, t)∗ϕ̂z1z2(r1, r2, t) (11)

Hence a quantum mechanical interpretation of the photon states is
possible. But as the photon is a relativistic particle it has to be shown
that the transformation properties of such states are consistent with the
requirements of relativity.

3 Transformation properties of states

For g = 0 one obtains from (1) and (2) the original fusion equations
of de Broglie ( apart from the bilocal wave functions and the auxiliary
fields ). So the question arises whether it is imperative to take over de
Broglie’s neutrino interpretation to the interpretation of the generalized
de Broglie-Bargmann-Wigner equations or whether there exist alterna-
tive interpretations and we will show that indeed such an alternative
interpretation is possible ( and necessary ).

Without becoming too much engrossed into the quantum field theo-
retic background of the generalized de Broglie-Bargmann-Wigner equa-
tions, we only point out that the basic nonlinear spinor field is primarily
formulated in terms of the field operators ψαA(x, i) and ψ̄αA(x, i) in or-
der to secure the relativistic invariance of the corresponding Lagrangian.
But in order to provide a unique group theoretical structure of the spinor
field quantum theory it is necessary to use instead of the adjoint spinor
field ψ̄αA(x, i) the charge conjugated spinor field ψcαA(x, i). And al-
though on this elementary level no charges can be defined at all and the
basic field equations in both representations are completely equivalent,
the group structure of the corresponding quantum theories differs. While
in the ψ, ψ̄ representation no meaningful permutation symmetry can be
established, such a symmetry can be defined in the ψ,ψc representation.

To verify this conjecture we consider the transformation properties of
spinor fields under infinitesimal Lorentz transformations. These trans-
formations are defined by

ψ′(x′) = S(a)ψ(a−1x′); ψ̄′(x′) = ψ̄(a−1x′)S−1(a) (12)
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with

S(a) = 1− i

4
σµνω

µν ; S−1(a) = 1− i

4
σµνω

µν (13)

and aµν = ηµν + ωµν , see [13]. With the definition

ψc(x) = Cψ̄(x)T (14)

and the relations σµνC = −CσTµν , σTµν = −σνµ one obtains

ψc′(x′) = S(a)ψc(a−1x′) (15)

Hence a superspinor ψαAΛ(x, i) can be introduced by the definition

ψαA1(x, i) := ψαA(x, i), ψαA2(x, i) := ψcαA(x, i) (16)

for Λ = 1, 2 with the transformation property

ψ′α′AΛ(x′, i) = Sα′α(a)ψαAΛ(a−1x′, i) (17)

and the set (A,Λ) can be replaced by κ defined in the preceding section.
In this representation the basic spinor field equation reads [16],[17]

(Dµ
Z1Z2

∂µ −mZ1Z2)ψZ2(x) = UZ1Z2Z3Z4ψZ2(x)ψZ3(x)ψZ4 (18)

with ψZ(x) := ψακ(x, i) and the definitions of section 2 .

The generalized de Broglie-Bargmann-Wigner equations (1) and (2)
are derived from this basic spinor field equation and thus must be in-
terpreted in the same way, i.e., de Broglie’s neutrino interpretation is
replaced by an interpretation in terms of spinor fields and charge conju-
gated spinor fields. Owing to the complete homogeneity of the transfor-
mation law and the dynamical law for superspinors, the latter quantities
can be considered as indistinguishable and thus are objects to which
the permutation group can be applied in quantum theory. This will be
discussed in section 5.

In the covariant quantum version of the spinor field the basic
quantities of the theory are defined by time ordered matrix elements
〈0|TψZ1(x1)...ψZn(xn)|k〉 where 〈0| is the groundstate of the quan-
tized spinor field and |k〉 any excited state. With respect to our
problem we consider the transformation property of ϕZ1Z2(x1, x2|k) =
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〈0|TψZ1(x1)ψZ2(x2)|k〉 for orthochronous Lorentz transformations which
preserve time ordering. Then for t1 > t2 one obtains

ϕ′Z′1Z′2(x′1, x
′
2) = Sα′1α1(a)Sα′2α2(a)ϕα1κ1i1,α2κ2i2(a−1x′1, a

−1x′2) (19)

and although the eigenstates of equations (1) and (2) are no eigenstates
of the full theory we assume that they obey the same transformation law
for consistency.

Owing to this tensor transformation law (19) no discrimination be-
tween spinors and charge conjugated spinors can be made by means of
space-time transformations. However the spinor field equation is invari-
ant under U(1)⊗SU(2) transformations [16],[17] and one easily realizes
that if the spinor field operator has the fermion number f, then the con-
jugated spinor field has the fermion number -f . So by means of this
transformation one can classify the content of both kinds of spinor fields
in the matrix element under consideration. In combination with the
isospin quantum numbers this information is exclusively contained in
the tensor Tκ1κ2 which was discussed in detail in [3],[16],[17].

4 Relativistic invariance of photon states

In the preceding section it was explained that owing to the introduction
of charge conjugated spinor fields the superspin-isospin transformations
can be decoupled from space-time transformations. For photon states
this fact is expressed by equation (8) which we equivalently write in the
form

ϕZ1Z2(x1, x2) = T aκ1κ2

2ig
(2π)4

ϕ i1i2
α1α2

(x1, x2) (20)

with

ϕ i1i2
α1α2

(x1, x2)=e−i
k
2 (x1+x2)λi1λi2

∫
d4pe−ip(x1−x2)fi1(p+

1
2
k)fi2(p− 1

2
k)×

{[(pρ +
1
2
kρ)Aµ(pλ −

1
2
kλ)γργµγλ + (pρ +

1
2
kρ)Aµmi2γ

ργµ

Aµ(pλ −
1
2
kλ)mi1γ

µγλ +Aµmi1mi2γ
µ]C}α1α2 (21)

where the fi are the Lorentz invariant denominators fi(p) := (p2−m2
i )
−1.

If one applies a Lorentz transformation x′µ = aνµxν to (21) one obtains
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according to (19)

ϕ′i1i2
α′1α
′
2

(x′1, x
′
2) = Sα′1α1(a)Sα′2α2(a)ϕ i1i2

α1α2
(a−1x′1, a

−1x′2) (22)

To evaluate this expression, i.e., to show its relativistic invariance we
derive the following relation

Sαβ(a)Sδγ(a)(γµ1 ...γµnC)βγ = (a−1)µ1
µ′1
...(a1)µnµ′n(γµ

′
1 ...γµ

′
nC)αδ (23)

by means of the transformation law for γµ and by use of infinitesimal
transformations.

Transformation of (21) according to (22) and substitution of (23) into
this expression leads with

p′ = p(a−1), k′ = k(a−1), A′ = A(a−1) (24)

and fi(p+ 1
2k) = fi(p′ + 1

2k
′) to the transformed photon state

ϕ′=exp[−i1
2
k′(x′1 + x′2)]λi1λi2

∫
d4p′exp[−ip′(x′1 − x′2)]fi1fi2 × (25)

{(p′ρ +
1
2
k′ρ)A

′
µ(p′λ −

1
2
k′λ)(γργµγλC) + (p′ρ +

1
2
k′ρ)A

′
µmi2(γργµC)

mi1A
′
µ(p′λ −

1
2
k′λ)(γµγλC) +mi1mi2A

′
µ(γµC)}α′1α′2

where the primes on the spinor indices in the internal summations have
been omitted. Comparison with (21) shows that (21) is an invariant
expression under homogeneous Lorentz transformations.

Finally we consider inhomogenous Lorentz transformations. Let us
define such an inhomogeneous transformation by L(h, a) where a denotes
the homogenous part, while h denotes the translation vector. Then the
following decomposion holds, [20]:

L(h, a) = L(h, 1)L(0, a) (26)

If such a transformation is applied to (21) then according to the
decomposition (25) the transformation L(0, a) leads to the result (24),
while the translation part L acts exclusively on the plane wave part
exp[−i 1

2k(x1+x2)] in the usual manner. Hence the relativistic covariance
of (21) under inhomogeneous Lorentz transformations is demonstrated.
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5 Permutation symmetry

Although not explicitly recorded the generalized de Broglie-Bargmann-
Wigner equations (1) and (2) are referred to antisymmetric wave func-
tions. This property is expressed by antisymmetrizers,[18], which for
brevity have been omitted in (1) and (2). Hence for reasons of consis-
tency the solutions (8) must be antisymmetric because otherwise they
are worthless.

Owing to the decomposition into superspin-isospin part and spin
part, one can both parts discuss separately. According to [8],[3],[18]
or [16],[17], respectively, the superspin-isospin tensors T aκ1κ2

are an-
tisymmetric for photon states. Hence the spin part (21) must be
symmetric under permutations of the remaining general coordinates
(i1, α1, x1), (i2, α2, x2) in order to secure the antisymmetry of the whole
wave function.

For convenience we rewrite (21) in the following form:

(21)=e−ik
′(x1+x2)

∫
d4pe−ip(x1−x2){[Rν(p+ k′, i1)Rτ (p− k′, i2)γνγµγτ(27)

S(p+ k′, i1)Rτ (p− k′, i2)γµγτ +Rν(p+ k′, i1)S(p− k′, i2)γνγµ

S(p+ k′, i1)S(p− k′, i2)γµ]C}α1α2Aµ

with k′ = 1/2k and

Rν(p, i) := pνλi(p2 −m2
i + iε)−1; S(p, i) := miλi(p2 −m2

i + iε)−1

(28)

Then it has to be verified that for (21) the permutation symmetry

ϕ i1i2
α1α2

(x1, x2) = ϕ i2i1
α2α1

(x2, x1) (29)

holds.
Now consider the first term in the bracket in (27). After permutation

(29) this term reads

Rν(p+ k′, i2)Rτ (p− k′, i1)(γνγµγτC)α2α1e
−ip(x2−x1) (30)

We replace in (30) p by −p′ and obtain the equalities

Rν(−p′ + k′, i2) = −Rν(p′ − k′, i2) (31)
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and

Rτ (−p′ + k′, i1) = −Rτ (p′ + k′, i1) (32)

Thus it follows with τ → ν and ν → τ

(30) = Rν(p′ + k′, i1)Rτ (p′ − k′, i2)(γτγµγνC)α2α1e
−ip′(x1−x2) (33)

Furthermore it can be verified that

(γτγµγνC)α2α1 = (γνγµγτC)α1α2 (34)

holds, and with d4p = d4p′ one eventually obtains∫
d4pRν(p+ k′, i2)Rτ (p− k′, i1)(γνγµγτC)α2α1e

−ip(x2−x1) (35)

=
∫
d4p′Rν(p′ + k′, i1)Rτ (p′ − k′, i2)(γνγµγτC)α1α2e

−ip′(x1−x2)

i.e., the first term of (27) is symmetric under permutation of the general
coordinates (i1α1x1, i2α2x2) .

To verify the symmetry of the other terms in (27) one has to proceed
in an analogous manner.

Consider the second term and the third term of (27). Permutation
leads to
[S(p+ k′, i2)Rτ (p− k′, i1)(γµγτC)α2α1

+Rν(p+ k′, i2)S(p− k′, i1)(γνγµC)α2α1 ]e−ip(x2−x1)
(36)

If now p is replaced by −p′, and the definitions (28) and (31),(32)
are applied, then after relabeling τ → ν, ν → τ one obtains from (36)

−[S(p′ + k′, i1)Rτ (p′ − k′, i2)(γτγµC)α2α1

+Rν(p′ + k′, i1)S(p′ − k′, i2)(γµγνC)α2α1 ]e−ip
′(x1−x2)

(37)

Owing to the relation

(γνγµC)α2α1 = −(γµγνC)α1α2 (38)

which holds for µ = ν too and the invariance of the volum element
d4p = d4p′ also these terms in (27) are symmetric. In the same manner
the symmetry of the last term in (27) is shown.

Hence the photon wave functions possess the symmetry properties
which are required for the self consistency of the solution procedure.
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