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ABSTRACT. In a few previous papers, we developed a theoretical
framework displaying the thermodynamic, mechanical and statistical
properties of the Bernoulli oscillators - these last are physical entities
to which a classical-like, deterministic behaviour is attributed. We pro-
vided expressions for the mass-flow theorem and correlated potentials
relevant to an ensemble of these oscillators. In this paper, we compare
our framework and results with a quantum mechanical context, repre-
sented by the Schrodinger wave-equation in the Madelung formulation.
By a requirement of consistency with the quantum equations, we are
able to find out an expression of the mechanical energy theorem gov-
erning the (single-particle) so-called classical degree of freedom. This
expression corresponds to a Newtonian-like equation of motion, which
seems to us the good candidate to set a bridge between classical and
quantum physics. It is (by proposal) interpreted as the physical back-
ground underlying the quantum wave-function formalism. We use a
”double solution” conjecture to solve our equation, and show that the
classical-like densities generated by the solutions can be summed indeed
to the corresponding quantum density. Although we remain sometimes
within the boundary of a conjectural framework, and limited to the case
of translational motion, the possibility to approach a solution to the
old problem of inconsistency between classical and quantum mechanics
is conclusively displayed in the paper, and discussed as a proposal.

1 Introduction

In the previous papers denoted I-III [1÷ 3] of this work we introduced
some thermodynamical, mechanical and statistical properties of the so-
called Bernoulli oscillators. We could set up a mechanical-statistical
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framework describing the physical behavior of an ensemble of these os-
cillators, taking into account ”local ” (i.e. depending on the co-ordinate
x within the available space-domain) potentials; and provided expres-
sions for the mass-flow theorem and correlated relevant quantities. More
specifically, we found generalized properties and expressions for both the
indicated work and the ensemble average of the potential energy ΦHDF -
this is the energy provided by the external source (the quantum field)
to what we call the classical degree of freedom. This last is constituted
by the oscillation center motion of the particle, submitted to the (time-
dependent) quantum field action. In the present paper IV, we compare
our model equations to the wave-mechanical equations set (hydrody-
namic formulation). We use a limit procedure to find the mechanical
correspondents - consistent with quantum theory and associated to a
single-particle behavior - of the relevant statistical expressions we have
made available. By the comparison procedure, we find out the single-
particle energy theorem expression consistent with the quantum mechan-
ical statistics. It has the form of a Newtonian-like equation of motion
for the classical degree of freedom, which we (by proposal) promote as
the representative example of a renovated possibility to affirm a classical
concept of particles motion and mechanics. The equation is non-linear
in the velocity field and reveals rather stiff for analytical handling; yet
- by some conjectures - we are able to set up interesting solutions to
our sake of consistency with quantum mechanics. Sometimes, therefore,
we remain on a conjectural ground; but an effort is done to give inter-
pretative level to our framework, to the purpose of stimulating critical
interest and deepening into the properties we could display.

2 The full quantum case

In this section, we apply the results obtained in paper III to the final task
of determining the expressions for <ΦHDF(x,ξ)>|x and ΦHDF(x,ξ) itself
by the request of consistency of our formalism with the key equation
in quantum mechanics, i.e. the Schrödinger equation (hydrodynamic
formalism).

2.1 The mass-flow theorem and the Schrödinger equation

Using the P-state equation (73) and the g-state equation (95) in paper
III we find ∫

k0(ρ,κ)dg(ρ,κ) = G(P/ρ,ρ,κ) =
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= − h2

4m
(5− κ)

∫
ρα(κ)d

((
ρ′

ρ

)′
ρ−α(κ)

)
+ f(ρ) (1)

Taking into account the expression of α (κ) given in paper III - equation
(84), we find

G(P/ρ,ρ,κ) =
h2

2m
(5− κ)2

15 + κ

ρ−
α(κ)

2
′′

ρ−
α(κ)

2

+ f(ρ) (2)

Now we revisit equations (87),(88) in paper III:

1
2

mv2
D

(ρ,0) +<ΦHDF(x,ξi(x))> |x +G(P/ρ,ρ,0) + I
D

(ν(x),0) + Φ(x) =

= Inv |0 (3)

1
2

mv2
D

(ρ,κ) + Φ(x) +<ΦHDF(x,ξi(x))> |x +G(P/ρ,ρ,κ) + I
D

(ν(x),κ)+

+
∫
dP
ρ

= Inv (4)

Our purpose is comparing the previous equations with the following ones:

∇S2

2m
+ Φ(x) − h2

2m

√
ρ′′
√
ρ

= En (5)

ρ∇S = const (6)

These last equations represent the standard Madelung hydrodynamic
form for the stationary Schrödinger equation. The associated quan-
tum mechanical wavefunction (space-dependent part) is Ψ(x) = ± √ρ
exp(iS(x)/ h), with S(x) ≡ phase function, also entering the continuity
equation (6).
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2.2 Determination of the HDF potential energy

We solve the set of equations (3)÷(6) as follows:

Inv = Inv |0= En (7)

<ΦHDF(x,ξi(x))> |x=

= En −
1
2

mv2
D

(ρ,κ)− Φ(x)−G(P/ρ,ρ,κ)− I
D

(ν(x),κ)−
∫
dP
ρ

(8)

<ΦHDF(x,ξi(x))> |x= −1
2

mv2
D

(ρ,κ) +
∇S2

2m
− h2

2m

√
ρ′′
√
ρ

+

−G(P/ρ,ρ,κ)− I
D

(ν(x),κ)−
∫
dP
ρ

(9)

<ΦHDF(x,ξi(x))> |x= −1
2

mv2
D

(ρ,κ) − I
D

(ν(x),κ) +
∇S2

2m

+ (κ− 1)
h2

2m

√
ρ′′
√
ρ
− h2

2m
(5− κ)2

15 + κ

ρ−
α
2
′′

ρ−
α
2
− f(ρ) (10)

<ΦHDF(x,ξi(x))> |x= −G(P/ρ,ρ,1) = − h2

2m
ρ−2′′

ρ−2
− f(ρ) (11)

I
D

(ν(x),κ) +
1
2

mv2
D

(ρ,κ) = I
D

(ν(x),0) +
1
2

mv2
D

(ρ,0) =
∇S2

2m
(12)

Concerning the potential<ΦHDF(x,ξi(x))>|x, its expression (11) is found
identical to the one proposed in equation (107), paper III, by independent
analysis. Further discussion about it can be found in the next sections.
Concerning equation (12) (cf. equation (91) in paper III), note that in
the full quantum case (for closed systems here at hand) the wavefunction
Ψ=± √ρ exp(iS/h) is generally taken real, so that we are here actually
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considering the case with phase function S = 0⇒ const = 0 in equation
(6). Conversely, we may have WKB or quasi-classical cases where ∇S2 6=
0 - these ones may support a solution with I

D
= 0 and ∇S = mv

D
which

is of rather simple interpretation in our general context and will not to
be discussed here. Then we write

I
D

(ν(x),κ) +
1
2

mv2
D

(ρ,κ) = I
D

(ν(x),0) +
1
2

mv2
D

(ρ,0) = 0 (13)

To enlighten this equation, we note that it requires the quantity
I
D

(ν(x),κ) to be negative. That this is a possible physical issue has
been shown to occur for the model given in paper III, indeed. We rely
here on that result to accept equation (13). We do not make any attempt
to calculate the potential I

D
(ν(x),κ) explicitly in the present general case

- we have not yet enough indications about its constitutive relationship.
This last is likely to depend on the mass effect we have been able to
display in our analysis, and on the peculiar effect of ”mechanical order-
ing” of particles motions - we have found it in paper III. Even more
important, in our opinion, the I

D
(ν(x),κ) potential expression might be

affected by the possibility - admitted in our model - that the particle
jumps from one time-law to another (see a next section entitled to phys-
ical interpretation). All of these effects on the I

D
expression remain to

be investigated.

By the previous equations, we also find

UB(x) = − h2

2m

√
ρ′′
√
ρ

= <ΦHDF(x,ξi(x))> |x +
∫

k0(ρ,κ)dg(ρ,κ) +
∫
dP
ρ

(14)

This equation allows us to give to the quantum Bohm potential a
classical-like interpretation by means of the quantities ΦHDF, k0, g, P
we have introduced in our framework. At the same time, equation (12)
gives us a classical-like interpretation of the quantum potential ∇S2/2m
by the means of the potentials I

D
(ν(x),κ) and mv2

D
/2.

3 Statistical interpretation

It is not difficult to find out an expression for the function f(ρ) if we
assume that the ξi are space-parameters additive to the co-ordinate x.
In this case we can write:



124 G. Mastrocinque

<ΦHDF(x,ξi(x))> |x≡ <ΦHDF(x + ξ)> |x= − h2

2m
ρ−2′′

ρ−2
− f(ρ) (15)

Here the indices i, |x and the ξ functional dependence on x are omitted
by simplicity. By the Mc Laurin series we have (remember <>|xis an
average over ξ-values in the context of the present paper):

<ΦHDF(x + ξ)> |x= ΦHDF(x) +<ξ> |x Φ
′

HDF(x)+

+
<ξ2> |x

2
Φ
′′

HDF(x) +<R(x,ξ)> |x (16)

The quantity R(x,ξ) is the residual function in the series. In this equa-
tion, we will take the odd ξ−distribution momenta equal to zero :

<ξ2n+1> |x= 0 (17)

This is to insure space-isotropy with respect to the parameter ξ physical
action. We also assume the interesting ansatz

<R(x,ξ)> |x= φ(x,ξ)ΦHDF(x) (18)

Using these equations, we find

f(ρ) = −ΦHDF(x)−<R(x,ξ)> = − [1 + φ(x,ξ)] ΦHDF(x) (19)

− h2

2m
ρ−2′′

ρ−2
=
<ξ2>

2
Φ
′′

HDF(x) (20)

A solution of this equation is

ΦHDF(x) = −2χρ−2 = −2δmν2
0ρ
−2 (21)

h2ρ2

2mχ
= <ξ2> = − h2

mΦHDF(x)
(22)

Here χ is a constant which, by dimensional analysis, takes the form

χ = δmν2
0 (23)
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In this equation, the (constant) specific mass-flow ν0 defined in paper
III has been used and δm is the mass coefficient introduced in paper II.
It was found there to substantiate a (negative) correction to the particle
mass, so that the mass defect −δm will be called the HDF-induced mass.
Now we find

f(ρ) = 2δmν2
0ρ
−2 [1 + φ(x,ξ)] (24)

In this expression, the function φ(x,ξ) can be neglected for small
<ξ2>−values (see equation (18)) but should not be neglected when the
variable ξ takes high-values ξh. By equation (22) we see that this case
occurs in points of space where rather high values of density (ρh) and
small values of ΦHDF(x) are attained. Moreover, for ξ ≈ ξh we can say
that the potential ΦHDF(x+ξh) itself is likely to exhibit some small value
because we can give the interpretation (introduced in the next section)
that the source of this potential is at a great distance ξh from the par-
ticle position x. In the regions where ξ → ξh using equations (16), (20),
(22) we can write, therefore :

<ΦHDF(x + ξh)> |x= c∗(x) =

= ΦHDF(x)− h2

2m
Φ
′′

HDF(x)
ΦHDF(x)

+<R(x,ξh)> |x (25)

<R(x,ξh)> |x= C(x)− ΦHDF(x) (26)

By the previous remarks, in these equations we understand that c*(x)
at least should be a weak functions of x. It is useful to write C(x) as
C(ρ2) so that we find

lim
ξ→ξh

[1 + φ(x,ξ)] =
C(ρ2)

ΦHDF(x)
= − C(ρ2)

2χρ−2
(27)

An approximate expression for φ(x,ξ) is therefore:

φ(x,ξ) ≈ −C(ρ2)ρ2

2χ
(28)

It can be regarded as a reasonable, interpolative expression between the
cases with small and high ξ−values. Then we find by equation(19) an
expression for f(ρ) and we write equation (15) now in the final form

<ΦHDF(x,ξi(x))> |x= − h2

2m
ρ−2′′

ρ−2
− 2δmν2

0

ρ2
+ C(ρ2) (29)
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4 The Newtonian background

Using the procedure indicated in paper II, equation (121), the following
expression for ΦHDF(x,ξi(x)) is excerpted :

ΦHDF(x,ξi(x) ≡ ξ) =
(i)

lim
I
D

(0,ν0)→0
<ΦHDF(x,ξi(x))> |x =

= − h2

2m
ρ−2′′
c

ρ−2
c

− 2δmν2
0

ρ2
c

+ C(ρ2
c) (30)

ΦHDF(x,ξ(x)) = − h2

2m
v2′′(x)
v2(x)

− δm
2

v2 + C(v2) (31)

To perform the last steps of the previous analysis, we have used
the (already noted) facts that the I

D
(ν(x),0)→ 0 limit implies ν(x)→

ν0 = const and that at constant flow ν0 the density is confluent into the
classical quantity ρc(x) = 2ν0/v(x). Taking the i-th limit as indicated by
the procedure is tantamount in these equations to display a characteristic
ξi(x) parametric function whose definition is

ξ2
i (x) ≡ ξ2(x) =

h2

2m
ρ2
c(x)
δmν2

0

=
2h2

mδmv2(x)
(32)

How this expression is identified will be better understood by the means
of equations (42)÷(47) in the next section - together with equation (22)
they make clear some physical interpretation, and show that the ξ(x)
definition originates from the Taylor-series development of the HDF-
potential itself. Equation (32) shows that the index i can, however, be
dropped off . This is because in the general context it will be clear that
ξ(x) is correlated to one out of the possible solutions for the velocity
field v(x) appearing in the final motion equation (36).

Within our general context it is now also easy to identify the expres-
sion (31) with the expression

ΦHDF(x,ξ)=− α2(η)
32m

v2

4ν2
0

+
h2

4m
η2(x)− 1
η2(x)

4ν2
0

v2
(33)
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This one has been found in paper II (equation (104)). Then we can
also easily find the correlations between the parameters α, ξ, η, C(v2).
We only consider here the equation

h2

4m
η2(x)− 1
η2(x)

4ν2
0

v2
= − h2

2m
v2′′(x)
v2(x)

(34)

This equation holds if C(v2) can be neglected, or is associated to the
other term in equation (33). Note that η(x) can assume a range of values
depending on the values of v2′′(x), so that a demonstrated consistency of
this equation might be taken as a practical evidence of the high-frequency
assumption (η>>1), which we have often used to make calculations in
our papers, having been removed within the present framework. The
equation will be considered again in a next section. Using now equation
(117) in paper II and taking

m− δm = meff (35)

we finally find out the single-particle energy theorem expression in the
form

1
2

meffv2+Φ(x)− h2

2m
v2′′

v2
+ C(v2) = En (36)

This is our proposed equation for the motion of the particle oscillation
center or classical degree of freedom. It has to be coupled with the
HDF oscillation equations (112)÷(116) given in paper II for a complete
description of the particle motion in our framework. Here, by simplicity,
we report only the expressions of those equations written for the case
when a single frequency ω(x) is effective:

xz(t) = xz0(x) sin (ω(x)t + ϕ(x)) (37)

2m | xz0vz0 |= 2mω(x)x2
z0(x) & h (38)

ω(x) ≈ 8hν2
0

mv2(x)
(39)

In order to fit a quantum-mechanical behavior with equation (36), the
particle energy must be taken equal to a quantum-mechanical eigenvalue
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En, as shown indeed. Although by simplicity the index n has only been
displayed for the energy eigenvalue, it is clear that in equations (35)÷(39)
the mass flow ν0, the pulsation ω and other relevant quantities must
generally be considered dependent on n too.

On the interpretative level, instead, we propose in our model that
equation (36) is considered the ”classical background” for wave mechan-
ics. This is not only in the sense that many particles, with different
time-laws, are able to totalize the quantum mechanical density pertain-
ing to the energy En as described by equations (3)÷(6); but also in
the sense that every single particle is able to cross over the different
time-laws - up to totalize, within observation times ”long enough”, the
same quantum density. The various solutions of equation (36) obviously
correspond to different initial conditions sets; the interesting feature of
the equation, in this context, is actually just that it can display ”dis-
continuous” solutions for v(x), allowing the particle to jump from one
(continuous) solution to another.

In the sequel, we will therefore attempt to set up some (continuous)
solutions to our equation, appropriate to the end of demonstrating the
possibility of the described, single-particle behavior, by a direct proof.
Further analysis we have to let to future work.

Before showing the solution procedures, we give in the next section
a physical model directly bringing to equation (36) within a simple and
synthetic interpretative frame.

5 Vacuum ”mechanical” polarization

Equation (36) can also be found according to the following model.
Assume the vacuum is a reactive medium accommodating a number
N of reaction centers around a particle whose Euler velocity field is
vx(x)≡ dx/dt. The index x indicates x−components. The position of
the i-th center is at a co-ordinate distance ξi (positive or negative) from
x. Assume the reactive field Fxi is conservative, acts on the particle at
the co-ordinate x and depends on the distance ξi via the equation

Fxi(x,ξi) ≡ Fxi(x + ξi) =
δm
N

vx(x + ξi)v
′
x(x + ξi) =

δm
N

ax(x + ξi)

(40)

The reaction Fxi(x,ξi) is taken proportional to the particle acceleration
field itself, but this last is calculated at the position x+ξi so that the
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interaction reveals a non-local one. Summing over the distribution of
reactive centers in the space, equation (40) brings to the potential energy

ΦHDF(x,ξ(x)) ≡ ΦHDF(x + ξ(x)) =
N∑
i

Φi = −1
2

N∑
i

δm
N

v2
x(x + ξi)⇒

⇒ −1
2

∫
Ξ

δm
N
ρ̃(x,ξ∗)v2

x(x + ξ∗)dξ∗ (41)

Here Ξ is the ξ∗-variable definition domain, and ρ̃(x,ξ∗) is the (nor-
malized) numerical density of centers at a distance ξ∗, effective on the
co-ordinate x. We will take

ξ =
√
<ξ∗2> |x (42)

This quantity is further specified in equation (47) and is consistent with
the final ΦHDF(x+ξ) expression we give in equation (49).

Since sometimes it is not displayed by simplicity, we recall that the
variables ξi, ξ are functions of x. By the Taylor series and normalizing
integrals we have easily

ΦHDF(x + ξ) = −1
2
δm
N

∫
Ξ

ρ̃(x,ξ∗)v2
x(x + ξ∗)dξ∗ =

∑
j

Φ(j)
HDF(x)ξ j

j!
(43)

v2
x(x + ξ∗) = v2

x(x) + ξ∗v2
x(x)

′
+
ξ∗2

2
v2

x(x)
′′

+ R̄(x,ξ∗) (44)

1
N

∫
Ξ

ρ̃(x,ξ∗)dξ∗ = 1 (45)

1
N

∫
Ξ

ρ̃(x,ξ∗)ξ∗(2n+1)dξ∗ = <ξ∗(2n+1)> |x= 0 (46)

This equation is analogous to equation (17). Now in order to recover
equation (31) we can set

1
N

∫
Ξ

ρ̃(x,ξ∗)ξ∗2dξ∗ = <ξ∗2> |x= ξ2 =
2h2

mδmv2(x)
(47)
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1
N

∫
Ξ

ρ̃(x,ξ∗)R(x,ξ∗)dξ∗ = − 2
δm

C(v2) (48)

Then we find from (43)/(44):

ΦHDF(x,ξ(x)) ≡ ΦHDF(x + ξ) = −1
2
δmv2(x)− h2

2m
v2′′

v2
+ C(v2) (49)

In these equations, the index x for the velocity component is useless and
has been omitted, in agreement with the choice we have generally made
throughout our papers. On the interpretative level, we might say that
the vacuum is a ” mechanically ” polarizing matter when particle motion
v(x) is created. By this statement we mean that the vacuum is able to
react to an imposed Eulerian field v(x) by means of ”distant” reactive
forces. These last originate in points of space which are isotropically
distributed (see equation (46)) around the particle current co-ordinate
x, but will comprehensively set up a net force on it. We know by paper
II that the vacuum reaction is actually time-dependent but it creates
the potential ΦHDF as a stationary action. Both forward and backward
with respect to the motion direction, reactive centers are perturbed at a
characteristic distance <|ξ∗|>|x:

< |ξ∗|> |x' γ
√
<ξ∗2> |x = γξ =

γh
√

2
v(x)
√

mδm
(50)

Here γ is a ρ̃(ξ∗)−distribution form factor. In case δm is of the order
of m, the distance (50) is of the order of the de Broglie wavelength.
Then we believe that the present interpretation may lead to interesting
correlations with the de Broglie pilot-wave theory - a brief discussion
about this point is in a next section.

We want to note that the quantity hv is homogeneous to an
[electrical charge]2, and that the potential −1

2δmv2can be set up by the
expression

ΦHDF(x) = −1
2
δmv2 = const× hv

< |ξ∗|> |x
= −γ

√
δm
2m

hv
< |ξ∗|> |x

(51)

This last expression sounds as the basic constitutive equation for the
peculiar interaction we have here displayed between the particle and the
vacuum. Then we think that interesting correlations might also be found
with electricity - perhaps making us able to correlate the ”polarization”
concept here introduced with the well known electrical correspondent.
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The expounded concepts, however, concern the stationary part of
the vacuum interaction and have to be coupled to a corresponding time-
dependent analysis, accounting for the HDF oscillation equations and
time-dependent fluctuation field action, to have a complete description
and interpretative frame. This is outside the scope of this work.

6 Particle oscillation-center motion equation and its proper-
ties: a ”double solution” theory

Taking for a moment apart the problem of determining the quantities
C(v2) and meff , we have to note first that equation (36) is non-linear
in the variable v(x) and rather stiff to handle analytically. In principle,
either ad-hoc non-linear analysis, or computer calculations, should be
performed in order to provide exhaustive information about the physical
behaviors it may originate when the particle is submitted to different
potential forms Φ(x). Then the direct task to provide general properties
of our equation by taking (even the simplest) assumptions for C(v2) and
meff is out of the possibilities of this paper. Notwithstanding, we are
able to discuss briefly a few interesting properties of equation (36) and
even to give (proposed) solutions: these can be found basing on some
peculiar conjectures to be expounded next. In order to introduce these
mentioned procedures we start making a few interesting points out here.

Equation (36) has to be solved in the velocity field v(x) with initial
conditions depending on the case at hand, and more specifically on the
potential energy Φ(x) form. In case the particle meets a turning point
x0 along its trip, the conditions may be given f.i. in the form

lim
x→x0

v2(x) = lim
x→x0

ξ−2(x) = lim
x→x0

2vx(x0)v
′

x(x0)(x− x0) = 0 (52)

Here note that vxv
′
x is the ”particle” (we may use quotation marks

sometimes, to recall that the velocity field v(x) we are referring to is
the one relevant to the classical degree of freedom or oscillation center
motion) acceleration. This last can generally be assumed different from
zero at the turning point x0. We have also :

− lim
x→x0

h2

2m
v2′′(x)
v2(x)

+ C(0) = − lim
x→x0

h2

2m
ξ−2′′(x)
ξ−2(x)

+ C(0) =
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= lim
x→x0

h2

4m
η2(x)− 1
η2(x)

4ν2
0

v2
= ±P2(0,1)

2m
= En − Φ(x0) (53)

In order to appreciate these equations and the role of the quantity
P2 (0,1), see also equation (110) and correlated comment in paper II.
In equations (52) and (53) the initial conditions for the function ξ(x)
∝v−1(x) are also displayed. As a comment here, note that if C(0) can be
neglected, in the region near the turning point the potential -h2v2′′/2mv2

turns out to be negative in the case v2′′(x)>0; then it is responsible for
the extra-energy given to the particle while ” tunnelling ” outside the
classical region defined by the energy value En. This case corresponds to
the η<1case discussed in paper II, as is clear by equation (53). The case
with C(0) 6= 0 could also be easily discussed - provided an expression is
assumed for C(v2).

Equation (36) is a second-order derivative equation in the (velocity-
field) variable v(x). In our model, both its solutions have physical mean-
ing. The solutions will be named v

SP
(x, x0L, x0R) and v

D
(x, x∗0L, x∗0R).

The first one is the single-particle solution, a velocity field defined for
x0L ≤ x ≤ x0R , where x0L and x0R are the left and right turning points
delimiting the space attainable by the particle. The second one is the
(per particle equivalent) drift velocity of an ensemble of many particles
- each of them following a v

SP
(x, x0L, x0R)-trajectory. For each tra-

jectory, x0L and x0R must be intended as sampled out of the ensemble
of possible values (in practice, every point in the space allowed to the
particles can be a turning point for some of them). The space domain X
allowed to the particles is, by assumption, coincident with the definition
space of the quantum density corresponding to the potential Φ(x). In
our model, the drifting ensemble of particles is composed by a represen-
tative packet with a variable number of particles at each space point x,
flowing from the left extreme boundary in space x∗0L to the right one x∗0R
(or vice-versa) . Then the drift velocity v

D
(x, x∗0L, x∗0R) is defined in all

the space X and becomes zero only at the X-boundaries x∗0L and x∗0R (1).
One can think to the drifting ensemble of particles (the forward or back-
ward beam) as composed - at every position x - by the particles moving
through that point from left to right (or vice-versa) at some instant of
time. The particles flow is a stationary (Eulerian) one in agreement with
the time-independence of equation (36).

1When the physical space X available to the quantum particles is all the space,
x∗0L and x∗0R will attain their appropriate limits ±∞.
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The solutions have not to be symmetrical functions around the space
point x = 0. This is not only because of the potential Φ(x) eventually
lacking this symmetry, but also because of the equation differential prop-
erties allowing different kinds of boundary conditions. Therefore - even
with a symmetric potential Φ(x) - we can have, in principle at least, non-
symmetrical solutions. In order to better understand the physical con-
text correlated to these last, further investigation should be performed.
However, for the sake of simplicity, we will just refer in the sequel to
a symmetric case, which is rather exhaustive to our main purposes; on
the other hand, in order to set up procedures able to deal with various
circumstances, we find anyway comfortable to discuss only ”half” ve-
locity field solutions - these are the two parts vSP (x, x0R) and v

SP
(x,

x0L) of the total field defined, at each time, in the corresponding ”half”
part of the space X as shown in Fig. (1). One can therefore join to-
gether, at an intersection point, any available couple of left and right
solutions provided appropriate matching of values, derivatives and cor-
related quantities can be performed. This task of joining the two parts
together is however (conceptually) simple and will be therefore left apart
in this paper. Since now, we will indicate by v

SP
(x,x0) and v

D
(x,x∗0)

these ”half” solution (HS) fields, the corresponding turning points to be
intended ”left” or ”right” depending on the circumstance. For the sake
of simplicity, however, our next discussions will sometimes only be ex-
pounded for the right half solution (RHS) fields. Often indeed, this will
be more comfortable that carrying out ±signs or modulus brackets to
the purpose of writing general equations through extensive calculations.

In order to solve equation (36), hypotheses should be done about the
quantities meff and C(v2). We will not take direct physical assumptions
however, but rather find out first our solutions by a requirement of
consistency with known conditions. This is essentially as shown in the
very following. We will then ask to the unknown functions to match the
obtained results afterwards.

We start by writing down the double-solution equations

1
2

meffv2
SP

+Φ(x)− h2

2m
v2′′

SP

v2
SP

+ C(v
SP

2) = En (54)

v
SP

(x, x0L, x0R) = 0 {x = x0L , x0R} (55)
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1
2

meffv2
D

+Φ(x)− h2

2m
v2′′

D

v2
D

+ C(v
D

2) = En (56)

v
D

(x, x∗0L, x∗0R) = 0 {x = x∗0L , x∗0R} (57)

We add now to these equations a relationship between v2
SP

and v2
D

,
which we have found already in paper III, equation (16):

v2
SP

(x,x0) = 4v2
D

(x,x∗0)
ν(x)− ν(x0)

ν(x)
(58)

Here ν(x) is the ensemble volume flow, equal to ρv
D
/2 (2); ρ is the

quantum density. This relationship comes from an analysis of classical-
like, microcanonical ensembles of particles displaying similarities with
quantum systems as discussed in paper III, and looks a very interesting
property to refer to. We will show indeed that, if we assume the equation
(58) to hold in the present general case too, we will have a consistent
physics.

In order to find the solutions v
SP

(x, x0L, x0R) and v
D

(x, x∗0L, x∗0R)
we have first to define two regions in space (as done already in paper
III, equations (10) and (11)). Here the Region I is a wide region of
space ”internal” to X, while the Region II (called the external one) is
a boundary region adjacent to the extreme points x∗0L , x∗0R where the
quantum density ρ goes to zero. We discuss the two cases separately in
the next subsections.

6.1 Solutions in Region I

In Region I we can find another relationship between the solutions. This
is by the simple remark that, in our model, we have just identified the
second-order derivative terms as the dominant ones. Note that, if in both

2In our papers the factor 2 in the volume flow balance equations is because the
density accounts - by definition - for the two counterrunning streams of particles.
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the equations (54) and (56) the terms with meff and C were actually
zero, then by the assumption of double solution we could set :

v2
SP

(x,x0) ∝ v2
D

(x,x∗0)
∣∣∣∣∫ x0

x

dx
v4
D

(x,x∗0)

∣∣∣∣ {x ε Re gion I}

(59)

Now since generally the mentioned terms are different from zero -
but the second-order derivative terms still are the dominant ones, a very
good position for our solutions is the following:

v2
SP

(x,x0) = g2(x) v2
D

(x,x∗0)
∣∣∣∣∫ x0

x

dx
v4
D

(x,x∗0)

∣∣∣∣ {x ε Re gion I}

(60)

Here g(x) is a perturbation function to be determined. Explicit expres-
sions for this function and v

SP
, v

D
can be obtained by adding equation

(58) to the previous one. We can solve as follows:

g(x) =
2√
ν(x)

ζ (61)

ν(x)− ν(x0) =
1
ζ

∣∣∣∣∫ x0

x

dx
v4
D

(x,x∗0)

∣∣∣∣ (62)

From equation (62) we also get

ν(x) =
(

5ζ
16

) 1
5

∣∣∣∣∣
∫ x∗0

x

ρ4(x)dx

∣∣∣∣∣
1
5

= b

∣∣∣∣∣
∫ x∗0

x

ρ4(x)dx

∣∣∣∣∣
1
5

{x ε Re gion I} (63)

In these equations, a constant b, whose definition is straightforward,
has been introduced by simplicity. Together with the quantity ζ they
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are constants, different from zero, which have to be chosen in such a way
that the solutions in Region I and Region II can be matched to each
other (see the following equations (70), (71)). We have finally

v
SP

(x,x0) =

=
4
ρ

(
5ζ
16

) 1
5

∣∣∣∣∣
∫ x∗0

x

ρ4(x)dx

∣∣∣∣∣
1
10

√√√√∣∣∣∣∣
∫ x∗0

x

ρ4(x)dx

∣∣∣∣∣
1
5

−
∣∣∣∣∣
∫ x∗0

x0

ρ4(x)dx

∣∣∣∣∣
1
5

(64)

{x ε Re gion I}

6.2 Solutions in Region II

Here we first note that the same kind of position as given in equation
(60) could be seen not to work satisfactorily in Region II; in that same
equation, the integrand should also be perturbed. However, in this region
we are able to solve instead our equations taking advantage of the simple
remark that the limiting behavior of v

D
, at the extreme boundary, is just

”going to zero”. Then we can write

1
2

meffv2
D

+ C(v
D

2)→ 0 {x → x∗0L , x∗0R}
(65)

Φ(x)− h2

2m
v2′′

D

v2
D

→ En {x ε Region II } (66)

Now comparing this equation with the matter wave equation (Made
lung formulation) we find easily

v2
D

=
4ν2(x)
ρ2

≈ 4 const×√ρ {x ε Region II} (67)
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From this equation we also have

ν(x) ≈
√
const× ρ 5

4 = aρ
5
4 {x ε Region II} (68)

so that

v
SP

(x,x0) ≈ 4 aρ
1
4

√
ν(x)− ν(x0)

ν(x)
= 4 aρ

1
4

[
1−

(
ρ(x0)
ρ(x)

) 5
4
] 1

2

{x ε Region II} (69)

The constant a in these equations must also be taken appropriately to
match solutions to each other, at the intersection point between the two
Regions. Note here for consistency that Region II must be defined so
that it does not exceed the region of space where ρ(x) ≥ ρ(x0).

6.3 Matching the Region I and Region II solutions

We call x∗∗ the boundary point between the internal (I) and external
(II) regions of space. The matching condition can be written in terms of
the volume flow functions in the two Regions. Choosing appropriately
the ratio between a and b, and the intersection point x∗∗ , we can match
the functions up to the first space derivative:

b

∣∣∣∣∣
∫ x∗0

x∗∗
ρ4(x)dx

∣∣∣∣∣
1
5

= aρ
5
4 (x∗∗) (70)

b


∣∣∣∣∣
∫ x∗0

x

ρ4(x)dx

∣∣∣∣∣
1
5


′

|x∗∗ =
1
5
b5

a4
ρ−1(x∗∗) = a

{
ρ

1
4 (x)ρ(x)

′
}
|x∗∗

(71)

These conditions determine the values of a/b and x∗∗, and make the
corresponding solutions for v

SP
and v

D
continuous in that point up to

the first space derivative.
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It is not to remark again, however, that our overall procedure to solve
equations (54), (56) is affected by the ignorance about the quantities
meff and C; the real assumption we are making about these quantities
here is just that they are able to support our solution. Therefore, it
is also clear that we can even accept some small perturbation to this
last, in order to have analytical solutions everywhere, and still ask for
meff and C to be able to support. At last, the present considerations
will bring us to a simple formulation based on an interpolative technique
between the expressions in the two regions, to be expounded in a next
section.

Finally in this section we have to recall, for the sake of consistency,
that the densities corresponding to both parts (64) and (69) of the so-
lution must be integrable, with an appropriate probability distribution
function, to result in the quantum density ρ. This property is easily
shown to be met with in the next section.

6.4 Summing the classical densities to the quantum density

We consider the following distribution (of turning points, for ”half” so-
lutions HS) density:

P(x0) = |ν′(x0)|T(x0) (72)

Here T(x0) is the classical period of a particle displaying the velocity
field v

SP
(x, x0):

T (x0L,x0R) = 2
∫ x0R

x0L

dx
v
SP

(x,x0L,x0R)
≡[HS] T (x0) (73)

The quantity ν′(x0) is a (space) derivative of the particles ensemble
volume flow, calculated in x0. Equation (72) complies with the condition∣∣∣∣∣

∫ x∗0

x

P(x0)
T(x0)

dx0

∣∣∣∣∣ = ν(x)− ν(x∗0) = ν(x) (74)

At the extreme X-boundaries x∗0 the volume flow ν(x∗0) is indeed zero.
The classical density corresponding to the same field is :

ρ
SP

(x,x0) =
2

T(x0)v
SP

(x,x0)
(75)
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If we integrate this density with the distribution of turning points given
by (72), we get for the ensemble average density the result (take the
RHS case by simplicity)

<ρ> =

∣∣∣∣∣
∫ x∗0

x

P(x0)ρ
SP

(x,x0)dx0

∣∣∣∣∣ = −
∫ x∗0

x

2ν′(x0)
v
SP

(x,x0)
dx0 = ρ(x)

{x ε Region I+II, RHS } (76)

When the integration is performed with both the solutions (64) and
(69) holding in the two Regions, it is just a straightforward matter show-
ing that the result is always ρ(x) indeed:

<ρ> =
∫ x∗0

x

(∫ x∗0
x
ρ4(x)dx

)− 1
10
ρ(x)

(∫ x∗0
x0
ρ4(x)dx

) 1
5−1

ρ4(x0)

10

√(∫ x∗0
x
ρ4(x)dx

) 1
5 −

(∫ x∗0
x0
ρ4(x)dx

) 1
5

dx0 = ρ(x)

{x ε Re gion I, RHS} (77)

<ρ> = −
∫ x∗0

x

ρ
5
8 (x) ρ

5
4
′
(x0)

2
√
ρ

1
2

(
ρ

5
4 (x)− ρ 5

4 (x0)
) dx0 = ρ(x)

{x ε Region II, RHS} (78)

6.5 The complete solutions set

By the previous analysis, we conclude that a very simple interpolative
solution to equation (54) between the two regions I, II can also be in-
tegrated to the quantum density in every point of space in X; this will
still be of the form

vSP (x,x0) =
4

ρ(x)

√
ν(x) (ν(x)− ν(x0))
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{x ε Region I+II }
(79)

where

ν(x) = b(x)

∣∣∣∣∣
∫ x∗0

x

ρ4(x)dx

∣∣∣∣∣
1
5

+ a(x) ρ
5
4 (x)

{x ε Region I+II}
(80)

Here a(x) and b(x) are complemental functions to each other, chang-
ing ”fast enough” from 0 to the constant values a and b respectively,
in the appropriate zones of Regions I and II - in such a way that the
limiting behaviors (63) and (68) are reproduced. So the mass flow ν(x)
has been written here as an interpolative expression, accounting for both
the behaviors we have found in the two regions. The drift velocity field
vD (x,x∗0) can also, consequently, be written

v
D

(x,x∗0) = 2
ν(x)
ρ(x)

= 2 b(x) ρ−1(x)

∣∣∣∣∣
∫ x∗0

x

ρ4(x)dx

∣∣∣∣∣
1
5

+ 2 a(x) ρ
1
4 (x)

(81)

{x ε Region I+II}
(82)

As is clear, the solution (79)÷(82) is integrable to ρ, according to
equation (76), all the space of interest throughout. The solution is ev-
erywhere analytical and the constraints (70) and (71) can be dropped
off within this context.

This last remark actually calls for the question whether (and which
ones) other physical constraints could be admitted within our model
in order to determine the functions a(x) and b(x). They are likely to
depend on the effective mass meff in equation (54). Investigating this
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point is, however, outside the scope of this paper; but is important here
to note that a primary constraint to be satisfied, which we have not
mentioned yet, is just normalizing to unity the probability density (72)
all throughout the available space of turning points.

A qualitative view of equations (79)÷(82) is given in the same fig.(1).
A very simple comment to this plot is that in Region I the oscillation
center velocity field goes to ∞ in points of space where the density ρ(x)
is zero. This circumstance brings no interpretative problem within our
present framework but it might call for more accurate modelling on the
assumption of a relativistic point of view.

7 Physical interpretation

In this section, we will give brief discussions of the most important points
concerning physical interpretation. It is not to say here that the problem
of finding consistency between classical and purely quantum models of
physical phenomena cannot however, neither in principle, be reduced
only to the topics investigated in this paper (3). These topics are yet of
primary importance to open a path towards the mentioned main research
target.

7.1 Statistical appearance of many single-particle trajectories

Equations (72)÷(82) together with previous ones in the paper substanti-
ate the view that it is possible to find Newtonian-like trajectories which,
in agreement to a classical model, can be ensemble-averaged to result
in the appearance of particles in space with quantum density ρ(x). As
far as a many-particles case is considered, interpreting the equations is
straightforward - because the density (72) can be directly translated into
a relative number of particles following a particular trajectory vSP (x,x0)
with turning point x0. Then v

D
(x,x∗0) is, precisely, the (Eulerian-like)

group velocity characterizing the ensemble flow. As far as a single-
particle behavior has to be framed instead, our interpretation is that
the same density is just the probability to find the particle on a given
trajectory v

SP
(x,x0): on one hand, since it is proportional to the period

3We have to recall here that the main formal difficulty to be faced by supporters
of a causal interpretation of quantum mechanics is extricating the problem of the
so-called quantum distribution function [4−6], or finding consistent joint probability
densities for physical variables. Whether our model developments may bring to pos-
itive results in this domain we cannot know at present, and have to let the answer to
future work.
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of that trajectory, we may assume that the persistence in time of this
last is long enough that the trajectory is indeed maintained for a time of
the order of the period; on the other hand, we assume that - being on a
trajectory - the particle is always allowed to jump to another one, after
(statistically) a time of the order of the persistence. Then, statistically
as well, all the ensemble of trajectories will be covered by a particle dur-
ing the time, so that its probabilistic appearance in space is finally given
by the ensemble average of densities, ρ(x) and by the ensemble average
of velocities, vD (x,x∗0).

7.2 Wave-corpuscle duality and complementarity principle

A discussion of the role that these topics assume in a physical theory
where the wave-mechanical background is Newtonian can only be given
here a slight indication. In our framework, the quantum density is a sta-
tistical density, either describing a many-particles system or, identically,
the statistical result of iterated single-particle apparitions - each of them
submitted to one specified initial motion condition within the ensemble
of possible values of the quantity P2(0,1)/2m. In the first appearance,
it is obvious that wave-behavior can be supported by a particles ensem-
ble. As concerns the second appearance, in order to understand how the
single-particles are able to behave accounting for the wave effects (as -
most important - interference and diffraction) we promote the following
interpretation. In our framework the particles are point-like ones, but
are submitted to an external forcing which is found to depend strictly
on its motion state itself (the velocity field v(x)), so that this interaction
appears as a non-local, reactive expression of the quantum ”vacuum”.
The interaction distance <|ξ∗|> given in equation (50) has the form of a
de Broglie wavelength, what brings us to the interpretation that the vac-
uum is polarized by the particle motion at this average distance - so that
its reaction is, in some way, triggered by the particle itself. The particle
would then be able to move ”self-piloting” [7] and taking account - in a
sense - of the distant vacuum conditions, i.e. following non-local initial
conditions as the ones we have shown in equation (53). These last de-
pend indeed on the second derivative of the kinetic energy field. Motion
non-local initial conditions and distant vacuum interactions are responsi-
ble for the particle to follow a peculiarly anomalous path, and displaying
- according to the set of possible conditions - velocity fields and statis-
tical densities summable to the characteristic wave-behavior. Moreover,
we remark that the pressure field in the many-particle system has been



Propositional bases for the physics of the Bernoulli . . . 143

shown in paper III, equation (89), to be ineffective in determining be-
havior variations with respect to the single-particle statistics. Then we
come to the interpretation that the quantum mechanical matter-wave
behavior - as far as it is obtained as the statistical result of many single-
particle iterations - is however, indeed, the feature of a single particle
being able to feel distance conditions, because the many particle system
behavior is then nothing else that the total addition of all the single
behaviors.

It is not to say that ”self piloting” and ”feeling distance conditions”
are folkloristic expressions to mean the peculiar effects of a distance
interaction.

The wave-corpuscle duality takes, as a result of the present framework
and previous discussion, the simple interpretation that distant vacuum
interactions are able to address point-like particles to trajectories whose
statistical superposition amounts to wave-like patterns. On the other
hand, concerning the complementarity principle, it is clear that our the-
ory is based on the complete, classical description of the two particle
motion components : HDF and the classical degree of freedom. The
Heisenberg constraint ceases, in our framework, to support the domi-
nant wave-particle dualism philosophy - being brought back to the role
of a parametric constraint between classical quantities, the HDF space
and velocity co-ordinates.

We have finally to note, yet, that the promoted interpretation enters
an investigation domain of effects, as interference and diffraction, which
is peculiar of at least two-dimensional space physics. It is then clear that
we have to wait for further developments in order to make conclusive
points out by the means of direct proofs.

7.3 The ”surfing” particle model and a mechanistic concept restored

The de Broglie concept of pilot wave turns out to be the very interesting
one to (by attempt) provide a schematic description of the particle be-
havior we evidenced in this paper. We want only briefly, in this section,
promote indeed the following model for further investigation. In our
framework, the vacuum exchanges energy with the particle and may be
represented as the couple (one forwards, the other backwards the par-
ticle position) of reactive points at a distance <|ξ∗|> from the particle.
If the vacuum-particle interaction is responsible for a vacuum excitation
represented by a wave, then the wavelength λw has to be of the order of



144 G. Mastrocinque

some fractionϑ of <|ξ∗|> (see equation (50)), and we can write :

λw ≈ ϑγξ =
ϑγh
√

2
v(x)
√

mδm
≈ h√

mδm v(x)
(83)

By dimensional considerations, the frequency νw would be (see equation
(51)):

νw ≈
p ΦHDF(x) p

h
=
δmv(x)2

2h
(84)

Then the wave velocity cw will be

cw =
∂νw
∂1/λw

≈
√
δm
m

v(x) (85)

In the classical limit, δm→ 0 so that cw → 0 as well. In the ”full quantum
limit” instead - if we assume that δm≈m, then we have cw = v(x) which
means that the ”particle” and the (forwards) wave travel together. Now
for δm = m we have meff = 0, i.e. there is no (classical) inertia and this
explains by the fact that the classical kinetic energy field 1

2mv2 is totally
provided by HDF - i.e. in turn by the vacuum itself. Then we may say
(schematically) that the ”particle” makes surf on the vacuum waves.

The same concept of particle inertia meff receives some light from
this model: this effective mass is the fraction of mass which is not lifted
by the wave. The particle velocity field v(x), in this context, also takes
a peculiar physical meaning - as of a velocity assumed, in the quantum
limit, within a sort of vacuum structural speedway constituted by the
wave velocity field cw.

This model - and our comprehensive framework indeed - both appear
to bring us backward to a mechanistic point of view, because of the
vacuum taking a well defined role in expressing a deterministic, reactive
force law. Although mechanicalism has been plainly defeated by modern
physics, this last might perhaps find itself to face some resumption of
this concept if the causal interpretation of quantum mechanics, to which
our ideas are intended to contribute, will progress.

8 A few other remarks

Within the proposed interpretative framework, we will certainly meet
with the criticism that the interaction radius <|ξ∗|> may assume infinite
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values also when the velocity field v(x) goes to zero, perhaps unphysi-
cally. Concerning this point, we remark that the real physical actor in
the frame is the force

−∇ΦHDF(x + ξ∗i ) =
1
2
δm∇v2(x + ξ∗i ) =

=
1
2
δm
{
∇v2(x) + ξ∗∇v2(x)

′
+
ξ∗2

2
∇v2(x)

′′
+∇R̄(x,ξ∗)

}
(86)

By iteration of procedures previously introduced we find another expres-
sion for ΦHDF(x+ξ) :

ΦHDF(x + ξ) = −1
2
δmv2(x)− 1

2
δm
∫
<ξ∗2>

2
v2(x)

′′′
dx + C(v2) (87)

Comparing with equation (49) we find

−1
2
δm
∫
<ξ∗2>

2
v2′′′dx = − h2

2m
v2′′

v2
(88)

This equation shows that the physically meaningful interaction radius
might better be defined as

< |ξ∗|> ' γ
√
<ξ∗2> =

γh
√

2√
mδm

√
1

v2′′′

(
v2′′

v2

)′
(89)

However, requiring that this expression is finite when v(x) → 0 arises
the serious question whether the solutions v

SP
(x) we have found are

compatible with this further constraint imposed to equation (36). The
question makes, in turn, clear again the utility to perform non-linear
analysis, also looking forward to determine consistent values of different
parameters providing a physical solution. We note indeed, for instance,
that in this paper we have come to a constant expression for meff -
but, in a more advanced development, this might be found to assume
some specific dependence on the density or the x-co-ordinate. The con-
sistency requirements then might be satisfied by ”eigen-mass” functions
to be determined. At the same time, however, renormalization of the
framework might be found necessary to account for a variable δm(x).
The overall problem concerning consistency and physical meaning of the
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various parameters is of greater purport than what can be afforded in
this paper.

We note - as final remarks - that if in equation (36) we are allowed
to take meff = 0 then in a further, three-dimensional development, we
might perhaps explain orbit zero-angular-momentum states while keep-
ing the oscillation center azimuth velocity field different from zero. Orbit
zero-angular-momentum states can however, in our framework, also be
explained by the assumption that the particle oscillation center velocity
field is zero, so that the (fast) HDF oscillatory motion is the only part of
motion remaining to the particle (4). Then the azimuth angular veloc-
ity time-law may display a zero average consistent with the observation
of S-states. If, however, an ”unsaturated” expression for the oscillation
frequency as given in equation (39) would still hold in more advanced
developments, then a relativistic model would be required for a complete
description of such a contingency.

It is not to say that these statements or remarks are at present only
indications or conjectures useful to stimulate further criticism and inves-
tigation.

9 Conclusion

In the present and correlated papers, by some physical/mathematical
considerations we address a proposed path to solve the problem of iden-
tifying a classical-like context subtending the matter-wave physics. We
find out an energy theorem form for the particle classical degree of free-
dom, and we give a proposed solution to the equation - complying with
our primary requirement to result back in the appropriate quantum den-
sity after statistical averaging.

The physical model expounded in our comprehensive work can be
resumed as follows. Classical oscillators become similar (as far as the
properties we have analyzed are concerned) to quantum ones when they
are submitted to a peculiar perturbation due the quantum vacuum. This
perturbation could be called a ”generalized” Kapitza one. The resulting
time-averaged, generalized Kapitza theorem for the particle oscillation
center has a form where a couple of unknown functions (meff and C)
can have some role - but the dominant term is the one displaying a space

4Oscillatory motion due to a fast perturbation is described, to the end of classical-
like interpretation of a quantum particle motion in three-dimensional space, as early
as in reference [7].
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second derivative in the (squared) velocity field. We solve the equation
accounting for various requirements so that our final interpretation in the
paper is as expounded in the previous sections: considering equations
(79)÷(82) as a possible issue for the still debated problem of identifying
a classical-like view of quantum effects - at least as a starting point
towards more extensive, next analysis.

We believe conclusively having contributed a physical framework
aimed to provide new stimulus towards an investigative path looking at a
re-statement of a classical concept of particle motion and mechanics. We
discussed our equations with reference to the most important properties
we identified, relevant to the purpose of demonstrating self consistency
and worthiness of further analysis. The intrinsic limit of our framework
consisting in the boundary of uni-dimensional, stationary analysis, we
could only give slight indications concerning the rotational motion and
the wave behavior. Yet we believe that generalized developments might
provide epistemological advances towards the end of restoring the causal-
ity principle and increasing our capabilities in technological control on
the physical matter.
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Figure 1. (Qualitative) behaviours of the solutions vSP (x,x0) for a few
values of x0 and of the corresponding volume flow ν(x) for the case of
the n = 3 level of a quantum harmonic oscillator. ρ(x) is the quantum
density; all the quantities are in arbitrary units.


