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RÉSUMÉ. La relativité restreinte (RR) standard est essentiellement
un mixte entre la cinématique d’Einstein et la théorie des groupes de
Poincaré. Le sous-groupe des transformations unimodulaires (boosts
scalaires) implique que l’invariant fondamental de Poincaré n’est pas
le quadri-intervalle mais le quadri-volume. Ce dernier définit non
seulement des unités de mesure, compatibles avec l’invariance de la
vitesse de la lumière, mais aussi une différentielle scalaire exacte. Le
quadri-intervalle d’Einstein-Minkowski nécessite une définition non-
euclidienne de la distance spatio-temporelle et l’introduction d’une
différentielle non-exacte, l’élément de temps propre.

Les boost scalaires de Poincaré forment un sous-groupe du groupe
général (avec deux rotations spatiales). Ce n’est pas le cas des boosts
vectoriels d’Einstein étroitement liés à la définition du temps pro-
pre et du système propre. Les deux rotations spatiales de Poincaré
n’apportent pas de physique nouvelle alors que la précession spatiale
introduite par Thomas en 1926 pour une succession de boosts non-
parallèles corrige (facteur 1

2
) la valeur calculée classiquement du mo-

ment magnétique propre de l’électron. Si la relativité de Poincaré est
achevée en 1908, c’est Thomas qui apporte en 1926 la touche finale
à la cinématique d’Einstein-Minkowski avec une définition correcte et
complète (transport parallèle) du système propre. Nous montrons, à
la suite de l’énergie propre (Einstein), de la masse propre (Planck),
du temps propre (Minkowski), que le moment magnétique pro-
pre (et aussi le spin 1/2) de l’électron ponctuel est inscrit dans la
RR d’Einstein-Thomas, clairement séparée de celle de Poincaré
(électron classique). Le spin 1/2 est ainsi déduit du groupe d’Einstein-
Thomas. L’équation de Dirac (premier ordre par rapport au temps)
est invariante au sens d’Einstein-Thomas tandis que celle de Klein-
Gordon (second ordre par rapport au temps) est covariante au sens de
Poincaré. Nous montrons également que la précession du système pro-
pre implique une structure projective et lobatchevskienne de l’espace
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tridimensionnel dans la RR d’Einstein-Thomas dans lequel l’électron
n’est jamais accéléré dans son système propre et n’émet donc pas de
radiation.

The standard Special Relativity (SR) is essentially a mixture between
Einstein’s kinematics and Poincaré’s theory of groups. The subgroup
of unimodular transformations (scalar boosts) implies that Poincaré’s
fundamental invariant is not the four-interval but the four-volume,
which defines not only the units of measure, compatible with the invari-
ance of light speed but also an exact-scalar differential. Minkowski’s
four-intervall supposes a non-Euclidean definition of the space-time
distance and the introduction of an non-exact differential, the element
of the proper time. Poincaré’s scalar boosts form a subgroup of the
general group (with two space rotations). This is not the case for vec-
tor Einstein’s boosts, connected with the concepts of proper time and
proper system. Poincaré’s two space rotations don’t bring new physics
whereas Thomas’ space rotation, that completes Einstein’s composi-
tion of vector boosts, corrects (factor 1

2
) the value of the magnetic

moment of the electron.

If Poincaré’s SR is completed in 1908, Thomas completed only in 1926
Einstein-Minkowski’s kinematics by his correct and complete definition
of the proper system (parallel transport). We show that it is not only
the proper energy (Einstein), the proper mass (Planck), the proper
time (Einstein-Minkowski), but also the proper magnetic moment
(and also the spin 1

2
) of the pointlike electron which is inscribed in

Einstein- Thomas’ SR, clearly separated of Poincaré’s one (where
the electron has a finite volume). The electron’s spin 1

2
is deduced

from Einstein-Thomas’ group. Dirac’s equation (first order with re-
spect to the time) is invariant in Einstein’s sense while the Klein-
Gordon’s equation (second order with respect to the time) is invariant
in the sense of Poincaré. In this respect we show that Thomas’ preces-
sion implies a projective and Lobatchevkian structure of the tridimen-
sional space in Einstein-Thomas’ SR, in which the electron (without
structure) is never accelerated and therefore doesn’t emit radiation.

1 Introduction : Einstein’s SR, Poincaré’s SR and the Thomas
precession

The two famous papers, that of Einstein (”Elektrodynamik bewegter
Körper”) and that of Poincaré (”La dynamique de l’electron”) contain
not only two approaches of SR but two different theories of SR. The
polemical questions of historical priorities prevent us from seeing very
interesting points for physics. In order to avoid these questions of pri-
orities, we consider that the two theories are simultaneous (1905) and
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independent events . The title ” The ”fine structure” of SR” means
therefore that, if the two theories are very close, they are not merged.
This ”spectral” analogy has been chosen because the existence of a ”fine
structure” of SR is connected with a question of atomic physics: The
Thomas precession of the spin of the electron. Pais tells us Einstein’s
impressions in1925:

Twenty years after his seminal 1905 paper on SR, Ein-
stein heard something about the Lorentz group that
greatly surprised him. In 1925 Uehlenbeck and Goudsmit
had discovered the spin of the electron and thereby explained
the occurrence of the alkali doublets, but for a brief period
it appeared that the magnitude of the doublet splitting did
not come out correctly. Then Thomas supplied the missing
factor, 2, now known as the Thomas factor. Uhlenbeck told
me that he did not understand a word of Thomas work when
it first came out. I remember that, when I first heard about
it, it seemed unbelievable that a relativistic effect could give
a factor of 2 instead of something of order v/c. Even the
cognoscenti of the SR (Einstein included!) were quite
surprised. At the heart of the Thomas precession lies the
fact that a LT with velocity v1 followed by a second LT in a
different direction v2 does not lead to the same inertial frame
as one single Lorentz transformation (LT) with the velocity
v1+ v2 (It took Pauli a few weeks before he grasped Thomas
point). [18. Pais]

Thomas’ precession is entirely based on Einstein’s kinematics. It
is therefore very strange that Einstein was greatly surprised by the
Thomas’ rotation. The Lorentz group had been indeed defined by
Poincaré in 1905 with his two space Euclidean rotations. Unfortunately
Poincaré was no longer there in 1926 to give his own impressions. We
immediately underline that Thomas’ deduction of only one rotation from
the composition of two v-LT (Lorentz Transformations), that conducts
to a very simple correction (Thomas’ factor), is logically very difficult
(”Uhlenbeck didn’t understand a word...” and ”it took Pauli a few
weeks...”). Many physicists think that the essence of the Thomas’ pre-
cession is only situated in the non-commutativity of the composition of
two v-LT but there is, in fact, another fundamental root of the Thomas
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reasoning in the definition of ”the proper system”. Goldstein writes
about the Thomas rotation:

Consider a particle moving in the laboratory system with
a velocity v that is not constant. Since the system in which
the particle is at rest is accelerated with respect to the lab-
oratory, the two systems should not be connected by a LT.
We can circumvent this difficulty [the acceleration] by
a frequently used stratagem (elevated by some to the status
of an additional postulate of relativity). We imagine an
infinity of inertial systems moving uniformly relative
to the laboratory system, one of which instantaneously
matches the velocity of the particle. The particle is thus
instantaneously at rest in an inertial system.[12. Goldstein]

Thomas’ precession is directly connected with the acceleration and
the status of acceleration is a crux problem in SR [13. Jaeckel M. and
Reynaud S.] Goldstein speaks about a ”stratagem” or even an ”addi-
tional postulate” to the theory of relativity about the way to circumvent
the problem of acceleration. It is impossible to understand, in the least
details, the two relativistic roots of Thomas’ discovery without distin-
guishing Poincaré’s principles and Einstein’s principles of SR because
the status of acceleration (”a second derivation with respect to the
time”) is not the same in Poincaré’s and in Einstein’s theory.

2 The mixture SR: Poincaré’s groups and Einstein’s kinemat-
ics

The ”standard” or the ”common” SR is essentially a mixture between
Einstein’s principles of kinematics and Poincaré’s theory of groups.

The process of splitting off the standard mixture is not ”antirela-
tivistic”. On the contrary, Poincaré’s SR confirms all the formulas of the
standard SR. This is the reason why we adopt (by analogy of course) the
concept of the ”fine structure” of SR because the observation of the fine
structure doesn’t delete the definition of the spectral lines. But the dou-
blet ”Poincaré’s SR- Einstein’s SR” can conduct to non-standard results
(see conclusion), invisible in the mixed state.

2.1 Poincaré’s mathematical group of the Lorentz transformation

When one thinks about the ”Poincaré’s group and relativity”, one
thinks first about what Wigner has called (perhaps by compensation)
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”Poincaré’s group” (the non-homogeneous group) . That group is not
a good starting point because it is the only one that is not present in
Poincaré’s work. If the LT are of course in Lorentz work, the group’s
properties (the most general and the most restricted) are not in Lorentz
work but in Poincaré’s work. The group defined and called the Lorentz
group by Poincaré is the following (for any scale factor l, Poincaré poses
in his paragraph 1: c = 1 and k = 1√

1−ε2
)

It is noteworthy that the LT form a group. For that, if
we put

x′ = kl(x + εt) y′ = ly z′ = lz t′ = kl(t + εx)

and

x′′ = k′l′(x′ + ε′t′) y
′′

= l′y′ z′′ = l′z′ t
′′

= k′l′(t′ + ε′x′)

with

k−2 = 1 − ε2 k′−2 = 1 − ε′2

we find

x
′′

= k′′l′′(x + ε′′t) y
′′

= l′′y z′′ = l′′z t′′ = k′′l′′(t + ε′′x)

with

ε′′ =
ε + ε′

1 + εε′
l′′ = ll′ k′′ = kk′(1 + εε′) =

1√
1 − ε′′2

(1)

[26. Poincaré H. 1905, paragraph 4]

These ”(ε, l)−LT” define ”the continuous and homogenous Lorentz
group of Poincaré”. At this stage of the reasoning, these ”(ε, l) − LT”
are only the mathematical transformations (1) that let invariant the
Maxwell equations in their most general form, with notably the second
order wave equation, written by Poincaré with the d’Alembertian,

�′ = l−2� (2)
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in his first paragraph.

Poincaré considers successively two decompositions of his Lorentz
group. The first is the following:

Any transformation of this group can always be resolved
into a transformation of the form

x′ = lx y′ = ly z′ = lz t′ = lt

and a linear transformation that doesn’t change the
quadratic form:

x2 + y2 + z2 − t2 (3)

[26. Poincaré H. 1905, idem]

Poincaré envisages the invariance of the quadratic form by any linear
transformations (ε, l) − LT . He doesn’t say anything about the sign of
this quadratic form. He doesn’t consider the null value of the quadratic
form and consequently he doesn’t associate the quadratic form with the
propagation of light in order to define an null interval like Einstein or a
metric like Minkowski (4.1). The propagation of light waves is described
by the (covariant) second order wave equation (2) and only by the sec-
ond order wave equation. Physical meaning of the quadratic form (3) is
not discussed by Poincaré. Many physicists think that the ”mathemati-
cian”Poincaré developed only the mathematical group structure leaving
the fundamental physical interpretation to the ”physicist” Einstein.

2.2 Poincaré’s physical subgroup of scalar ε-LT and Euclidean space
rotations

The problem is that Poincaré doesn’t introduce physics (the principle of
relativity) in his first decomposition (3) but in his second decomposi-
tion of his Lorentz’ group (just after the first in the text):

The group can also be generated in another way. Any
transformation of the group may be regarded as comprising
a transformation having the form {1}
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x′ = kl(x + εt) y′ = ly z′ = lz t′ = kl(t + εx)

preceded and followed by an appropriate rotation.
For our purposes, however, we have to consider only

certain of the transformations in this group.
We must regard l as being a function of ε, the func-

tion being chosen so that this partial group P is itself
a group. Let the system be rotated through 180◦ about the
y-axis; then the resulting transformation must belong to P.
This operation is equivalent to changing the sign of x, x’, z
and z’; hence we have {2}

x′ = kl(x− εt) y = ly z′ = lz t′ = kl(t− εx)

Thus l is unchanged when ε is replaced by -ε. Next, if P
is a group, the substitution inverse to {1}, that is {3}

x′ = kl−1(x− εt) y′ = l−1y z′ = l−1z t′ = kl−1(t− εx)

must likewise belong to P; it must be identical to {2}
so that

l = l−1

Consequently we have:

l = 1

[26. Poincaré H. 1905, idem]

Poincaré’s relativistic physics begins here. In other words
Poincaré’s demonstration of his principle of relativity is in this second
decomposition of the group. Let us sum up Poincaré’s demonstration of
the principle of relativity:

1) The second Poincaré decomposition with two Euclidean rotations,
R3 and R′

3 can be written:

R′
3 ◦ (ε, l) − LT ◦R3 (4)
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2) ”For our purposes,... we must regard l as being a function of ε”:
If the scale factor depends only on the velocity l(ε) then the (l(ε), ε)−LT
must form a subgroup.

3) In order to have a subgroup (the principle of relativity), we must
have:

l(ε) = 1 (5)

and therefore we have ”ε− LT” :

x′ = k(x + εt) y′ = y z′ = z t′ = k(t + εx) (6)

The principle of relativity and the structure of subgroup of ε − LT
are exactly the same thing in Poincaré’s logic.

Poincaré’s demonstration of the principle of relativity is that the
Lorentz mathematical (the scale factor l) group forms a Lorentz physical
(the mathematical scale factor l can only depend on the velocity ε)
subgroup if and only1 if l(ε) = 1.

If we return to the property of associativity (1) with l = 1 of the
ε − LT it is now clear the velocity ε is a relative velocity. Poincaré’s
ether is a completely relativistic space-time medium2. If we return now
to the second decomposition (4), with two space rotations, we have with
(5), l = 1:

R′
3 ◦ ε− LT ◦R3 (4’)

The velocity (the direction of the movement) is always defined along
the x-axis by Poincaré (6). This is obviously not restrictive because,
thanks to the two Euclidean space rotations, R3 and R′

3, the general
case where the two velocities are not parallel can be reduced to (6).
So if the relative velocity of K’ is not aligned on the x-axis of K, it is
very easy to make two space rotations in order to find again the same

1Poincaré gives up, in his fundamental 1905 paper, the discussion of the
ε−dependance of the scale factor l (1904 Poincaré’s letter to Lorentz).

2Let us notice that at this stage the absolute space is already mathemati-
cally and physically impossible. In which frame is the ether at rest (K, K’, K”)?
[28. Poincaré H. (1907), La relativit de l’espace]. If one considers two inertial frames,
the ether is by definition, in Poincaré’s own words , at rest in one of the two frames.
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orientation for the two systems K and K’. With these two Euclidean
rotations, we obviously find again the same orientation when we make
one revolution of 2π for each rotation (see conclusion).

Poincaré’s Euclidean space rotations introduce no new physics be-
cause they allowed to reduce the study of any movement (any vector
velocity) in Euclidean R3 space in three dimensions into a space in one
dimension. The first rotation lines up the x-axis of K’ with the x axis
of K, then Poincaré’s ε− LT in this direction transforms K’ to a frame
which is at rest relative to K and a final rotation lines up the coordinate
y’ and z’ of the frame K’ with that ones y, z of K’. So instead of (6),
it is not restrictive to consider the two-dimensional space-time subgroup
ε− LT (7):

x′ = k(x + εt) t′ = k(t + εx) (7)

By definition relative velocity ε is a scalar in Poincaré’s scalar boost,
ε− LT .

Poincaré shows also that his two-dimensional space-time scalar ε−LT
is analogous (t → it) to an Euclidean rotation R2 (”around a fixed
origin” in Poincaré’s own words, paragraph 9 [26. Poincaré H. 1905]) in
the complex plan.

R′
3 ◦R2(t → it) ◦R3 (8)

It is very important to notice that if Poincaré didn’t introduce a
metric (a definition of units of measure with the velocity of light) in
his first decomposition, he no longer introduces the definition of unit
of length in his second decomposition. We will see (3.1) that Poincaré
absolutely needs a physical phenomena that occurs in one dimension
(along the direction of the motion) in order to define his metric (units
of measure).

What is the geometrical meaning of Poincaré’s demonstration of the
principle of relativity?

l = l(ε) =⇒ l(ε) = 1
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Poincaré’s demonstration consists of demonstrating that the deter-
minant of the (l(ε), ε) − LT ) is equal to one.

D =
∣∣∣∣ lk lkε
lkε lk

∣∣∣∣ = k2(1 − ε2)l2 = l2 = 1 (9)

Given that (l(ε), ε) − LT are linear affine (homogeneous) transfor-
mations3, then in order to form a subgroup, they must be unimod-
ular affine transformations. If the affine invariant is the harmonic ra-
tio between three lined up points, the affine unimodular invariant
is the area, defined by three non-aligned points. We shall show (3.3)
that Poincaré’s metric and Poincaré’s relativistic differential equations
are entirely based on this invariant and not on the other invariant, the
quadratic form (3) .

2.3 Einstein’s vector v-LT and Lobatchevskian kinematics

The standard mixture SR is based on Poincaré’s group theory and Ein-
stein’s kinematics. But what is the most essential element in Einstein’s
kinematics? It is of course the addition of velocities:

In the system k moving along the x-axis of the system K
with velocity v, let a point move [with velocity w] (ϕ is then
to be looked upon the angle between the velocities v and w).
After a simple calculation we obtain

u =

√
v2 + w2 + vw cosϕ− vw sinϕ

c2

1 + vw cosϕ
c2

(10)

It is worthy of remark that v and w enter into the expres-
sion of the resultant velocity u in a symmetrical manner.

If w has the direction of the x-axis, we get

u =
v + w

1 + vw
c2

(11)

3The inhomogeneous group of Poincaré-Wigner is also an affine transformation.
On the other hand, a projective linear transformation supposes that only the homo-
geneous coordinates are valid.
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For the case v = c [in LT!!!], we have

u =
c + w

1 + w
c

= c (12)

If in addition to the system K and k, we introduce
another system k’ moving parallel to k From which we
see that such parallel transformations-necessarily forms a
group.[7.Einstein A.1905, paragraph 5]

Einstein writes the general law of composition of the velocities (for
non-parallel velocities). He considers a ”point” with the velocity w and
applies a v−LT . Einstein’s boost v−LT is therefore fundamentally a
vector boost.

Poincaré’s supporters often claim that Einstein didn’t know anything
about the concept of group. This is not true because Einstein shows the
structure of group for parallel transformations. The genuine problem is
that he introduces a vector definition of the boost (paragraph 2, dele-
tion of the ether) and he doesn’t say anything about the group properties
of the general case of the composition of two vector v − LT in differ-
ent directions. Nowhere Einstein introduces space rotations (neither in
this text, nor in his second fundamental text, see in the introduction:
”Twenty years after his seminal 1905 paper on SR, Einstein heard some-
thing about the Lorentz group that greatly surprised him). Einstein’s
v − LT don’t form a group because the composition of two non-
parallel v-LT don’t give a v − LT but a v-LT with one space rotation
.

The historical situation of the two SR is diametrically opposed. In-
deed Poincaré’s demonstration of the group structure of LT is nearly
finished in 1905 (without the 1908 definition of units of measure) while
Einstein’s problem of the group structure of the v − LT - coupled with
the nature of the geometrical representation of the law of composition
of non parallel velocity v - is characterized by a very long historical
development.

Einstein’s vector v − LT defined a 3-velocity space often call 3-
kinematics space. What is the geometrical character of this vector
kinematics space? That question has been completely solved by Sommer-
feld, Varicak and Borel.Sommerfeld shows in 1908 that Einstein’s above
formula of vectorial addition of velocities is a formula of trigonometry
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Figure 1: Hyperbolic triangle of rapidities

on a sphere of imaginary radius (c2 = -1 or c = i) [34.Sommerfeld A.].
If Sommerfeld’s representation is mathematically correct, it is not a sat-
isfactory physical solution because the 3-kinematics space cannot be an
imaginary space (the light lines ”c = i” are isotropic lines in a mathe-
matical sense) but a real space. The satisfactory solution for the geomet-
rical character of the 3-kinematics space (the light lines are Minkowski’s
isotropic lines) has been found by Varicak (1909). Einstein’s formula (10)
is a formula (13) of the trigonometry of Lobatchevski [40. Varicak V.] :

cosh Ψ = cosh Ψ1 cosh Ψ2 − sinh Ψ1 sinh Ψ2 cosϕ (13)

that is written with Minkowski’s hyperbolic angles (called rapidity by
Robb [32. Robb A.A.] ): with u

c = thΨ, v
c = thΨ1,

w
c = thΨ2.In most

of the standard books, we can only find the formula: th(Ψ1 + Ψ2) =
thΨ1+thΨ2
1+thΨ1thΨ2

with Ψ = Ψ1 + Ψ2 (11’). The standard interpretation is
almost always reduced to the parallel translation (this last equation 11’
appears then only as another notation for the particular case 11 of ad-
dition of parallel velocities). But that’s not the fundamental discovery
of Varicak. He demonstrates that this last equation (11’) is a vectorial
addition (14) in Lobatchevski’s 3-kinematic space :

−→Ψ =−→Ψ1+
−→Ψ2 (14)

In Lobatchevski 3-space of velocities (see also Fock V.[11. Fock V.]),
the vector addition hold good. The sum of the three angles of the
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hyperbolic triangle (figure 1) is lesser than π and the hyperbolic defect
ε is:

ε = π − (ϕ + ϕ1 + ϕ2) (15)

Varicak shows also that the aberration of light is the Lobatchevki angle
of parallelism (4.5) but we focus now the attention on the fact that
the additive property extend to vectorial addition (14) [2. Barrett J.F.],
because we shall demonstrate (4.5) the relation between the hyperbolic
defect and the Thomas rotation.

We can think that one of the greatest specialist of the Lobatchevski
geometry in the world (Poincaré) had not realized that he worked in his
SR with a Lobatchevski space. It would be not only not very reasonable
but it would be also completely wrong. In Poincaré’s SR, the kinematic
3-space is by definition (second decomposition of the Lorentz group, 2.2)
Euclidean thanks to the two space rotations R3 and R′

3. The problem of
the composition of vector v − LT , followed by only one space rotation
is Einstein’s problem (”at his great surprise...”, see introduction), not
Poincaré’s problem.

Pauli notes (note 111) the origin of Varicak’s determination of Ein-
stein’s 3-kinematic space:

This connection with the Bolyai-Lobatchevsky geometry
can be briefly described in the following way: if one in-
terprets dx1, dx2, dx3, dx4 as homogeneous coordinates in a
three-dimensional projective space, then the invariance of the
equation amounts to introducing a Cayley system of measure-
ment, base on a real conic section. The rest follows from the
well-known arguments by Klein.[19. Pauli W., note 111]

So Pauli shows clearly that Varicak’s fundamental discovery is based
on the homogeneous coordinates of v − LT that is a projective point
of view. We can generally be sure that Klein’s point of view is not
Poincaré’s point of view and that is particularly true in SR [14. Klein F.].

2.4 Einstein’s symmetrical (”v=c”) addition of velocity vectors

Let us return now to Einstein’s quotation [7.Einstein A.1905, paragraph
5] about the motion of a ”point” at the beginning of (2.3): ”For the very
important case ”v = c” , we have ”u = c” ”. The young Einstein doesn’t
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hesitate to put ”v − c” in v − LT !!! (12). The only meaning of the
relativistic ether in Poincaré’s logic is that the light is a wave and only
a wave (there is no point that travels with velocity c) while in Einstein’s
logic the light is a particle with the velocity v = c. Einstein in 1905 put
everywhere v = c in his equations. But our problem is not the history
but the mathematical physics. It is in principle strictly forbidden to
make v = c in v−LT because the γ factor becomes infinite. So we can
think that it is an Einstein’s youthful misdemeanour and that he would
have to make w = c in order to obtain u = c. But precisely, Einstein
writes just before making v = c that ”v and w enter into the expression
of the resultant velocity u in a symmetrical manner”. Logically if one
makes w = c and one takes into account Einstein’s demonstration of
commutativity for ϕ = 0, that means that the order of the composition
of two parallel boosts, ”w = c and v” or ”w and v = c” doesn’t have any
importance.

Nothing prevent us to make v = w = c in order to find u = c. If we
compose x = ct with v = c we find the result:

ξ = γ(x− vt) τ = γ(t− v

c2
x) ξ = ∞.0 τ = ∞.0

So let us note that there is no contradiction in order to find ξ = cτ
on condition that we choose the units (t = 1 and x = c)

ξ = ∞.0 = c τ = ∞.0 = 1 (16)

So the point t = 1 and x = c becomes the point τ = 1 and ξ = c . We
shall demonstrate that young Einstein’s apparent mistake v = c in v−LT
is in perfect harmony with his definition of units (”c−LT” is defined by
(16)), with Minkowski’s identification of the light lines with the isotropic
lines and with Pauli’s note 111 about Varicak’s homogeneous coordinates
(4.1).

3 Poincaré’s scalar relativistic kinematics

Poincaré’s second decomposition (4’) is not compatible with Einstein’s
kinematics. So logically the question of the existence of a relativistic
Poincaré’s kinematics compatible with his subgroup is posed.
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3.1 Poincaré’s two principles: principle of relativity and principle of
longitudinal contraction of length

The principle of relativity (”the impossibility of demonstrating the ab-
solute movement”) is by definition the structure of subgroup of scalar
ε − LT . This is Poincaré’s first principle (first part of his 1905 work).
What is Poincaré’s second principle ? The answer is in the second part
of his 1905 paper:

So the Lorentz hypothesis is the only one that is com-
patible with the impossibility of demonstrating the abso-
lute motion ; if we admit this impossibility, we must admit
that moving electrons are contracted in such a way to be-
come revolution ellipsoids whose two axis remain constant.
[26. Poincaré H. 1905, paragraph 7]

Poincaré’s two principles are (1900-1911):

1) principle of relativity

2) principle of longitudinal contraction of length

According to Poincaré, the Lorentz hypothesis is not only compatible
with the principle of relativity but is the only one compatible with the
principle of relativity (unlike e.g., Langevin’s and Abraham’s hypothe-
ses) in others words with l = 1).

3.2 Poincaré’s use of ε-LT and the purely longitudinal (scalar) con-
traction

The historical difference, with respect to Einstein, is that Poincaré has
never developed explicitly his method of using of ε−LT on a basic ex-
ample (a deformable rod). Our problem is not an historical problem. In
the same way that Einstein’s two principles are compatible, we must un-
derstand, on the level of mathematical physics, why and how Poincaré’s
two principles are compatible.

3.2.1 The first ε−LT and the definition of simultaneity

Poincaré’s compatibility implies a specific use of LT. Poincaré writes in
his fundamental work:
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In accordance with Lorentz Hypothesis, moving electrons
are deformed in such a manner that the real electron be-
comes an ellipsoid, while the ideal electron at rest is always
a sphere of radius r (...) The LT replaces thus a moving real
electron by a motionless ideal electron.[26. Poincaré H. 1905,
paragraph 6]

We adopt Poincaré’s (K, K’, K” ε, k, t, t’) and Einstein’s (K, k, k’,
v, γ, t, τ) respective notations in the following of this paper. In order to
illustrate this, we can use the following diagrams:

Figure 2: Units of length before LT

In Einstein’s SR , the rods are by principle (see 4.1) identical (figure
2). The contraction of the moving rod γ−1L is the result of a comparison
of measurements (figure 3) from one system K (k) to the other k (K)
with the well known use of LT. The calculation with Einstein’s use of LT
is easy and can be found in any standard book on SR. In Poincaré’s SR,
the moving rod K’ is by principle contracted (figure 2) k−1L (sometimes
called ”real contraction”). By the use of LT (figure 3) the length of the
rod in K’ (for observers in K’) is equal to L.

We can obviously reverse the role of K and K’ (Poincaré’s subgroup,
2.2). Poincaré’s longitudinal contraction is completely reciprocal. That is
the essential difference with respect to the non-relativistic point of view
of Lorentz. According to Poincaré’s kinematics, the ”real” differences are
compensated by a ”good use” of LT. According to Einstein’s kinematics,
the identical processes ”appear” to be different by another ”good use”
of LT. Poincaré’s calculation with the LT is also very easy. Suppose the
ether is chosen by definition at rest in K. The real length of the rod placed
in the moving (ε) system K’ is thus k−1L. The first LT x′ = k(x − εt)
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Figure 3: Units of length after LT

”replaces” (in Poincaré’s words), in the same time t, the (real) contracted
length k−1L of the moving rod in a motionless rod L. The rod of length
k−1kL by the use of LT is at rest in K’. In Einstein’s use of LT the
reciprocal contraction of rigid rods is deduced from the definition of
simultaneity. In Poincaré’s use of LT the simultaneity is deduced from
the reciprocal contraction of deformable rods. This is a very important
result: In Poincaré’s relativistic kinematics the simultaneity is deduced
from the use of the first LT on a contracted moving rod. The simultaneity
is therefore completely relative in Poincaré’s kinematics. Then there is
no problem with the relativistic character of Poincaré’s finite electron.

But in the Lorentz hypothesis, also, the agreement be-
tween the formulas does not occur just by itself; it is obtained
together with a possible explanation of the compression of
the electron under the assumption that the deformed and
compressed electron is subject to constant external pressure,
the work done by which is proportional to the variation of
volume of this electron.[26. Poincaré H. 1905, introduction]

Poincaré’s finite electron is not compatible with the quantum electron
but it is perfectly compatible with a relativistic definition of the simul-
taneity. Poincaré’s pressure4 is also an invariant but we don’t want to

4Poincaré speaks about the electron as a hole in ether. Poincaré’s pressure is not
a pressure of ether (Langevin) but a negative pressure of ”classical” vacuum. The
relativistic mechanics of continuous medium is the starting point of Poincaré’s SR and
the final point of Einstein’s SR. Laue[15. Laue M.] in particular rediscovers in 1911
(and Fermi ten years later) Poincaré’s pressure but in a purely static sense while,
in Poincaré’s text, this pressure has an explicit dynamical sense (with an implicit
kinematics sense we develop here).
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discuss this question here. We underline only here that Poincaré’s pres-
sure supposes a force. Then, Poincaré’s use of ε − LT supposes that
between two states of velocity the electron undergoes an acceleration
(see 4.2).

3.2.2 The second ε−LT and the definition of duration (elon-
gated light ellipsoids)

The difficult problem for Poincaré is clearly to deduce the (real) dilation
of time from the (real) contraction of length, by taking in account the
constancy of the velocity of light. Poincaré poses c = 1 (paragraph 1) but
he doesn’t raise (like Einstein) the constant in the Maxwell equations to
a status of a principle. In Poincaré’s kinematics c is only the constant in
the Maxwell equations, which is covariant in virtue of the first principle
(covariance of the Maxwell equations, in particular (2) the second order
relative to the time wave equations, that defined the electromagnetic
medium).

The synchronization method by exchange of signals of light is de-
veloped by Poincaré in 1900 in a paper on the reaction principle in
the Lorentz theory [24. Poincaré H. 1900]. Poincaré explains that when
Lorentz’s local time t′ = x + vx/c2 is used in the moving system K’
relative to the ether K, the observers of K remark no difference (to first
order) between the forward travel time and the backward travel time
of the light. For the second order Poincaré envisages already in 1900
that the hypothesis of Lorentz is necessary. There is no calculation in
Poincaré’s 1904 philosophical talk about the general principle of physics,
in Saint Louis, in which he repeats simply the analysis of his 1900 paper.
Poincaré’s calculation (to second order) is published in 1908 5:

A body that is spherical when in repose will thus assume
the form of a flattened ellipsoid of revolution when it is in mo-
tion. But the observer will always believe it to be spherical,
because he had himself undergoes an analogous deformation,
as well as all the objects that serve him as points of refer-
ence. On the contrary, the surfaces of the waves of light,
which have remained exactly spherical, will appear to him as
elongated ellipsoids. What will happen then? Imagine an

5The elongated light ellipsoids are however in his cours à la Sorbonne in
1906[27. Poincaré H. (1906)]
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observer and a source involved together in the transposition.
The wave surfaces emanating for the source will be spheres,
having as centre the successive positions of the source. The
distance of this centre from the present position of the source
will be proportional to the time elapsed since the emission -
that is to say, to the radius of the sphere. But for our ob-
server, on account of the contraction, all these spheres will
appear as elongated ellipsoids. This time the compensation
is exact, and this is explained by Michelson’s experiments.
[29. Poincaré H. (1908)]

This is Poincaré’s exact synchronization [21. Pierseaux Y.]
which takes (in all his texts) into account his fundamental second hy-
pothesis:

1) Spherical waves are solutions of the covariant Maxwell (second
order with respect to the time) wave equation for the two systems K
and K’.

2) In one of the two systems (say K’), the metres (unit of length)
are longitudinally contracted relative to the other (Poincaré’s second
principle)

Poincaré’s deduction is very simple:
* The spherical waves become elongated ellipsoidal waves in K’ (the

system of the observer and the source involved in the translation).
* The elongation of the ellipsoids is proportional to the (forth and

back) time elapsed since the emission.
The contraction of units of length, coupled with Poincaré’s covariance

of the speed of light, gives the dilation of time (back and forth travel:
the variation k of the duration is inversely proportional to the variation
k−1 of length (i.e. Poincaré’s light waves mean that the unit of time
changes inversely with respect to unit of length). Therefore fundamental
connection between the unit of space, the unit of time and the unit of
light speed is:

∆x∆t = k−1∆xk∆t = ∆x′∆t′ (17)

The physical invariant is the space-time area ∆x∆t ( the ”fourvol-
ume” in four-dimensional space-time) corresponds to the second decom-
position (2-2), the subgroup of scalar boost with unimodular determinant
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(D = 1). The fundamental Poincaré’s kinematics invariant com-
patible with Poincaré’s second decomposition of the group (4’)
is the four-volume. Poincaré elongated ellipsoidal light waves clarifies
not only his definition of units but bring also two other very important
clarifications:

a) Poincaré’s exact synchronization shows that the time for the mov-
ing observers is not Lorentz’ local time t′ = t + εx but Poincaré’s local
time, given by the second ε − LT : t′ = k(t + εx). If we have two sys-
tems in uniform translation with respect to each other, we can define t
in one of the two systems and therefore t’ depends on t (and inversely).
Poincaré’s duality ”local time-true time” is completely relativistic” (he
never uses these concepts in his 1905 work).

b) Poincaré’s transformation of successive spherical light waves into
successive ellipsoidal light waves (Poincaré’s dilation of space or bet-
ter: Poincaré’s expansion of space, see conclusion) immediately induces
the relativistic Doppler-Fizeau formulas in connection with Poincaré’s
interpretation of the relativistic aberration.

3.3 Poincaré’s exact differential of the four-volume and the finite units
of measure

We showed that the physics is introduced by Poincaré by the unimodu-
lar transformation (2.2, second decomposition (D = 1) and not by the
quadratic form (2.1, first decomposition). The demonstration of the in-
variance of action (Poincaré’s paragraph 2 and 3) is the central piece
in Poincaré’s deduction of relativistic mechanics (”La Mécanique Nou-
velle”). This invariance (see ”La relativité restreinte d’Einstein-Planck
avec entropie invariante et la relativité restreinte de Poincaré avec action
invariante”, [21. Pierseaux Y., (3)]) is directly deduced by Poincaré from
the invariant of the electromagnetic field l4(E

′2 −H
′2) = E2 −H2 and

from the invariance of the fourvolume. Poincaré writes in paragraph 2:

We have firstly dt′dV ′ = l4dtdV since x′, y′, z′, t′are re-
lated to x, y, z, t by linear expressions whose determinant
is l4”

J =
∫ +∞

−∞
dtdV

1
2
(E2 −H2) (18)

the result
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J = J ′ (19)

However for this equation to be valid, the limits of inte-
gration must be the same ...[26. Poincaré H. 1905, paragraph
3]

We will discuss Poincaré’s limits of integration in (4.2.3). The funda-
mental differential in Poincaré’s paper on relativistic mechanics is given
by the four-volume. Taking into account the result of the paragraph 4
(subgroup, l = 1) the fundamental differential is:

dt′dV ′ = l4dtdV (20)

Poincaré’s reduction from four-dimensional space-time ( 6) to two-
dimensional space-time (7) is directly based on the compatibility with
purely longitudinal contraction and the principle of relativity (l = 1):

dt′dV ′ = dtdV ⇐⇒ dt′dx′ = dtdx (20’)

Poincaré’s fundamental relativistic reduction 4 → 2 (space-
time) or 3 → 1 (space) is entirely based on the fact that (20) define
scalar exact differentials (see, a contrario, 4.2.2). Now it is clear that,
without a metric (finite units of time and space), Poincaré’s SR would be
only a mathematical theory. The dtdV is an exact differential and there
is according to Poincaré no problem to integrate, if the limits are the
same. Unlike Minkowski and Planck [21. Pierseaux Y., (3)], who integer
between fixed limits t1 and t2 (between two events, 4.2.2), Poincaré
doesn’t integrate between fixed finite limits:

However for this equation to be valid, the limits of inte-
gration must be the same. Hitherto we have assumed that t
ranged from t0 to t1 and x, y, z from -∞ to+∞. The limits
of integration would then be altered by the LT; but there is
no bar to assuming that t0 = - ∞, t1 = ∞; and the limits
for J and J’ are the same. [26. Poincaré H. 1905, paragraph
3]
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Poincaré’s SR is first a field theory and therefore he integers on the
electromagnetic field between t0 = - ∞, t1 = ∞. With the electromag-
netic Lagrangian, L =

∫ +∞
−∞ dV 1

2 (E2−H2), Poincaré obtains the relation
L = k−1L′. Then he finds the exact dilated differential dt = kdt′ compat-
ible with the invariance of action.

∫ +∞
−∞ Ldt =

∫ +∞
−∞ L′dt′. The differential

dilation is introduced exactly on the same way as the purely longitudi-
nal contraction dV = k−1dV ′ according to the exact scalar differential
of the fourvolume dV dt = dV ′dt′. Poincaré finally obtains the finite
Lagrangien of the finite electron which is (in his notation: m = c = 1)
equal to k−1 (in 1906 Planck’s language, γ−1mc2). That confirms dy-
namically the purely relativistic character of Poincaré’s electron (3.2.1).
But that also confirms kinematically the purely relativistic character of
Poincaré’s definition of units of measure: the fundamental unit of length
is naturally given in Poincaré’s SR by the classical radius of the electron
( e2

mc2 ). The connection between the infinitesimal, dt′dx′ = dtdx, and the
finite, ∆x∆t = ∆x′∆t′, in Poincaré’s SR is therefore clarified.

3.4 Poincaré’s space-time area invariant and wave light velocity

Poincaré’s invariant (∆x∆t = k−1∆xk∆t = ∆x′∆t′ = 1) seems not to
be a geometrical credible invariant because the light velocity seems not
to be present. In order to show that the two space-time area is directly
connected with the velocity of light, i.e. with Poincaré’s covariance of
light velocity, let us develop the underlying geometry of the unimodular
ε-LT (7): x′ = k(x+ εt) t′ = k(t+ εx). Like Poincaré, we poses c = 1.
We represent the units of measure in K: ∆x = ∆t = 1. The unimodular
invariant (space-time area) is based on (at least) three points . We
represent the two light wave lines in dashed lines because they represent
the velocity 1 of a wave and no of a point (ε < 1) on the figure 4:

The points (0, 0), (1, 0), (0, 1) and (1, 1)6 become respectively (0, 0),
(k, kε), (kε, k) and (k(ε + 1), k(ε + 1). The square and the rhomb, con-
structed on the two light lines, have the same space-time area. The
direct (forth) light line x = t and the inverse light line (back) x = −t are
orthogonal. The invariant space-time area is given by the half product
of the two diagonals respectively for the square 1

2

√
2
√

2 = 1 and for the
rhomb (1

2 (
√

2k(1 + ε) ∗
√

2k(1 − ε)) = k2(1 − ε2) = 1).

6It is not a point (a particle) v=c. It is a point of the space-time medium in which
an optical perturbation (solution of a second order with respect to the time wave
equation) propagates.
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Figure 4: Poincaré’s area invariant

The non-null distance on two Poincaré’s two light lines is therefore
the same thing as the invariant area that defines the units of measure.
We put the emphasis on the fact that k2(1 − ε2) = 1 defines an area
(∆x∆t = ∆x′∆t′) equals to one (D = 1, 9) and not a distance equals
to one (see 4.1). Poincaré’s unimodular ε-LT (7) are in perfect harmony
with Poincaré’s Euclidean-complex (analogy with Euclidean rotation in
R2, equation 8) representation: the norm of a non-null complex number
is always not null. Without any contradiction we can define a metric (a
physical definition of units) without identifying the light lines to isotropic
lines. The (non null) distance on the successive three points on the direct
light line are:

√
2,

√
2

2 k(1+ε),
√

2k(1+ε). The (non null) distance on the
two inverse light lines are:

√
2,
√

2k(1−ε). Poincaré’s invariant is defined
with the two light lines, i.e. the ”two-ways (back and forth) speed of
light ”. (see mean light speed, ”Light elongated ellipsoidal waves”7).

In Poincaré’s unimodular affine space-time, there is no metric in the
sense of a definition of a space-time distance between two points. But
there is obviously (Poincaré’s two space rotations) an Euclidean metric
in R3 (3-space or 3-kinematic space) for K and K’. So with Poincaré’s
definition of units by the four-volume ”k−1k” we have therefore in K’:

7The homothetic light ellipsoids of Poincaré is exactly the physical representation
of that structure (the light lines are affine unimodular lines but not isotropic lines).
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∆x′ = ∆y′ = ∆z′ = 1. Poincaré’s second hypothesis [31 Reignier J.]
is not a supplementary hypothesis (we rejoin on this precise point the
analysis of Jean Reignier in Peyresc Congress) because it is directly in-
duced by the structure of the unimodular subgroup. That definition of
units is very important because there is no longer objective reason for
the physicists, henceforth, to prefer Einstein’s kinematics to Poincaré’s
kinematics. Let us return to the connection with Poincaré’s definition of
units and Poincaré’s covariance of light speed. Let us remark that if we
consider only one light wave in figure 4 and therefore the isocele right
triangles with respectively the basis in K(1, 0) and k(1 + ε), we have
xt = 1

2 (x2 + t2) or x2 + t2 − 2xt = x′2 + t
′2 − 2x′t′ = 0. (For the other

light wave, we replace - by +). In order to make easier the comparison
with Einstein-Minkowski’s invariant (4.1.3), we can also introduce the
velocity of light c 	= 1 :

(x− ct)2 = 0 (21)

So that is the definitive enlightenment of the question of ether in
Poincaré’s SR: the relativistic space-time medium is defined by affine
unimodular ε-LT. Poincaré’s ether is not ”metaphysics” because it is no
more ”metaphysics” to do affine geometry than to do projective geometry
(see 4.1.1).

4 Einstein-Minkowski-Thomas’ vector relativistic kinematics

Einstein showed in 1905 that his two fundamental principles (principle
of relativity and principle of speed light invariance) are compatible.

4.1 Einstein’s space-time invariant and Minkowski’s isotropic light lines

The statement of Einstein’s principles are in the paragraph 2 and the
demonstration of the compatibility is in the paragraph 3:

At the time t = τ = 0, when the origin of the two coordi-
nates (K and k) is common to the two systems, let a spherical
wave be emitted therefrom, and be propagated -with the ve-
locity c in system K. If x, y, z be a point just attained by
this wave, then x2 + y2 + z2 = c2t2. Transforming this equa-
tion with our equations of transformation we obtain after a
simple calculation ξ2 + η2 + ζ2 = c2τ2. The wave under con-
sideration is therefore no less a spherical wave with velocity
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of propagation c when viewed in the moving system. This
shows that our two fundamental principles are compatible.
[7.Einstein A.1905, paragraph 3]

Unlike Poincaré (3), Einstein directly connects the quadratic form to
the light propagation. He doesn’t say in which system, K or k, the source
is at rest. The light speed depends neither on the speed of the source (at
rest in K or in k) nor on the speed of the moving system (respectively
k and K). Let us also remark that Einstein’s spherical ”waves” are not
spherical waves in the classical sense not only because the ether is deleted
but also because they are not defined in Poincaré’s sense as a solution
of the second order with respect to the time wave equation (2). Einstein
spherical ”waves” are defined by Einstein’s null interval between two
events (s = 0, see 4.2):

x2 + y2 + z2 − c2t2 = ξ2 + η2 + ζ2 − c2τ2 = 0 (22)

In order to make easier the comparison with Poincaré, let us con-
sider Einstein’s light propagation in only one space dimension. Einstein’s
spherical ”waves”, x2 − c2t2 = ξ2 − c2τ2 = 0, are therefore by definition
Minkowski’s isotropic lines with null-distance between two world-
points. So the difference of squares means not only the equations of the
cone light lines but also the null-distance between two different points
on each light line.

In Einstein-Minkowski’s kinematics the units of measure are defined
on one light line with the distance between two space-time points
(figure 5).

The non-Euclidean distance between the two points (0, 0) and (1, 1)
respectively in K and k, is null. Minkowski’s metric (scale) hyperbo-
las defines the hyperbolic distance (difference of squares) between
the two points (0, 0) and (1, 0) by γ2v2 − γ2 = 1 (idem for (0, 0) and
(0, 1)). The correspondent expression, k2ε2 − k2 = 1, in Poincaré’s SR
determines not a non-Euclidean invariant distance but an unimodular
invariant area ( equations 9 or 17). In Poincaré’s SR, the metric is not
determined by the scale hyperbolas but by the ellipsoidal elongated light
waves. Minkowski’s only one isotropic light line defines Einstein’s iden-
tical units of measure (in order to make easier the comparison with
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Figure 5: Einstein-Minkowski’s distance invariant

Poincaré’s kinematics, we can pose c = 1):

∆x

∆t
=

∆ξ

∆τ
= 1 ⇐⇒ ∆x = ∆ξ = 1 and ∆t = ∆τ = 1

(idem for the other isotropic line). In other word Einstein’s identical
light velocity within each system implies Einstein’s definition of identical
units. That definition of identical units is already obvious in Einstein’s
1905 text:

In accordance with the principle of relativity “
the length L of the rod in the moving system” - must be
identical to “ the length L of the stationary rod.”. The
length to be discovered [by v-LT], we will call “ the length
of the (moving) rod in the stationary system”. This we shall
determine on the basis of our two principles, and we shall
find that it differs from L. [7.Einstein A.1905, paragraph 2]

Einstein’s statement of the principle of relativity implies clearly that
the space-time units are a priori identical within each inertial system K
and k.
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4.1.1 Einstein’s identical units and the projective homoge-
neous coordinates

Max Born, one of rare physicists who has understood the crucial role
of this principle of identity8, thought however that Einstein’s principle
was in contradiction with Einstein’s use of v-LT (the units are actually
respectively contracted-dilated by Einstein’s use of v − LT , see 3.1).

There is no contradiction because Einstein’s identical units result
from the use of v − LT on Einstein’s light point ”v = c = 1”(Einstein’s
light particle) on one and only one isotropic line. The point x = 1, t = 1
becomes ξ = 1, τ = 1 by any v − LT .

We can also reverse that deduction if we define ”v = c”−LT for the
point x = 1 and t = 1 at the limit as ξ = ∞.0 = 1, τ = ∞.0 = 1 (16).

That c− LT (system with m = 0) transforms any point (x, t) into a
point (1, 1) on the light isotropic line.

So the law of addition of velocities (10 or 11) becomes perfectly sym-
metric (see Einstein’s quotation, 2.3) between v and w when the auda-
cious young Einstein (12) put by symmetry ”v = c” in v−LT (”c−LT”).
So in order to precise which kind of geometrical representation refers to
Einstein’s use ( v ≤ c) of the linear fractional law of relativistic addition,
let us return to (11) with c = 1:

u =
v + w

1 + vw
(11”)

In Poincaré’s affine unimodular LT, we have strictly v < c. At
any point of the right line v < c that becomes u < c it corresponds a
point of the plan x, t that becomes x′, t′. Except for v = c because on
the affine right line of velocities, we have an open interval ] − 1, 1 [.
So that linear fractional relation is not defined for v = 1, u = 1 because
we find that the point (of the space-time medium) x = t = 1 becomes
x′ = t′ = o.∞.

If we consider now that the linear fractional relation is defined on a
projective line right of velocities on a closed interval [ −1, 1 ], then,

8A fixed rod that is at rest in the system S and is of length 1 cm, will, of course,
also have the length 1 cm, when it is at rest in the system S’, provided that the
remaining physical conditions are the same in S’ as in S. Exactly the same would be
postulated of the clocks. We may call this tacit assumption of Einstein’s theory the
”principle of the physical identity of the units of measure”.[6. Born M.]
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at the velocity transformation from v = 1 to u = 1, it corresponds the
coordinates transformations from x = t = 1 to ξ = τ = 1.

At linear projective linear fractional transformation for velocity
v = c = 1, 1 � 1, corresponds the transformation for the homoge-
neous space-time coordinate (1, 1) � (1, 1). The Lorentz coordinates
(x, t), (ξ, τ) are the homogeneous coordinates of the velocity. In pro-
jective transformation there is no difference between a finite (velocities
v, w or rapidities Ψ1,Ψ2) and an infinite point (v = c, w = c or Ψ1 = ∞,
Ψ2 = ∞). We see now that addition of velocities (11) and addition of ra-
pidities (11’) are completely identical. So the homogeneous coordinates
of the velocity v = c = 1 are x = t = 1 ξ = τ = 1, i.e. Einstein’s
identical units. Einstein’s principle of identity is valid if and only if the
space-time coordinates in (v ≤ c)-LT are the homogeneous coordinates
of the velocity [ −c, c ]. So let us return now to the four-space-time.
We have entirely clarify Pauli’s note 111 (2.3) ”if one interprets dx1,
dx2, dx3, dx4 as homogeneous coordinates in a three-dimensional pro-
jective space [Lobatchevkian 3-kinematics space], then the invariance
of the equation amounts to introducing a Cayley system of measure-
ment [Einstein’s identical units of measure], base on a real conic section
[Minkowski’s isotropic lines]”. So in Einstein’s kinematics, clearly sep-
arated from Poincaré’s one, we not only can make ”v = c” in LT, but
we absolutely must make ”v = c” in v−LT in order to obtain the fa-
mous Minkowski’s metric (entirely based on Minkowski9’s isotropic light
lines).

4.1.2 Einstein’s invariance of the one-way-speed of light and
Einstein’s photon

So logically we must now show, in the framework of Einstein-Minkowski’s
vector kinematics, that it is not only the scalar substitution v = c that
characterizes Einstein’s SR but the vector substitution ”v = c”(c−LT ).
Let us examine in details Einstein’s synchronization. Poincaré and Ein-
stein use the same method of distant clocks synchronization (with light
signals10). Both authors speak about a convention (an assumption). It

9We showed that Minkowski’s 1908 ”mystische Formel” (in his own words) ”c = i”
corresponds to Einstein’s ”v = c”.

10There is a metaphysical version of SR without velocity of light, without synchro-
nisation of the clocks (without Poincaré and Einstein) and therefore without physical
definition of units of measure (Ignatowski, 1911).



The “fine structure” of Special Relativity . . . 85

is reasonable to think that Poincaré knew what he said when he insisted
in 1911 on the fact that the conventions were not the same 11.

1-(Einstein’s “stationary time of a stationary system K”)

But it is not possible without further assumption to com-
pare, in respect to time, an event at A with an event at B.
We have so far defined only an ”A time” and a ”B time”. We
have not defined a common ”time” for A and B, for the latter
cannot be defined at all unless to establish by definition that
the time required by light to travel from A to B equals the
time it requires to travel from B to A. Let a light ray start
at the ”A time tA” from A towards B, let it at the ”B time”
tB be reflected at B in the direction of A, and arrive again
at A at the A time t′A. In accordance with definition the two
clocks synchronize if:

tB − tA = t′A − tB

.2- (Einstein’s “stationary time of a stationary system k”)

It is essential to have time defined by means of stationary
clocks in stationary system.[7.Einstein A.1905, paragraph 1]

The repetition of the concept stationary is essential because in his
§3, Einstein notices about his second system k (ξ, η, ζ, τ):

To do this [deduce LT] we have to express in equations
that τ is nothing else than the set of data of clocks at rest
in system k, which have been synchronized according to the
rule given in paragraph 1.[7.Einstein A.1905, paragraph 3]

τB − τA = τ ′A − τB

11Poincaré’s writes a short time before his death: ”Today some physicists want
to adopt a new convention. This is not that they have to do it; they con-
sider that this convention is easier, that’s all; and those who have another opin-
ion may legitimately keep the old assumption in order not to disturb their old
habits”.[30. Poincaré H. 1912)]
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Einstein’s synchronization (without the length’s contraction) of iden-
tical clocks within his second system k is exactly the same as Einstein’s
synchronization within his first system because the speed of light is
identical. Moreover in Einstein’s definition ”forward travel time ≡
backward travel time” within any inertial system (K or k), we have
−→c = ←−c , the fundamental invariant is the one-way-speed of light.
Einstein’s identical units are defined with only one light isotropic
line while Poincaré’s units are defined with by the invariance of the two-
way-speed of light. The invariance is defined by Einstein with a direction
and a sense on this direction:

−→c =←−c

So the velocity of light wave in Poincaré’s SR is fundamentally a scalar
(a constant that appears in a second order wave equation) whereas in
Einstein-Minkowski’s SR, the velocity of a light ray (Einstein’s 1905
preferred concept with this one of light quantum) is a fundamentally a
vector. The crux difference between an electromagnetic wave and a pho-
ton is therefore revealed by the existence of a ”fine structure” of SR: The
electromagnetic wave (2) supposes a two-ways relativistic invariance of
light speed while the photon supposes the one-way relativistic invariance
of light speed.

4.1.3 Einstein’s ”difference of squares” versus Poincaré’s
”square of differences”

Let us now demonstrate that the two metrics are algebraically incompat-
ible.

Einstein writes in 1922:

Let be a light ray that propagates through the empty
space from one point to another point of K. If x represent
the distance between the two points, the propagation of the
light must satisfy this equation

x = ct

If one put this equation at the square one can also write

x2 = c2t2 or x2 − c2t2 = 0
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For Einstein’s pseudospherical ”waves” (actually vector rays in any
direction), we have in three space dimensions (22):

r2 − c2t2 = 0 (22)

(the same for k)[10. Einstein A., first conference]

Einstein put at the square the two members of the equations while
Poincaré put also the equation at the square but after a change of mem-
ber. And he obtains (21):

(x± ct)2 = x2 + c2t2 ± 2cxt = 0

For Poincaré’s genuine spherical waves (with the spherical classical
symmetry, 1/r), we have:

(r ± ct)2 = r2 + c2t2 ± 2crt = 0 (23)

The ”fine structure” of SR is now geometrically demonstrated in last
resort on this elementary algebraic calculation : the difference of the
squares12 is not the same that the square of the difference. This
algebraic discrepancy is situated in the core of the standard mixture
SR. ”Give me a fulcrum and I lift the world up”, said Archimedes...
Here it is only question of the splitting of the standard pseudoEuclidean
mixture into its two components: ”Poincaré’s affine-unimodular metric”
and ”Minkowski’s projective-hyperbolic metric”.

4.2 Einstein-Minkowski’s invariant proper time (eigenzeit)

Poincaré’s relativistic scalar kinematics is based on Poincaré’s conven-
tion of synchronization which is defined with longitudinal contraction.
Einstein’s exact synchronization is obtained without the contraction.
The contraction is deduced from the simultaneity by the ”(v 	= c) − LT
(paragraph 2). That suggests that the definition of the (unit of) time
is more fundamental than the definition of space in vector Einstein-
Minkowski’s kinematics.

12The difference of squares is profoundly connected with non-Euclidean structure
of space-time and with the quantum structure of the light.
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4.2.1 Einstein’s identical clocks and Minkowski’s invariance
of the element of proper time

Let us return to Einstein’s previous quotation in which we have replace
”the rods” by ”the clocks”.

[In accordance with the principle of relativity “ the dura-
tion T of the clock in the moving system” - must be identical
to “ the duration T of the stationary clock.” (The duration
to be discovered [by v-LT] we will call “ the duration of the
(moving) clock in the stationary system”. This we shall de-
termine on the basis of our two principles, and we shall find
that it differs from T.[7.Einstein A.1905, ” paragraph 2”]

In others words this extraordinary Einstein’s statement of the rela-
tivity principle means that it is not only the Maxwell equations that are
invariant (by v−LT ) but also the units of length and time (by c−LT ).
This is an important result because Einstein’s invariant units or Ein-
stein’s identical units are exactly the same concept. Einstein’s principle
of identity is particularly clear in Einstein’s concept of identical atomic
clocks (clocks with identical rhythm τ or frequency ν): Einstein writes
in his second fundamental paper on SR in 1907:

Since the oscillatory process that corresponds to a spec-
tral line is to be considered as a intra-atomic process, whose
frequency n is determined by the ion alone, we can con-
sider such an ion as a clock of definite frequency υ0; this
frequency is given, for example, by the light emitted by
identically constituted ions at rest with respect to the
observer.[8. Einstein A.1907]

The concept of identical atom is a quantum concept 13 But why
Einstein’s definition of invariant unit of time τ become more funda-
mental than the unit of space in Einstein-Minkowski’s SR? Minkowski

13Einstein’s identical clocks suggest that Einstein’s clocks are quantum clocks be-
cause the concept of identical is a quantum concept.Weiskkopf [43.Weisskopf V.]
writes:”the main idea of quantum theory, I said, there is idea of identity. Under-
standing the idea of identity, there is the understanding the concept of quantum
state established by Bohr in the first period of his scientific activity.
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introduces the Element of ”Eigenzeit” (proper time) dτ as a funda-
mental invariant because it is directly connected with the fundamental
invariant ds [16. Minkowski H.1908]:

ds = cdτ (24)

directly obtained from the differential of Einstein’s quadratic form
s = 0 (22)

ds2 = c2dt2 − (dx2 + dy2 + dz2) = c2dτ2 − (dξ2 + dη2 + dζ2)

with dξ2 + dη2 + dζ2 = 0: the element of proper time, dτ = γ−1dt,
is taken always at the same place in the proper system of the particle.
So Einstein defines an invariant stationary time in stationary system at
the same place (in other words a duration at rest attached to a body)
but in his 1905 paper, the three system K, k and k’ are always in uni-
form translation. Minkowski extends (in principle) this definition to any
motions. In other words Einstein defines τ and s = 0 while Minkowski
defines s 	= 0, ds and dτ . But what is the main characteristics of the
element of Eigenzeit?

4.2.2 Minkowski’s element of proper time is a non-exact dif-
ferential

Sommerfeld writes in 1921:

As Minkowski once remarked to me, the element of proper
time dτ is not a complete (exact) differential.”Thus if we
connect two world-points O and P by two different world-
lines 1 and 2, then

∫
1

dτ 	=
∫

2

dτ (25)

[9. Einstein A. ]
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The main characteristic of the Element of Eigenzeit is that it is a
non-exact differential. What does it mean ”non-exact differential”?
That means that the proper time τ measured from K, with dτ = γ−1dt,
depends on the followed path, or in Minkowski’s own word, depends on
the result of the integral (24⇐⇒25) on different world-lines (path 1 and
path 2 between finite limits t1 and t2 of integration). This is directly
connected to the famous ”paradox” of the twins.

In Poincaré’ SR the times t (”true time”) and t’ (”local time”) that
are given by the ε−LT are completely relativistic and the exact dif-
ferentials dt and dt′ are related by the four-volume to the differential
dV = dxdydz. The differential four-volume used by Poincaré is a scalar
complete (exact) differential 14.

The question of different paths of integration has no meaning in
Poincaré’s scalar SR (3.3). Minkowski’s non-exact differential (24)
makes ”Poincaré’s reduction from four-dimensional space-time (6) to
two-dimensional space-time” impossible.

4.2.3 The proper time and the proper system

Let us examine now in details the relation between the proper time and
the proper system and therefore Goldstein’s quotation in the introduc-
tion.

According to Goldstein the ”stratagem” consists of reducing any ac-
celerated motion into a infinite series of ”inertial systems moving uni-
formly relative to the laboratory system”. Nothing prevents Poincaré to
make an ε-LT (with his two rotations in Euclidean space) at each instant,
t or t’, in order to find the formulas of transformation of the components
of the acceleration a or a’. These general formulas of relativistic trans-
formation of the acceleration for an electron (on any trajectory) are in
Poincaré’s paper (paragraph 7).

What is the difference between the two relativistic kinematics (with
or without Element of Eigenzeit)? The stratagem at least supposes three
systems respectively noted K, k, k′, k′′ ... by Einstein and K, K ′, K ′′,
K ′′′... by Poincaré. The relations between K − k, K − k′, K − k′′ in

14It is anyway impossible to imagine that the greatest specialist of all the times
of the differential equations didn’t know that he worked with non-exact differential
in his own SR. Nowhere Poincaré introduces the famous paradox of the twins and
nowhere he introduces the non-exact differential ds or dt. There is an antinomy with
the fourvolume differential.
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Einstein’s convention are exactly the same as the relations between K−
K ′, K − K ′′, K − K ′′′ in Poincaré’s convention. In the two cases K
represents the laboratory system.

But that’s not true for the connection between respec-
tively k − k′ − k′′ − k′′′...(Einstein-Minkowski) and K ′ − K ′′ −
K ′′′(Poincaré).

The proper time dτ is an invariant for the series k− k′− k′′− k′′′. In
other words the successive uniform states of motion are related for each
element of time dτ by a dv − LT , because precisely dτ is an invariant
(4.2.1). The dv − LT are defined without the γ − factors: the γ −
factors that appear only in (the integration of) the successive relations
K − k, K − k′, K − k′′...in virtue of the definition of the non-exact
element of proper time. In Poincaré’s relativistic point of view, the
successive ”capital K”, K ′ −K ′′ −K ′′′...are not in uniform translation
with respect to each other. We discover now the reason of keeping the
original notations respectively, t’, t”, t”’..., dt’, dt”, dt”’... in Poincaré’s
text and τ and dτ in Einstein-Minkowski’s text.

With Einstein-Minkowski’s definition of proper time, the series of
”little k”, k − k′ − k” − k′′′, defines the proper system of the par-
ticle. In other words, in order to pass from k to k’, k’ to k”, k” to
k”’ there is no acceleration. If it was not the case it would be impos-
sible to relate that series with Lorentz transformations (see Goldstein’s
quotation), dv − LT, and the Element dτ would not be an invariant.
The composition of two vector v − LT and dv − LT would be impos-
sible. That extraordinary ”stratagem” in Einstein-Minkowski’s SR, in
order to reduce the acceleration, is not a Minkowski’s invention but an
Einstein’s invention. Einstein’s 1905 launching of the boost is indeed
defined by Einstein without acceleration: the acceleration must be in-
finitely ”slow” in such a way that it has no effect on the clocks and the
rods that remain identical after the launching of the boost (the second
system k). We rediscover Einstein’s concept of stationary system (4.1)
”It is essential to have time defined by means of stationary clocks in
stationary system”. We have, on one hand, Poincaré’s series with accel-
eration K ′ −K ′′ −K ′′′... and, on the other hand, Einstein-Minkowski’s
eigenseries k − k′ − k” − k′′′, without acceleration (equation 25).

Einstein’s theory, clearly separated from Poincaré’s theory is a
steady-state theory. If one introduces an acceleration, we have an
effect on the rods and thus a force and thus a work of the force and thus
a pressure. We showed that Einstein’s thermodynamical adiabatic hy-
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pothesis is in fact the same concept as Einstein’s quantum identical
clocks [21. Pierseaux Y., (3)]. Any classical pendulum undergoes, in
Poincaré’s series K ′,K ′′,K ′′′, a mechanical deformation15.

4.2.4 The insufficient Einstein-Minkowski’s definition of the
proper system (eigensystem)

Minkowski’s proper time is defined for any world-line and therefore for
any trajectory in 3-space. The proper time is defined by Minkowski in
3-space and the proper system is only defined by Minkowski in 1-space.
Why? Here is Thomas’ crucial point. The succession of proper systems
k(v′), k′(v”), k′′(v′′)...are related by dv−LT if and only if the velocity v
points always in the same direction, and therefore in one-dimension. If
the orientation (not the intensity) of the velocity changes, we rediscover
the fact that the composition of two non-parallel successive vector boost
is not a vector boost because there appears from K a space rotation.
The logical necessity of this extension is neither in Minkowski’s texts
nor in Einstein’s texts. And it is not astonishing that Einstein was very
astonished by the relativistic discovery of Thomas.

In other words, if the proper time consists of transforming the clas-
sical accelerated trajectory into a succession of stationary state in the
proper system (i.e, ”transforming the classical accelerated trajectory of
a material point into a succession of events” [21. Pierseaux Y.]), we

15Synge writes: ”The dependance of the integral on the path of integration in space-
time is sometimes called the clock paradox (i.e. Moller). But it presents no paradoxe
here. Indeed, the fact that ds is not an exact differential constitutes the essentiel
difference between relativity and Newtonian physics.”What is the difference between
Newton’s invariant (the absolute classical time) and Einstein-Minkowski’s invariant
(the proper time)? If we consider that the proper time (at the same place and at
rest in the proper system) of our wrist is given by our watch at rest relative to our
wrist, it is a mistake. The time is given by the place of the moving little hand of the
watch. This is therefore not a proper time because the little hand is moving relative
to the watch or the wrist. If the clocks are considered physically as instruments of
measure of time, all the classical clocks are the same as the little hand of the watch.
The time is defined by a motion and if we want a time ”at rest and always at the
same place”, we must give up all the clocks that give the time with a displacement
in space and therefore all the classical harmonic oscillators. The Bohr atom or the
quantum oscillator gives proper time (frequency) without change in space but with
change of energy. The ”eigenvalues” of the observable ”eigenzeit” must be given
by the eigenfrequency associated with the changes of eigenstate of energy (quantum
harmonic oscillator) and not by a velocity associated to the changes of state in space
(classical harmonic oscillator).



The “fine structure” of Special Relativity . . . 93

can only transform, with Minkowski’s definition, an accelerated motion
along a right line into a succession of parallel dv − LT . In addition
to this first problem if one adopts Minkowski definition of the proper
system ”just by declaring that its origin is moving with the accelerated
particle”(see 4.4), the series k− k′ − k”− k′′′... related to each other by
dv−LT is no longer a proper system because obviously the orientation
of the system k changes at each element of proper time.

In fact Einstein-Minkowski’s definition of the proper system
is only valid for uniform accelerated translations. It becomes
insufficient when the acceleration correspond to a change of orientation
and not to a change of intensity. In other words, if the acceleration is
reduced in the scalar sense (second derivative with respect to the time),
what happens about the acceleration in the vector (orientation) sense?

Here is the critics of Thomas: ”How should we orient the x, y, z
axes?” (4.4). The gap in Einstein-Minkowski’s definition is not situated
in Minkowski’s definition of proper time but in Minkowski’s definition of
proper system. The proper system is defined in 3-space. If the definition
of the proper time is fundamental in Einstein’s SR, we would have to
be able to find the relationship between the proper time and the proper
(system’s) orientation in 3-space.

4.3 Einstein’s ”slowly accelerated” motion of a point electron that
doesn’t emit radiation (eigenstate)

So before examining the decisive Thomas’ contribution to vector SR, it
is necessary to specify the role and the representation of the electron
in Einstein’s SR. The last paragraph of 1905 Einstein’s paper, entitled
”Dynamics of the slowly accelerated electron” leads to the deduction of
relativistic kinetic energy and also to the fundamental equation of the
relativistic dynamic (Planck, 1906).

Let there be in motion in an electromagnetic field a
pointlike (Punkförmige) particle with the charge e, called
an electron, for the law of motion of which we assume as fol-
lows : If the electron is at rest at a given epoch, the motion
of the electron ensues in the next element of time (”Zeit-
teilchen”) according to the equations:

max = eEx may = eEy maz = eEz (26)
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where x, y, z denote the coordinates of the electron, and
m the mass of the electron, as long as its motion is slow.
Now, secondly, let the velocity of the electron at a given
epoch be v. We seek the law of motion of the electron in
the immediately ensuing element of time. It is then clear
that at the given movement the electron is at rest relatively
to a system of co-ordinates which is in parallel motion with
velocity v along the axis X of K. From the above assumption,
in combination with the principle of relativity, it is clear that
in the immediately ensuing element of time the electron,
viewed from the system k, moves in accordance with:

ma′x = eE′
x ma′y = eE′

y ma′z = eE′
z (26’)

in which the symbols a′x, a
′
y, a

′
z, E

′
x, E

′
y, E

′
z refer to the

system k.[7.Einstein A.1905, paragraph 10]

The similarity with Einstein’s launching of the boost (paragraph 3)
is very clear (4.2.3). According to Einstein, the point electron moves
without acceleration from element of time to element of time (Ein-
stein’s Zeitteilchen is the immediate forerunner of Minkowski’s Element
of Eigenzeit) from one proper system to the other. We have the series
k − k′ − k”− k′′′. Einstein’s identical electron within each identical (26,
26’) stationary system means that not only the charge e is an invariant
but also the proper mass m of the electron is an invariant. Einstein’s
parallel motion of a point electron in an electric field is fundamental be-
cause it is the only rigorous method to deduce the relativistic dynamics
from relativistic kinematics of the material point in the framework of
Einstein’s SR. Einstein tries to find the dynamical equation of the elec-
tron by a succession of v-LT in the same direction. He doesn’t succeed
16 but he deduces the relativistic equation for uniform slowly accelerated
movement. Indeed, with the help of the transformation of the electro-
magnetic field Einstein obtains:

16One year later Planck finds from this equations the fundamental relativistic equa-
tion (one year after Poincaré) ”by making a simple rotation of the system of coor-
dinates”. Einstein adopts in 1907 Planck’s deduction. The vector velocity v is no
longer aligned on Ox. The orientation of the axis of the proper system of the electron
are aligned on the velocity of the electron. So Planck finds the classical relativistic
dynamical equation in the improper system. But he gives up the definition of proper
system.
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ax =
e

m

1
γ3

Ex ay =
e

m

1
γ

(Ey −
v

c
Hz) az =

e

m

1
γ

(Ez +
v

c
Hy)

And therefore:

mγ3ax = Fx mγay = Fy mγaz = Fz

What is the status of the acceleration in Einstein’s parallel motion
from one proper system to another proper system? On one side there
is no acceleration (the series k − k′ − k” − k′′′): the uniform acceler-
ated movement is transformed in a series of dv −LT . On the other side
there is an acceleration (a and a’, 26 and 26’) of the electron at each
”Zeitteilchen” relative to the laboratory system (Einstein’s series K−k,
K−k′, K−k”, is the same as Poincaré’s series, see 4.2.3). In his adiabatic
SR (or better: ”adiabatic and isentropic” SR [21. Pierseaux Y.]), Ein-
stein is not very interested by the calculation of the second derivatives,
he prefers to integrate on the velocity:

We will now determine the kinetic energy of the electron.
If an electron moves from rest at the origin of coordinates
of the system K along the axis of K under the action of an
electrostatic force Fx, it is clear that the energy withdrawn
from the electrostatic field has the value

∫
eExdx. As the

electron is to be slowly accelerated, and consequently
may not give off any energy in the form of radiation,
the energy withdrawn from the electrostatic field must be
put down as equal to the energy of motion of the electron.
Bearing in mind that during the whole process of motion
which we are considering the first of the above equations
applies, we therefore obtain[7.Einstein A.1905, paragraph 10]

W = m

∫ v

0

γ3vdv = mc2(γ − 1)

So Einstein defines the proper energy and the improper energy. But
the fundamental point is here that Einstein’s electron never acceler-
ates relative to its proper system and therefore it doesn’t emit any
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radiation. Einstein’s electron is, in Einstein’s own words, in a station-
ary state (”eigenstates”, a succession of stationary systems).This is a
very important fact for the classical electromagnetic theory of emission.
But Einstein only considers the proper systems k− k′ − k”− k′′′ always
in the same direction. One more time, Einstein defined vector v-LT but
his calculations are limited to the case of parallel motion. Exactly like
Minkowski, Einstein’s definition of proper system is limited to the rec-
tilinear uniform accelerated system (dv −LT ); the proper system is not
defined if the system of the electron changes of direction (dv−LT ). We
have on one hand Poincaré’s series with acceleration K ′ − K ′′ − K ′′′...
and on the other hand Einstein-Minkowski’s eigenseries k−k′−k”−k′′′,
without acceleration. That’s not all. Einstein’s electron that doesn’t
emit radiation is a pointlike (Punktförmige) electron ”Let there
be in motion in an electromagnetic field an pointlike particle with the
charge e, called an electron...”

4.3.1 Poincaré’s classical electron (finite volume)

Poincaré discusses all the models of the electron in his 1905 paper
except of course this one of Einstein . That was of course impossi-
ble for historical reasons because the two theories of electron (”Dy-
namique de l’électron” and ”Electrodynamik bewegter Körper”) are
quasi-simultaneous 1905 events. But the interesting point for mathe-
matical physics is that Einstein’s representation of the electron is not a
classical representation but it is a quantum representation.

So ”the fine structure” of SR is visible not only for the light
(Poincaré’s waves and Einstein’s photons) but also about the electron.
According to Poincaré, the only relativistic (compatible with the princi-
ple of relativity l = 1) model for the finite electron is the model of the
longitudinally deformable electron based on the Lorentz hypothesis. For
Poincaré’s relativistic deformable electron, we have a relation that has
the same form as the four-volume (V is the volume of the electron and
e its density of charge:

kρk−1V = kρ′k−1V ′

So we have the relativistic conservation of the charge of the finite
electron:

e′ = e
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4.3.2 Einstein’s ”quantum” point electron (Minkowski’s ”sub-
stantial” point electron)

In his second fundamental 1907 work on SR [8. Einstein A.1907], Ein-
stein defined ”the electron” as ”a material point” (and reciprocally). For
the ”Punktförmige” Einstein’s electron, we have:

V = V ′ = 0 (27)

So we have an identical ”quantum” of charge attached17

e ≡ e (28)

We put of course quantum between inverted commas because,
in Dirac’s own words as long as we don’t have a rigorous theory
of magnetic monopole we no longer have a theory of quantization
of the charge. In standard presentation of SR (the mixed state),
the essential role of the electron in the two papers (”Elektrody-
namik der bewegter Körper”[7.Einstein A.1905] and ”Dynamics of the
electron”[26. Poincaré H. 1905] is very often completely forgotten. One
speaks about material point without connection with this extraordi-
nary intuition (thermodynamic origin, see [20. Pierseaux Y.]) of Ein-
stein about the elementary (point) character of the electron. As we shall
see Einstein’s ”Punktförmige electron without structure” (quantum elec-
tron) is particularly important in the discussion of the Thomas rotation
and the spin.One can think that the point electron with a quantum of
charge is not necessary in Einstein’s SR but it would be a serious mistake.
If we introduce a finite electron, we must consider a distribution of charge
and therefore a pressure that balances the electrostatic force and we find
again Poincaré’s SR. Let us note that Minkowski [16. Minkowski H.1908]
defined in 1908 two kinds of electron: On one hand, Einstein’s electron
or the material point (in Minkowski’s language, the ”substantial” point)
and, on the other hand, the purely phenomenological ”Lorentzian elec-
tron” (sic). Minkowski never quotes Poincaré in 1908 and he tries to
show that his kinematics is completely compatible with Lorentz’s dy-
namic (with two kinds of electron !). We find again the mixture...

17Einstein often repeats that e is a stranger in electromagnetic theory.
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4.4 Thomas’ complete vector definition of the proper system

Einstein’s and Minkowki’s definition of the proper system are limited
to accelerated systems in the same direction (dv − LT ). There is
therefore an acceleration by change of orientation (dv − LT ). The
main difficulty in Thomas’ 1927 paper is not mathematical but logical
[36. Thomas L.H. (1927)]. Tomonaga’s analysis is particularly clear:

If the electron is moving with constant velocity, then such
a coordinate system can easily be obtained from the labo-
ratory coordinate system by a LT. However if electron has
acceleration, there is a complication. We can indeed con-
sider coordinate system in which the electron is motionless.
Specifically, this is a coordinate system which has the elec-
tron at the origin and is moving together with the electron.
However we cannot uniquely determine the coordinate sys-
tem just by declaring that its origin is moving with
the electron. How should we orient the x, y, z axes?
In addition to the condition that the origin is moving with
the electron, we must add the condition that the x, y, z axes
are always moving in translation, i.e. not rotating. This
”parallel motion” is obvious when the electron motion is
maintaining a constant velocity, but when the electron has
acceleration, it is not that obvious. This is the point that
Thomas realized. Therefore Thomas first discussed what it
meant by the parallel translation of the coordinate axes.
He concluded that the parallel translation of the axes means
that the axes at each instant are parallel to the axes at an
infinitesimally small time before that instant. The coordi-
nate system whose origin is moving with the electron, in this
sense translating parallel to itself, may be called the proper
coordinate system of the electron. Thomas derived that
this coordinate system, seen from the laboratory system, is
not translating parallel to itself but is accompanied by rota-
tion if the electron has acceleration. [37. Tomonaga S.]

How should we orient the axes? How a point electron whose ve-
locity changes at each time of direction could be at rest in a proper
inertial system? The only solution is that the electron must have a
device that is pointing permanently in the same direction in
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such a way that the proper system never changes of direction
(the precession occurs naturally in the improper system)18. All the text
of Thomas’ relativistic deduction [36. Thomas L.H. (1927)] consists of
defining the proper system with the parallel transport. The current idea
according to which the only ingredient of the Thomas precession is the
non-commutativity of two non-parallel v-LT is not sufficient (that is al-
ready in Sommerfeld’s paper in 1909[34.Sommerfeld A.]). Thomas’ defi-
nition precisely transforms the non-oriented systems into parallel proper
systems. There are two ingredients in Thomas’s completion of Einstein-
Minkowski’s SR: the parallel transported proper systems and the compo-
sition of non-parallel vector v−LT and dv−LT

Now what is the nucleus of Thomas’ deduction? Thomas absolutely
needs three systems K, k, k’ in order to extend group Einstein’s demon-
stration, limited to parallel systems (2.3). Without affecting the general
character of our considerations, we can consider a point in uniform ro-
tation. In this way we extract the essence of Thomas reasoning that is
the problem of change of orientation of velocity (an = v2

R ) and not
change of intensity (at = 0) of the velocity. In order to compose two
boosts v−LT and dv−LT , Thomas must define dv−LT as a boost
and the only way is the parallel transport: ”The parallel translation of
the axes means that the axes of k and k’ at each [element of time] are
parallel to the axes at an infinitesimally small [element of] time before
that instant”. Let us consider the figure 6:

Figure 6: Thomas’ composition of v-LT and dv-LT

18If one alignes simply the direction of the system on this one of the velocity we
obtain the classical equation of the relativistic dynamic.
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At t = 0 the proper system k is moving in the x // ξ direction
with velocity v. At the next element of time dt the proper system k’
of the electron is moving perpendicular to ξ′ in the η′//η direction with
velocity v′ = dv = adt. The instantaneous direction of the velocity
v’ is orthogonal to v (v ⊥ a). There is no tangent component of the
acceleration (no second derivative with respect to the time). So k is
parallel moving relative to K and k’ is parallel moving relative to k We
compose the two successive orthogonal boosts v−LT and dv−LT into
the boost (v′ = v + dv) − LT .

first boost v − LT

ξ = γv(x− vt) (29)

τ = γv(t−
v

c2
x)

η = y

second (infinitesimal) boost dv − LT

ξ′ = ξ (30)

τ ′ = γv′(τ − v

c2
ξ)

η′ = γv′(τ − v

c2
ξ)

The following figure 7 represents the situation after the time dt
[1. Aharoni]:

The line from the origin O of K to the origin O’ of k’ makes an angle
θ in K and θ′ in k’. So k is in parallel movement relative to K and k” is
in parallel movement relative to k and however k’ is not parallel to K.
We have k // K and k′ // k � k′ // k. That’s impossible in affine
and therefore also Euclidean geometry.

Let us note that for Galilean transformation we would have

tan θGalilée ˜ θGalilée = tan θ′Galilée ˜ θ′Galilée =
v′

v

and therefore the transitivity of the parallelism (k // K and k′ //
k ⇒ k′ // k). This is directly connected with the addition of vector
in three dimensions Euclidean space. In Einstein’s SR the velocities
don’t add as vectors in Euclidean space but as vectors in Lobatchevskian
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Figure 7: Non-transitivity of parallelism

kinematics space (see hyperbolic triangle). So the relativistic calculation
gives with (29 and 30, see Aharoni) by applying the v − LT :

dθ = θ′ − θ = γv′
v′

v
− v′

γvv
(31)

We obtain θ (in K) 	= θ′(in k’) and dθ represents therefore the (Lo-
batchevskian) deviation from parallelism.

We see also immediately that if one composes (v = c) ⊥ v′ (a star
light ray c orthogonal to the direction of the Earth velocity v′ with re-
spect to the Sun), we obtain, with γ−1

v = γ−1
c = 0, and the angle of

aberration α (tan α = γv′
v′

c ). Varicak demonstrated in 1910 that aber-
ration angle is the Lobatchevskian angle of parallelism [41. Varicak V.].
We rediscover here that the correct definition of the star aberration,
in Einstein-Varicak’s SR, is based, on the composition of two vector
velocities v’ and c (v’ is not the relative velocity Earth-star).

Thomas considers, because dv is very small, that γv′ � 1. We remark
here that, in virtue of the definition of the invariant proper time dτ
by dv-LT, (4.2.3), we must have in (30): γv′ = 1 (the proper time
is an operator that transforms the continuous trajectory (unnumerable
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infinity) into a numerable infinity of (countable) events (states), see note
21).

dθ =
dv

v
(1 − 1

γv

) (31’)

So this the Thomas angle (the space rotation). We don’t have yet
the Thomas precession, in other words the variation in the time of the
orientation:

dθ

dt
=

dv

vdt
(1 − 1

γv

) =
a

v
(1 − 1

γv

)

The expressiondθ
dt represents the variation of the orientation of the

proper system with respect to K in the time of K. But precisely the ori-
entation of the proper system doesn’t vary because it is parallel trans-
ported. So the question is ”in which duration the deviation of parallelism
(The Thomas angle) must be defined ?” The very subtle Thomas’ deduc-
tion is based on the deep connection between the non-integrable change
of orientation and the non-integrable proper time on a closed path. That
deep connection between proper time and proper orientation is very
clear in Aharoni’s analysis of the Thomas precession.

From the foregoing it follows that when a frame of ref-
erence P is carried along a curved path parallel to itself, on
return to some original position O it is no longer parallel to
its original orientation. The orientation is not integrable
since the deviation from the original orientation will depend
on the shape of the orbit and the velocity along it. In this
respect the orientation behaves similarly to the time indica-
tion of a clock which is taken round a closed path and then
compared which was left in the original position. (Aharoni,
Special Theory of Relativity)[1. Aharoni]

The Element of eigenorientation dθ and the Element of eigentime
dτ are invariant (γv′ = 1) . By integration along different paths, we
find different values for θ and τ with respect to K. The Thomas angular
velocity or the Thomas precession defines a very fundamental connection
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between the two non-exact differentials, the proper time and the proper
space orientation:

dθ = ωdτ (32)

The expression dθ
dτ represents the deviation of parallelism with respect

to K in the proper time of k (or k’).

So we find the intensity of the Thomas precession:

ωThomas =
dθ

dτ
= γv

dθ

dt
=

a

v
(γv − 1)

The angular velocity is a vector oriented along Oz

ωThomas =
v × a

v2
(γv − 1) (33)

In first approximation, we find the well known expression for the
Thomas precession for v ≪ c

ωThomas =
v × a

2c2
(34)

Minkowski’s diagram space-time of world lines has no general mean-
ing without Thomas definition of proper system (31’). We only can define
rectilinear world lines and the hyperbolas world line that represent the
uniformly accelerated translation (and also the definition of the identical
units of measure). In order to give a general sense to Minkowski’s curve
trajectory in 3-space, we must attach to the proper time a precession
(34) of the orientation of the parallel transported proper system.

4.5 Curved space in Einstein-Minkowski-Thomas’ SR

Thomas’ extension of the definition of the proper system for non-parallel
boost supposes the parallel transport. What is the geometrical meaning
of Thomas’ parallel transport?
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The notion of parallel transport offers a good approach to
understanding the characteristic properties of curved spaces.
Given two points in a space and a vector at one of them, one
may construct that vector at the other point that is parallel
to the first. To this end, one connects the two points by a
geodesic and then transports the original vector along the
geodesic, seeing to it that the angle between the straight line
and the vector remains constant in the course of the trans-
fer. In a flat space the end result depends not on the
path of transfer but solely of the original vector. A single
direction is parallel at each point of space to that originally
given elsewhere. In a curved space, the result of paral-
lel transfer depends of both the original vector and
the path of transport chosen (Bergman, ”The riddle of
Gravitation”).[3. Bergman]

So Thomas’ decisive contribution to Einstein-Minkowski’s SR con-
sists of showing the connection between the proper time and the ori-
entation in space. The orientation is not integrable since the deviation
from the original orientation will depend on the shape of the orbit and
the velocity along it. Without any calculation, we can conclude that
the space in Einstein-Minkowski-Thomas SR is a curved space (i.e., a
non-Euclidean space). The change of the orientation is a result of the
curvature of the space in which the electron is moving. We can now spec-
ify what kind of non-Euclidean space. Sommerfeld’s non-commutativity
for the composition of two velocities at right angles, in two possible ways,
can be illustrated by the following figure 8 [34.Sommerfeld A.]:

Figure 8: Sommerfeld’s non-commutativity
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tgθ =
v′

vγv

tgθ′ = γv′
v′

v
(35)

In Sommerfeld’s representation of the kinematics space, the triangles
are not congruent. If we use Varicak’s representation, the only one com-
patible with Minkowski’s definition of isotropic lines, we have congruent
triangles (figure 9)[39. Varicak V.]:

Figure 9: Varicak’s hyperbolic representation

The factor γ occurs only in the Euclidean representation of the ve-
locities; in non-Euclidean representation, it is implicit in the geometry
[2. Barrett J.F.].

ε = θ′ − θ (36)

Varicak demonstrates in 1910 that the Sommerfeld angle, ε = π −
(ϕ + ϕ1 + ϕ2), is the hyperbolic defect in hyperbolic triangle (see figure
1). But in Varicak’s 1910 paper the hyperbolic defect doesn’t have any
physical interpretation. The non-commutativity is based on the order
of the composition of v and v′ (first v and then v′ or inversely). It we
now realize that hyperbolic triangle represents vector addition in
kinematic 3-space (figure 10), when we compose v and v′ into v + v′, we
have a space rotation and therefore the hyperbolic defect is the Thomas
angle.

Anyway, by the equations (31) and (35) we deduce immediately the
relationship between the hyperbolic defect ε and the Thomas angle dθ
(see 30)? We have obviously (33):
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Figure 10: Thomas hyperbolic vector composition

dθ = ε (37)

The Thomas angle is the hyperbolic defect (with the proper system,
γv′ = 1, we have the Thomas precession ω)

So we know that the hyperbolic defect ε is proportional to the area of
the triangle (in fondamental area units of the Lobatchevskian ”sphere”
whose negative radius of curvature is c = 1 and area is 4π). A succession
of triangles forms a polygonal closed path that gives by integration the
(non-restrictive) circular path considered by Thomas. After one revolu-
tion on the closed path, when we return to the starting point, the orien-
tation of the proper system (intrinsically parallel) will have revolved of
an angle proportional to the area of the ”circle” (see conclusion).

Borel (who recognized Varicak’s priority) writes: ”In classic kine-
matics, kinematics space is an Euclidean space. The principle of rel-
ativity corresponds to the hypothesis that kinematics space is a space
with negative constant curvature, the space of Lobatchevski and
Bolyai.”[4. Borel E.] In classical mechanics, the 3-kinematics space and
the 3-space itself are both Euclidean. With Varicak (1910), we see
that kinematics 3-space is Lobatcheskian (curvature radius c = 1), with
Thomas (1926), i.e. the integration of dθ along a closed path (paral-
lel transport) in space, we see that the 3-space itself is Lobatchevskian.
In the standard mixture SR we have a Euclidean 3-space and a Lo-
batchevskian kinematic 3-space. That’s obviously completely incoher-
ent. If we split off the mixture into its two components, the space in
Einstein-Thomas SR is really Lobachteskian exactly on the same way
that the space in Einstein’s GR is really Riemanian. Let us summary
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the fine structure between Poincaré’s scalar SR and Einstein-
Thomas’ vector SR:

Poincaré’s subgroup ⇒ metric based on the unimodular invariant
four-volume ⇒ exact differential, dt and dt′, connected by the scalar
invariant dtdV = dtdV.

Minkowski’s metric based on the nonEuclidean invariant the four-
intervall ⇒ non-exact differential of element of proper time, ds = cdτ ,
connected with Thomas’orientation dθ of proper system.

But we must now answer the haunting question ”in order to apply the
parallel transport to the material point of Einstein’s SR, ”the electron
must have a device that is pointing permanently in the same
direction in such a way that the proper system never changes
of direction”.

In other word, Einstein-Thomas’ SR is not yet a complete theory be-
cause it is impossible to apply on the material point (the electron), the
parallel transport which is absolutely necessary for a rigorous definition
of the proper system. Moreover the separation of the mixture (Einstein’s
kinematics and Poincaré’s groups) means that Einstein’s vector kinemat-
ics lost Poincaré’s guarantee of the structure of group (with two space
rotations). We must find why and how only one space rotation com-
bined with the parallel transport (the device...) can lead to a structure
of group (conclusion).

5 Thomas’ principle of correspondence between the proper
magnetic moment of the classical electron and the spin of
the quantum electron

Let us now sum up Thomas’ contribution to atomic physics [35. Thomas L.H. 1926].
What is the situation in 1925? The purely theoretical quantum descrip-
tion of the spin is established by Pauli is in harmony with the experi-
mental measurements (a difference of energy for alkali doublets) of Uel-
henbeck and Goudsmit. The image of self-rotation classical electron was
rejected by Pauli ”the classically indescribable two-valuedness”. The
non-relativistic classical theory was unable to explain the experimen-
tal results: there is no magnetic field and thus no interaction with the
supposed proper magnetic moment of the electron and therefore no fine
structure in the spectrum.

5.1 Kronig’s self rotating classical electron and the magnetic field

So the first intervention of SR is this one of Kronig:
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How do we use relativity here? Let me explain. The elec-
trons in an atom are in an electric field and are therefore
influenced by that electric field, but the self-rotating mag-
netic moment of the electron will not be directly affected by
the electric field. However, if an electron is moving, then a
magnetic field which did not exist in the laboratory frame ap-
pears for the moving electron [”the usual expression is seen by
the electron”] through a Lorentz transformation. According
to Einstein [as well Poincaré ], this field is:[37. Tomonaga S.]

H =
1
c

E × v√
1 − v2

c2

The magnetic field is a fundamental relativistic effect for little veloc-
ities v << c. The electron sees a magnetic field which is perpendicular
to the plan of the orbit. We can deduce the Larmor frequency with the
gyromagnetic experimental ratio g0

ωLarmor = g0
e

2mc
H (38)

And so thanks to this first intervention of SR, we have a fine structure
for alkalis doublets:

∆W = �νLarmor = g0
e�

2mc
H (39)

The experimental measure of the gyromagnetic ratio for the electron
is 2. Kronig put g0 equals 2 (with an angular momentum of self-rotation
of 1

2h)you find a difference twice as large as the one which is actually
observed for the anomalous Zeeman effect. So with the first interven-
tion of SR (the mixed state), we have a structure fine but not the good
(experimental) value for the energy of the fine structure. So Kronig’s cal-
culation was completely rejected by Pauli. We note that Kronig doesn’t
define the proper system. That’s precisely Thomas’s critic.

5.2 Thomas’ factor and the proper magnetic moment of the electron

The second intervention of SR [35. Thomas L.H. 1926] consists of defin-
ing correctly the proper system (Thomas):
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Speaking in terms of classical theory what Kronig ,
Uehlenbeck and Goudsmit has done was to think that the
angular velocity of the precession is itself the angular veloc-
ity in the laboratory system. However Thomas argued as
follows. This angular velocity is indeed the angular velocity
as seen from the proper coordinate system of the electron,
but if you view the motion from the laboratory system, the
proper coordinate system is itself rotating with an angular
velocity (the Thomas precession)[37. Tomonaga S.].

Thomas obviously had in his mind the Bohr model where the elec-
tron is in uniform rotation in an electric field (see 4.3, Einstein’s last
paragraph 10) and he introduces (with 38 and 34) a corrected angular
velocity in the laboratory system:

ωLab = ωLarmor + ωThomas = g0
e

2mc
H +

1
2c2

a × v (40)

So we recall that the acceleration is the acceleration of the electron
with respect to the laboratory system (the nucleus system), the electron
has a device that points always in the same orientation (the electron is in
its successive proper systems, k, k′, k′′, k′′′..., in parallel non-accelerated
motion).

a = − e

m
E (41)

That’s exactly Einstein’s formula for uniform parallel translation (26,
26’) but that is now valid for uniform circular moving. Thomas obtains:

ωLab = (g0 − 1)
e

mc
H (42)

If we substitute g0 = 2 we obtain one half of the previous result
(the famous Thomas factor 1

2 ) and the discrepancy (39) with experiment
disappears. Tomonaga writes:

When this was clarified, even Pauli (after a few weeks) de-
cided not to categorically oppose the idea of self-rotating elec-
tron, and in spite of its remaining problem.[37. Tomonaga S.]
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We underline that the Thomas relativistic effect (factor 1
2 ) is obtained

with the formula for small ( c
137 ) velocities v << c.

In 1925 Pauli had given a quantum (”classically indescribable”) de-
scription of the spin. But the spin (the proper kinetic moment of a
charged particle) must be connected to the magnetic moment of the
electron. Nobody knows a quantum theory of magnetism (see conclu-
sion). Thomas himself thinks that his relativistic calculation is purely
classical. He uses indeed, on one side, Einstein’s composition of vector
v-LT and Minkowski’s proper time and, on the other side, Poincaré’s
representation of the electron. It is always very interesting to read the
original texts. Let us examine therefore the 1926 Thomas paper:

The precession of the spin axis so calculated is its preces-
sion in a system of coordinates (2) in which the center of
the electron is momentarily at rest. [35. Thomas L.H. 1926]

With the extended (with respect to Minkowski) definition of the
proper system, Thomas defines a correspondence (42) exactly in the
Bohr meaning (⇐⇒ ) that can be can be sum up in the following way:

spin of quantum electron ⇐⇒ magnetic moment of classical
electron

But what is the remaining problem according to Pauli? The remain-
ing problem is that the magnetic moment has a classical definition and
that the spin has a quantum definition.

quantum electron 	= classical electron

The situation is very curious because, on one hand, we have the
quantum electron with spin (without internal structure or finite volume)
and, on the other hand, we have a classical electron with a proper mag-
netic moment. The two calculations coincide experimentally but this
quantum-classic coincidence is based on a correspondence prin-
ciple in Bohr’s meaning. It is now time to conclude.

6 Conclusion: The spin of the electron in Einstein-Thomas’
Special Relativity

On one side of Thomas’ principle of correspondence we have a classical
electron and on the other side we have a quantum electron. That’s not
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very satisfying and the Dirac equation doesn’t solve this problem (the
good magnetic moment appears as a classical limit) .

The ”fine structure” of SR solves the problem: all you need is to re-
place, in Thomas’ deduction, Poincaré’s classical electron by Einstein’s
quantum electron (4.3.1 and 4.3.2). The discrepancy completely dis-
appears. This operation is not only sufficient but it is necessary. The
only solution to complete Einstein-Thomas’ SR, in order to have a cor-
rect definition of the proper system, is that ”the electron must have
a device that is pointing permanently in the same direction in
such a way that the proper system never changes of direction”.

That device can only be the proper magnetic moment.
In Einstein-Thomas’s SR Einstein’s quantum electron must

have a proper magnetic moment and therefore a spin.

It is another proper magnitude to a long list: proper energy (Ein-
stein), proper mass (Planck), proper time (Minkowski), proper length
(Born) and finally proper magnetic moment (Thomas). If the first in-
tervention of SR corresponds to the introduction of magnetic field on
the electron as a relativistic effect for v << c, the second intervention
(Thomas) corresponds also to the necessary introduction of a proper
magnetic moment of the electron as a relativistic effect for v << c. So
if we have the magnetic moment of the electron in Einstein-Thomas’
SR, it seems impossible, at the first sight, to deduce the famous spin 1

2
from Einstein-Thomas’ SR clearly separated from Poincaré’s SR . Let
us remind however that the fundamental characteristic of a vector state
associated to the spin 1

2 is that it is necessary to operate two revolu-
tions 4π to find again the initial state. In the Lobatchevskian 3-space of
Einstein-Thomas SR, the change of orientation of the magnetic moment
(of the system) is proportional to the enclosed polygonal area (4-5) along
which the parallel transport occurs[4. Borel E.]. Here the polygonal area
is, at the limit, a circle whose radius is c = 1 (4.5). After one revolution
2π, the area equals to π and therefore the spin undergoes a change of
direction of π (minus one for the vector state).

θone revolution 2π = π (43)

After two revolutions 4π, the enclosed area is 2π and therefore we find
again the same initial vector state for the spin.
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θtwo revolutions 4π = 2π (44)

So remember that Einstein’s vector kinematics, with the separation
of the mixture, lost the guarantee of Poincaré’s structure of group. We
obtain (at last!), thanks to the introduction of the spin, the structure
of group and therefore Einstein-Thomas SR is now complete.

The ”fine structure” of SR is clearly established: in
Poincaré’s SR we find again the same orientation of the sys-
tem with one revolution of 2π for each rotation. In Einstein-
Thomas’ SR, we find again the same orientation of the system
(given by the spin) for only one rotation but with two revolu-
tions 4π (along the path of integration on Lobatchevkian sphere
with solid angle 4π,4.5).

We note that the ”fine structure” conducts (but much more directly
because the spin is deduced from Einstein-Thomas’ group) to the same
result as Rindler-Penrose’s idea about the similarity of the group struc-
ture on the Riemann spheres for the transformation of the spin 1

2 and
for the transformation of the relativistic aberration (here Penrose redis-
covers Varicak [31bis. Rindler and Penrose]).

We showed that Thomas rotation is fundamentally connected with
the proper system without acceleration, in the tangential sense, i. e.
without the second derivative with respect to the time. Thomas’ rotation
is only connected with a purely vector change of orientation recorded in
the fixed system K. Dirac’s equation that gives the spin of the electron
is precisely an equation of the first order with respect to the time (We
point out that we showed that Einstein’s concept of independent events
in SR is directly connected with Einstein’s definition of probability by
inversion of Boltzmann’s principle [21. Pierseaux Y.]).

But that’s not all. We have another very interesting application of the
Lobatchevski’s 3-space to the quantum mechanics. Let us return to Ein-
stein’s point electron that doesn’t emit any radiation. The explanation
is very clear: with respect to its proper system the electron never accel-
erates in Lobatchevski 3-space. The space is itself (constantly) curved..
We have so a very simple geometrical relativistic explanation of a famous
riddle of a quantum concept. We know henceforth why an elec-
tron that moves, in Bohr model, around the nucleus doesn’t
emit radiation: The uniform circular movement becomes, thanks to
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the Thomas precession and its associated device (spin), a geodesic
path in Lobatchevski 3-space of Einstein-Thomas’ SR (any proper sys-
tem follows by definition a geodesic path).

We showed that the main border (classical-quantum) of the present
physics passes between the two SR (PIRT 2000, [22. Pierseaux Y.]). So
the two components of the standard mixture SR can be called with ref-
erence to the representation of light ”quantum SR” (QSR) and classical
or ”wavy SR” (WSR). The question of the connection of the doublet
”WSR and QSR” respectively with QED, QM, GR and so on... is an
open question .The proper magnetic moment of the electron corresponds
to a spin that is incompatible with Poincaré’s (relativistic) classical elec-
tron whose radius is e2

mc2 ): the classical electron’s surface reaches a veloc-
ity higher than that of light. Only Einstein’s point electron is compatible
with the spin of the electron. Nevertheless Poincaré’s WSR remains very
important for another theoretical equation. It is indeed also possible to
show that if the first order (with respect to time) Dirac’s equa-
tion becomes a formula of QSR, the second order (with respect
to time) Klein-Gordon’s equation becomes a formula of WSR (the
fundamental meaning of the quadratic form that doesn’t define the light
wave propagation in Poincaré’ SR (3) because the light wave propagation
is defined by the second order (with respect to time) wave equation (2).
In order to answer a question of Jacques Robert about the acceleration
we want to specify that we only focus the attention in this paper on the
consequence of Einstein-Thomas’ SR about the eigenstate (eigensys-
tem) of the electron (without emission of radiation) in the Bohr model.
We didn’t discuss the changes of state with emission of radiation. In
the framework of Einstein-Thomas’ SR, the photonic mode of emission
for bound electron in atom can only be defined by change of energy
while, in the framework of Poincaré’s SR, the classical wavy mode of
emission for free electrons can only be defined by acceleration (see syn-
chrotron radiation in particles accelerators). That question, that will be
discussed in another paper, is connected with the discrepancy, discovered
by Louis de Broglie, between the relativistic variation of clock frequency
and wave frequency. The ”fine structure” shows that it is implicit in
Einstein’s definition of photon (4-1-2) and we will show that de Broglie’s
concept leads to a quantum definition of time with ”only one atom at
rest in space” (cold atom, Dehmelt NP 1989). Without that identifica-
tion between ”proper atomic frequency” and ”proper time” (quantum
oscillator, see note 20), we must define time classically, like Poincaré, by
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the propagation of light waves in space and reciprocally elongated dis-
tance by dilated time (or dilated velocity). In other words, it is easy to
show, from Poincaré’s deduction of relativistic Doppler and aberration
formulas (3.2.2), that in front of the atomist Einstein-Thomas’s SR with
the spin of electron, we have a cosmologist Poincaré-Hubble’s SR with
the expansion of space.

So we are therefore also in the interface between the general relativ-
ity (GR) and the two extended SR. Minkowski’s metric is based on the
”difference of squares” (4.1.1) while Poincaré’s metric is based on the
”square of the difference” (3.4). It is well known that Einstein reintro-
duces in 1921 a space-time ether exactly in the sense of Poincaré. Which
is the valid local SR in Einstein’s GR. Poincaré’s WSR, Einstein’s QSR
or the standard mixture? That’s very important for the quantization of
gravitation. In addition, what is the relation between the magnetic hy-
perbolic space in Einstein-Thomas’ QSR and Riemannian gravitational
space in GR? The existence of the doublet ”QSR and WSR”, directly re-
sulting from the splitting of the standard pseudo-Euclidean mixture SR,
is based in last resort on an irreducible opposition between a Euclidean
and a non-Euclidean conception. The great geometrician F. Klein re-
gretted that Minkowski, after his famous 1908 conference, ”never again
referred to a manifold as both four-dimensional and non-Euclidean” and
later hid from view his ”innermost mathematical especially invariant-
theoretical thoughts on the theory of relativity” [42. Walter S.].Klein
knew that Minkowski’s definition of isotropic light line with real con-
ics at the infinity was based on a projective point of view and not on
Poincaré’s affine point of view[14. Klein F.]. In most of the standard
book on SR we find the mixture affine-hyperbolic. That is also true for
Pauli’s book on the theory of relativity. But in Pauli’s book we can also
find a very strange contradiction. We have first note 111:

This connection with the Bolyai-Lobatchevsky geometry
can be briefly described in the following way: if one inter-
prets dx1, dx2, dx3, dx4as homogeneous coordinates in
a three-dimensional projective space, then the invari-
ance of the equation amounts to introducing a Cayley system
of measurement, base on a real conic section. The rest fol-
lows from the well-known arguments by Klein.[19. Pauli W.,
note 111]

And secondly, as Serge Reynaud once remarked to me in Peyresc, we
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have Pauli’s judgement on the 6 groups of transformations (A: orthogo-
nal transformations, B and B’: affine transformations, D: Einstein’s point
transformations for GR, E: Weyl’s transformations). All the groups ac-
cording to Pauli are very important for the physics. Except Group C:

C: The projective group of projective linear fractional
transformations. This was mainly used by mathemati-
cians in earlier investigations in non-Euclidean geometry. For
physics it is of minor importance.[19. Pauli W., p 24]

Pauli’s ”note 111” and Pauli’s ”judgement on C” are obviously in con-
tradiction. Minkowski’s metric, clearly separated from Poincaré’s met-
ric, is based on a projective point of view for the homogeneous Lorentz
transformation that conducts to a Cayley system of measurement of
units (4.1.2). The coordinates of a point are the homogeneous coordi-
nates of the velocity (2.4, 4.1.1). With the Möbius (linear fractional)
transformations, we also have the Möbius strip (by 43 and 44). So
the most important theory for physics, thanks to the existence of a ”fine
structure” of SR, could become the projective QSR (without Kaluza’s
fifth dimension that Einstein didn’t like!). It is true for the definition of
a time operator (note 111 and 31 → 31′) but it is also true for another
enigma in theoretical physics. Indeed, Pauli was a rationalist who liked
the symbols (see his dialogue with Karl Gustav Jung): The number of
the room where he died was 137. That’s obviously a pure coincidence of
events but if the ”fine structure” of SR is theoretically really interesting,
it could have something to say about the fine structure... constant. Last
but not least: A good physical theory must not only clarify the old un-
solved questions but it must be also able to predict new phenomena. Is
that the case for QSR? The young Albert wrote to his young wife Mileva
in 1901:

Drude’s theory is a kinetic theory of thermal and electrical
processes completely in the mind of the kinetic theory of gas.
If only there was no this damned magnetism about which
we don’t know what we can do. [April 1901, letter n◦27]
[20. Pierseaux Y.]

At this epoch we showed that the Democritean Albert was a follower
of Boltzmann and saw atoms (quanta of matter) everywhere even for
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the (quanta of) light and for the (quanta of) charge. The only problem
was that there is no atom of (quanta of) magnetism, i.e. a magnetic
monopole. Twenty years after the miraculous year 1905, Einstein was
very surprised by the purely special relativistic reasoning of Thomas. He
would have been still more surprised to discover that behind the Thomas
precession, in his proper theory, there was an atom of magnetism. Now
let us indeed think about the magnetic moment of Einstein’s pointlike
electron in QSR. If it is possible to attach a magnetic dipole on the
classical finite electron (Thomas’s principle of correspondence), it is
obviously impossible to attach a dipole to a point. So QSR is
a quantum theory of magnetism (with quantization of the charge) that
predicts, in agreement with Georges Lochak’s talk in Peyresc, directly
the existence of magnetic monopole.
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Marc Jaekel, Jacques Naisse, Pierre Marage, Daniel Bertrand

Xavier Oudet et Georges Lochak.
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with quantum clocks, Poincaré’s SR with classical clocks in Einstein’s
General Relativity”, PIRT VIII (Late p.), 2002.

[23. Pierseaux Y.] ”The principle of the physical identity of units of measure
in Einstein’s special relativity”, to appear in Common Sense.
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