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RÉSUMÉ. Les points de vue adoptés par la quasi totalité des physi-
ciens sur l’électrodynamique en mécanique quantique (théorie quan-
tique des champs, formulation abstraite des théories de jauge) sont
comparés à ceux, directement liés à la géométrie de l’espace-temps,
qu’on peut déduire des travaux de l’Ecole Louis de Broglie et ou de
l’utilisation des algèbres réelles dans le formalisme d’Hestenes.

ABSTRACT. The points of view assumed by the quasi totality of the
physicists upon quantum electrodynamics (quantum fields theory, ab-
stract formulation of the gauge theories) are compared with the ones,
directly related to the geometry of space-time, that may be deduced from
the works of the Louis de Broglie’s school or the use of the real algebras
in the Hestenes formalism.

1 Introduction

Notations. Let M = R1,3 the Minkowski spacetime and {eµ} a
galelean frame of M be. We will write for simplicity a.b = aµbµ (and
a2 = a.a) for the scalar product of two vectors a, b ∈ M , a ∧ b for their
Grassmann product (whose components are aµbν − aνbµ) or (simple)
bivector, ∂ = eµ∂µ for the gradient operator of M .

Electromagnetism may be presented into two aspects quite differ-
ent but both closely and very simply related to the geometry of the
Minkowski spacetime M .

(1) The Maxwell-Lorentz electromagnetism. We have schown in [1,
2002] that this part of electromagnetism may be built on the following
simple consiserations taken as a fundamental principle, directly related
to the pseudo-euclidean structure of M :



188 R. Boudet

One associates with a punctual charge q -or, in quantum theory, the
eventuality of a punctual presence of a charge q- a point P of M and
a unit timelike vector u, (u2 = 1). Then one considers the spacetime
vector

A(X) = q
u

−−→
PX.u

=
q

r
u ∈ M (1)

as the potential created at all point X of M such that the vector

−−→
PX = r(u + n), n, u ∈ M, n.u = 0, n2 = −u2 = −1 (2)

is isotropic, and X is in the future of P .

We have schown that the possibility to join together different charges
-or different eventualities of presence of a same charge- in a conserved
charge current j ∈ M (with ∂.j = 0) leads, via the Lorentz integral
formula of the retarded potentials, to the Maxwell-Lorentz laws

∂2A = 4πj, ∂.A = 0 (3)

That explains why these laws, which were established on grounds of clas-
sical, deterministic and macroscopic phenomenas (free electrons moving
in moving wires), have been then revealed as applicable to the fields cre-
ated by the microscopic, probabilistic, quantal charge currents of elec-
trons bound in atoms.

(2) The potentials of the gauge theories. They are also directly related
to the geometry of M by means of the orthogonal properties of this space.

G. Lochak has given in 1956 a geometrical interpretation of the U(1)
gauge of the Dirac electron theory [2]: it is the set of the rotations upon
itself of a real plane π(x) of M , ”the spin plane”, orthogonal at each
point x of M to the timelike direction of the Dirac charge probability
current j = eρv, (ρ > 0, v ∈ M, v2 = 1).

The plane π(x) may be defined by two orthonormal vectors n1, n2,
orthogonal to v, and is colinear to the direction of the intrinsic angular
momentum i.e. the bivector spin (h̄c/2)n1 ∧ n2. A change of gauge is
defined by a rotation of the vectors n1, n2 in the plane π(x), through
an angle χ, which changes ω into ω − ∂χ and the gauge invariance is
achieved by the addition to A of the spacetime vector −(h̄c/2e)∂χ.

This interpretation of the U(1) gauge was independently and indis-
putably confirmed as a necessity, by means of real algebraic ways, ten
years later by D. Hestenes in 1967 [3]. We have shown in 1995 [1, 1997]
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that the electroweak SU(2)×U(1) gauge corresponds, for SU(2), to the
rotations in the real three-space orthogonal to the direction of the time-
like current associated with the doublet left-electron, left-neutrino, and,
for U(1), to the rotations in the ”spin planes” of the electron and the
neutrino, in a way which allows the direct product of these rotations.

We have also shown that what we call energy appears as the product
of physical constants by the infinitesimal rotations upon themselves of
these three and two dimensional spaces.

In particular we had interpreted in [1, 1971] the energy-momentum
spacetime vector p = T (v)/ρ, where T is the Tetrode energy-momentum
tensor, of the Dirac electron, as including the infinitesimal rotation of
the spin plane π(x) upon itself, i.e. the spacetime vector ω ∈ M , in such
a way that

p =
h̄c

2
ω − eA, ωµ = (∂µn1).n2 = −(∂µn2).n1 (4)

where A ∈ M is the exterior potential.
The entity (h̄c/2)ω, divided by the charge electron e, appears in

addition to a potential −Aµ, and for this reason deserves to be called a
gauge potential.

The term of gauge potential was assigned by F.Gliozzi [4] to exactly
the same geometrical object (h̄c/2e)ω, corresponding to the rotation
upon itself of a spacelike plane π(x) and introduced, quite independently,
in his article, not in the electron but in the strings theory.

But rather, this entity is here to be associated with the energy of the
electron: for exemple in the Darwin solutions, where A = −(eZ/r)e0,
the orthogonal projection of (h̄c/2)ω = p + eA upon e0 is the constant
E corresponding to the energy of the state of the electron.

Gliozzi (deceased about ten years ago) associated with the U(1) gauge
topological defects, as it is made by many authors (see for example [5]).
But in contrast with the contain of these works, these defects are to be
related to the rotations upon itself of a real plane π(x) of spacetime, in-
stead of the abstract group U(1). Here, these defects seem to correspond
to the variations of p, i.e. to the emissions or absorptions of photons.

Despite the independant works of Lochak (almost an half century
old!), of Hestenes (and his followers) and the remarkable article of
Gliozzi, the quasi totality of the physicists continue to interprete the
gauges as internal properties of particles, related to the abstraction of
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the complex algebras, instead of the reality of the geometry of spacetime.
Certainly the reasons of this incomprehension deserves to be discussed.
It will be the subject of the present paper.

2 The Maxwell-Lorentz electromagnetism and the Quantum
Field Theory

The Quantum Field Theory (QFT) has been constructed ”by exact
analogy with the ordinary quantum theory” ([6], p. 56). Indeed, in the
starting commutation relations of the theory ([6], Eq. (6), p. 56) h̄ is
associated with the number i, in the product ih̄, in the same way that
it appears in the Dirac electron equation.

But, from the first glance, this construction may be considered as
suspicious to an user of real algebras. The i associated with h̄ in the
Dirac equation is not at all the auxiliary and undefined number

√
−1

allowing the representation of the real potentials A by means of half sums
of complex numbers and their conjugates ([6], Eq. (3), p. 56). The Dirac
i is in fact the bivector e1 ∧ e2, generator of the rotations in the (x1, x2)
plane of the galilean frame {eµ} [3,1967]. This bivector becomes, after
the Lorentz rotation which transforms e0 into v, the bivector n1 ∧ n2

defining the intrinsic spin (h̄c/2)n1 ∧ n2. Applied to the potentials the
analogy is meaningless.

This fact escapes the attention of the standard physicists because
in quasi totality they do not know that, in the real Clifford algebra
Cl(p, n−p) associated with a euclidean space Rp,n−p, there are different
elements of the Grassmann algebra ∧Rn whose square is equal to -1,
and forget that the objects of physics are elements of the Grassmann
algebra of M . For example the i of the bivector of M which is the
electromagnetic field, F = ∂ ∧ A = −→

E + i
−→
H is the multivector of rank

four e0 ∧ e1 ∧ e2 ∧ e3, different from the bivector e1 ∧ e2. The square of
both is -1 in Cl(1, 3).

Nevertheless, because it is used generally in conformity with the
Maxwell-Lorentz laws, QFT may lead to right results. However in all
the problems I have met: spontaneous emission (see [1, 1993]), quantum
transitions, photoeffect [7], even in the calculation of the Lamb shift (at
least in its unrenormalized part) [8],[9], the use of QFT may be advan-
tageously replaced by the consideration of the Maxwell-Lorentz fields
created by the transition Dirac charge currents. The reason of the pres-
ence of h̄ in these field lies in the presence in their sources the charge
currents, not in constitutive laws of the fields.
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However there is at least a case where the use of QFT leads to a
major absurdity.

The quantization of the number π! ([1,1990]). For the inatten-
tive readers I emphasize that I am not the author of the stupidity I am
going to describe. I do not know the name of its author but I know the
ones of some of its users: for example Kroll and Lamb [8], French and
Weisskopf [9], i.e. the first calculators of what is just considered as an
outstanding confirmation of QFT, the Lamb shift. It is visible in the
lecture of Eqs. (16), (17), (21), and Eq. (60) union of Eqs. (26) and
(27) of [8]. It escapes the attention of the readers because in this article
one writes c = h̄ = 1 (a detestable simplification!). But in [6], Heitler
leaves apparent these constants and (catastrophe!) the non-sense may
be detected by anyone carries out the detail of the calculation.

One has to consider a potential of the form e/r and to be in confor-
mity with the constitutive laws of QFT the introduction of h̄ inside 1/r
becomes a necessity.

The Eq. (4’), p. 341 of [6] is the following

(ψ∗
0(r)ψn(r))(ψ∗

n(r′)ψ0(r′))
|r − r′|

=
1

2π2h̄c

∫
d3k

k2
(ψ∗

0(r)ei(k.r)/h̄cψn(r))(ψ∗
n(r′)e−i(k.r′)/h̄cψ0(r′)) (?!)

(5)
One observes that h̄, which is absent from the left hand side of the
equation, appears in the right hand side. By in what way? Let R =
|R| = |r − r′| be.

One has used the ”Fourier transform” of 1/R ([8], Eq. (16)):

1
R

=
1

2π2

∫
d3K

K2
ei(K.R) (6)

where d3K/K2 = dΩdK, dΩ = sin θdθdϕ. But this formula is deduced
from the relations

π

2
=

∫ ∞

0

sinx

x
dx,

sinKR

KR
=

1
2

∫ π

0

eiKR cos θ sin θdθ =
1
4π

∫
ei(K.R)dΩ

And for introducing h̄ what has been done in reality? One has written

1
R

=
2
π
× (

π

2
× 1

R
) (exact!) (7)
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The Planck constant is here! I repeat Planck’s constant is here, inside
π/2 (not inside 2/π!) !! Indeed one can write

π

2
=

∫ ∞

0

sinKR

K
dK =

∫ ∞

0

sin(kR/h̄c)
k

dk !!! (8)

by means of the change of variable K = k/h̄c and so that dΩdK =
(d3k/k2)/h̄c!

Qu’on mette, tant mieux ou tant pis,

h barre dans un sur r.

Mais qu’on l’introduise dans Pi

Est une idée qui me sidère.

Quantum mechanics contain many mysteries. But one of the most
incomprehensible for me is the fact that the authors of this so admirable
work which is the Lamb shift calculation, have, innocently or knowingly,
used a so coarse expedient.

Nevertheless nothing is wrong in the above calculation, ... except
then the possibility to consider the constitutive laws of QFT as corre-
sponding to a physical reality.

3 Dialogue on the gauge theories with a standard physicist

About the other aspect of electrodynamics which is related to the
gauge theories, I am going to describe the (standard) conversation I had
with at least half a dozen of standard physicists (some of them considered
as eminent).

me: ”I would like to speak about some geometrical aspects of the
SU(2) × U(1) gauge of the electroweak theory.”

him: ”Ah, very well.”

me: ”To be sure that we will be in agreement, I begin with some
recalls on the U(1) gauge of the Dirac electron theory. I consider the
bivector spin (h̄c/2)n1 ∧ n2 ...”

him: ”The bivector what? For me the spin is an operator.”

me: ”Oh, excuse me. I mean the bivector, i.e. the antisymmetric
tensor of rank two, which represents the intrinsic angular momentum of
the Dirac particle, and which is a bivector of the Minkowski spacetime
M as all angular momentum. n1, n2 are orthonormal spacelike vectors,
orthogonal to the timelike Dirac current j, you know?”
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him: ”Of course j is defined in all the treatises. Please continue to
more serious things.”

me: ”The tolal angular momentum is x ∧ p + (h̄c/2)n1 ∧ n2 (see [3,
1973]), where p is the spacetime energy-momentum at the point x of
M . A first remarkable feature is that p contains the spacetime vector
(h̄c/2)ω, where ω represents the infinitesimal rotation upon itself of the
plane π(x) orthogonal to j defined by n1, n2.”

him (inattentive): ”Ah.”

me: ”I attain now the U(1) gauge. A second remarkable feature is
the fact that a change of gauge, i.e. the change of the wave function, the
Dirac spinor Ψ, into Ψ exp (iχ/2), corresponds to the rotation through an
angle χ, in the plane π(x), of the vectors n1, n2. Thus, three apparently
very different data of the theory, the spin, the energy-momentum and
the U(1) gauge are unified into the movement of a spacetike plane π(x),
in such a way ...”

him (furious): ”IMPOSSIBLE. What you say about the pseudo move-
ment of your pseudo plane π(x) is IMPOSSIBLE. The Dirac spinor Ψ
contains a representation of the Lorentz group. You agree?”

me: ”Of course. Even, Ψ has been completely explicited by Lochak
[2], and quite independently by Hestenes [3, 1967], in the form Ψ =√
ρ exp (iβ/2)R. ρ > 0 is the invariant probability density, the scalar β

is the Yvon-Takabayasi ”angle” (you know?), R is a Lorentz rotation. In
[2], R is expressed by means of the Dirac matrices γµ and i = γ0γ1γ2γ3.
In [3, 1967], Ψ is a biquaternion Q element of the even Clifford sub-
algebra Cl+(1, 3) associated with M and

i = e0e1e2e3 = e0 ∧ e1 ∧ e2 ∧ e3

The formalisms used are not the same but may be unified by the identi-
fication γµ = eµ. The rotation R allows one to define j = eρv, (v2 = 1),
in such a way that v = Re0R

−1, but also that nk = RekR
−1, k = 1, 2, 3,

which give at the point x the Takabayasi moving frame (you know?)
{v, nk}. And thus R transforms the generator e1 ∧ e2 of the rotations in
the (x1, x2) plane into the generator n1∧n2 of the rotations in the plane
π(x).”

him (with rage): ”I don’t care of your pseudo algebra Cl(1, 3), you
have not heard me. One can write iΨ = Ψi, YOU AGREE? So it is
IMPOSSIBLE that the U(1) gauge may be the set of the rotations in
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a plane of spacetime. BY THE FACT OF THE ABOVE COMMUTA-
TION RELATION, U(1) is to be considered in a DIRECT PRODUCT
with the representation of the Lorentz group included in the use of Ψ, and
NOT AS A SUB-GROUP OF THE ORTHOGONAL GROUP O(1, 3)
associated with the Minkowski spacetime. The U(1) gauge NEEDS to
be considered as an internal ABSTRACT property, and so do also the
other gauges of the theory of particles.”

me: ”But Lochak wrote R in the form R = R0 exp (γ1γ2ϕ/2), where
ϕ is the proper rotation Euler angle, and γ1γ2 (written e1e2 = e1 ∧ e2

in Cl(1, 3)) is the corresponding generator of this rotation. γ1γ2 is in
fact your above i. One can already find exp (γ1γ2µϕ), (µ = m ± 1/2),
in the biquaternionic form given to Ψ by Sommerfeld during the years
1930 (see [10], p. 275. Nota: It is a pity that Sommerfeld is not still
alive!) to the solutions of the Kepler-Problem. Gliozzi ...”

I stop my speech. I have heard the banging of a door behind me. I
am alone in front of the blackboard.

I will not repeat here into details, as I have done in [1], 1997, 2001,
on grounds of the works of Hestenes 1967 and more recently Lasenby et
al [11] in what way the reasoning of the standard phycistics is wrong.
Readers may consult the above articles and e-mail me for additional
explanations.

I simply recall that the Pauli and the Dirac spinors ξ and Ψ are the
forms dislocated and truncated into two and four ”complex components”
of the Hamilton quaternion q ∈ Cl+(3, 0) and the Hestenes biquaternion
Q ∈ Cl+(1, 3) which are to be considered as whole entities. The number√
−1 in these components is in reality k, the third of the three ”imaginary

numbers” of Hamilton, which are the bivectors (with a change of sign)

i = e2 ∧ e3, j = e3 ∧ e1, k = e1 ∧ e2 (9)

When one changes, by an action on the components, Ψ into
√
−1Ψ =

Ψ
√
−1, one changes in reality Q into Qk, i.e. one multiplies Q on the

right by the generator k of the rotations in the (x1, x2) real plane of
spacetime (this point is mentioned for the first time in [3], 1967).

4 Conclusion
Classical and quantal electromagnetisms related to the Maxwell-

Lorentz theory may be considered as identical. They are both based
on entities, as electrons, free or bound in atoms, protons inside nucleus,
which are punctual charges, sources of potentials of the forms q/r. The
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only difference lies in the fact that, when the charges are joined together
in a current, in the classical case the charges are distinct and in the
quantal one the current is a probability current associated with an unic
charge.

Electrodynamics associated with the gauge theories are of a quite
different nature, but may be related more to a a theory of material
particles, by means of their momentum-energy tensors, than a theory of
the pure electromagnetism field.

Photons seem belong to this second part of electomagnetism, but the
mystery of the exchange of their energy with particles is not yet solved
to my knowledge. On grounds of an idea of Gliozzi, they could be related
to topological defects of a global geometrical nature.

In all cases the geometry of spacetime: isotropic propagation of the
electromagnetic action for the Maxwell-Lorentz theory, rotations upon
themselves of spacetime frames for the gauge theories, perhaps global
geometry for the photons, is to be considered.

Unfortunately, the geometrical aspects of the gauge theories may be
accessible only to physicists, as those of the Louis de Broglie’s school,
which have studied entities independent of all galilean frame and their
relations, or used the real Clifford algebras introduced in physics by D.
Hestenes.

The reasons of this ignorance are visible on the first pages of the
treatises. Not one word on the Grassmann algebra ∧Rn associated with
the vector space Rn, even though this algebra is the first to be associated
with Rn. Not one word on the real Clifford algebra Cl(p, n − p), asso-
ciated with an euclidean space E = Rp,n−p, and acting on the elements
of ∧E, which is the direct continuation of the quaternionic algebras of
Hamilton and Clifford, with the so simple definition of the Clifford prod-
uct of two vectors

ab = a.b + a ∧ b, a, b ∈ E (10)

. Note that if E = R2,0, ab defines the elements of the field C.
Instead, one finds a certainly powerfull but blind formalism based on

the representations on complex spaces, in which i is not a geometrical
object, but the undefined ”number”

√
−1. Indeed, this formalism has

been the base of the foundation of quantum mechanics and all their
present developments. But it is now an obstacle to the union of entities,
apparently very different, but closely related between them when their
links with the geometry of spacetime are explicited. Certainly it is a
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major obstacle to the unification of quantum mechanics with the general
relativity. It is sufficiently coherent to avoid algebraic errors, but the
danger that it leads to fallacious constructions, as the one of QFT when
this theory is applied to the potential q/r, is not excluded.

In a conceptual point of wiew, imagine some intelligence, completety
outside of the world, having only the knowledge of the continuity of its
own existence. One can imagine that it would invent the set N , the
ring Z, the field Q, and to reach this continuity, the field R, then the
direct products R2, R3, ...To prolonge R by a field in R2, then in R3,
it would invent the euclidean spaces R2,0 and R3,0 to obtain the field C
as Cl+(2, 0) and the field of the Hamilton quaternions H as Cl+(3, 0)
(Note that H may be also considered as Cl(0, 2)). No possibility to
obtain then a field. But H may be prolonged by the ring of the Clifford
biquaternions Cl(3, 0), and our intelligence, inventing R1,3, identifying
(see [3, 1966]) the bivectors ek ∧ e0 of this new space to vectors of R3,0,
and Cl(3, 0) to the ring Cl+(1, 3) of the Hestenes biquaternions, could
prolonge this ring by the ring Cl(1, 3) which contains all the geometrical
objects of the spacetime.

If Kant would live to-day he could exclaim ”The spacetime of the
special relativity is a certitude algebrically apodictic”.

(Note that the same processus allows one to introduce R1,4, the space
of the fourth dimension, in such a way that Cl(1, 3) may be identify to
Cl+(1, 4)).

But, in supplement to the spacetime R1,3, there is another marvellous
algebraic gift of Nature, i.e. the fact that the brik by which are composed
the physical objects situed inside this spacetime, is the Dirac spinor, alias
the biquarternion considered, not as a complex abstract entity, but as a
real geometrical object, element of Cl+(1, 3).

Kant could say ”Two objects fill up my soul with an unceasingly
renovated admiration: inside me, the biquaternion; outside me, the bi-
quaternion.”

It is not sure that the present incomprehension of the real algebras
will be soon dissipated. But perhaps in some decennies, in the same way
that J. Dieudonné (one of the first founders of the Bourbaki school) has
evoked the tragedy of Grassmann [12], an eminent physicist will describe
the tragedy of Hestenes.

I apologize for the (pseudo) poetical or philosophical comments in-
cluded in the present paper.
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Note. Electrodynamics, electromagnetism, and the gauge potentials
Electrodynamics is the study of the behaviour of charged particles

endowed with a mass and eventually a spin in a given electromagnetic
field or potential. For example, the equations of Lorentz, Eq. (12), and
Dirac of the electron are to be related to this discipline.

Electromagnetism is the study of the properties of the fields or po-
tentials created by charged particles without the direct intervention of
their mass and spin, as in the Maxwell-Lorentz theory.

Since the check (see [6], Sect. I-4) of the attempt of interpreting the
mass m of the electron as being of an electromagnetic nature, these two
disciplines are to be distinguished, but they may be mixed. We give
an illustration of the fact that the gauge potentials belong to the first
discipline, and also that they are mixed with the second one. It is relating
with the role of the movement of the ”spin plane” π(x) of the electron
in an exterior potential A which may depend on the Maxwell-Lorentz
theory.

We have schown in [1], 1992, that, in the case where one can consider
that the direction of π(x) is fixed, orthogonal, say, to e3, the angle β null,
the potential A depending only of x0, x3 and so that A1 = A2 = 0, the
part of the intrinsic Dirac equation ([1], 1971) which does not contain
the density ρ (see [1], 1984) is exactly

h̄c

2
ω − eA = mc2v (11)

In this case the gauge potential (h̄c/2e)ω is a gradient, and we have
schown that if one takes the spacetime curl ∂∧ of this equation one
obtains, with the elimination of h̄, the classical Lorentz equation

e

c
F.V = m

dV

dτ
, V = cv =

dx

dτ
, F = ∂ ∧A (12)

where x describes one of the current lines C of the solution of the Dirac
equation (in this particular case), whose proper time parameter is τ .

The disparition of h̄ in (12), perhaps also the fact that no topological
defect is in this case to be associated with the variation of π(x), may
explain that no photon is then to be considered.
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terprétation géométrique, C.R. A. S. (Paris), 272 A, 767

[1985], Conservation laws in the Dirac theory, J. Math. Phys., 26, 718

[1990], The role of Planck’s constant in the Lamb shift standard formulas,
in New Frontiers in Quantum Electrodynamics and Quantum Optics, A.
O. Barut ed., 443, Plenum Press, N.Y.

[1992], Some aspects of the quantal nature of matter and of the classical
nature of the field, in Bell’s Theorem and the Foundations of Modern
Physics, A. van der Merwe, F. Selleri, G. Tarozzi eds, 92, World Scientific,
Singapore

[1993], On the Relativistic Calculation of Spontaneous Emission, Found.
Phys., 23, 1387

[1997], The Takabayasi moving frame, from the A potential to the Z boson
in The present status of the quantum theory of light, S. Jeffers and J. P.
Vigier eds, 471, Kluwer Ac. Pub., Dordrecht

[1997], The Glashow-Salam-Weinberg electroweak theory in the real alge-
bra of spacetime, in The Theory of the Electron, J. Keller and Z. Oziewicz
eds., 321, Uni. Nac. Aut. Méx., Mexico
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