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ABSTRACT. The necessity to reconcile the laws of mechanics and elec-
tromagnetism has led to question our representation of space and time
and to the development of relativity theory. Present most accurate
determinations of positions in space and time rely on the exchange of
electromagnetic signals and strongly depend on the relativistic concep-
tion of space-time. Despite the quantum nature of the electromagnetic
fields and atomic clocks used for localization, space-time positions are
yet usually treated as classical parameters. As discussed here, rela-
tivistic localization may be described by quantum observables repre-
senting space-time postions, and defined on the exchanged quantum
fields. These quantum localization observables differ from their clas-
sical analogs by their non vanishing commutator, which involves spin
observables. Alternatively, quantum positions may be defined as com-
muting but complex observables, which do not commute with their
complex conjugates. There result new relations of space-time to alge-
bra and geometry, and in particular modifications of relativistic frame
transformations and covariance rules.

P.A.C.S.: 03.65.Bz; 04.20.-q

1 Introduction

Although, since the very beginning, time and space have played an es-
sential role in the development of physical theories, their present status
still suffers from serious ambiguities. In either theoretical or experimen-
tal practice, and according to the domain of physics, different notions of
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time or space are actually used. Such a situation cannot remain indefi-
nitely innocuous, especially as new fields are being prospected, which lie
at the borderland between general relativity, quantum theory or metrol-
ogy. Moreover, the very high and ever increasing accuracy reached in
measurements of space and time becomes incompatible with a fuzzy sta-
tus.

The existence of different notions of time and space was first clearly
recognized and explicitly stated by Newton in his Principia [1]:

”I. Absolute, true, and mathematical time, of itself, and from its
own nature, flows equally without relation to anything external, and by
another name is called duration. Relative, apparent and common time, is
some sensible and external measure of duration by the means of motion:
such are measures of hours, of days, of months, etc. which are commonly
used instead of true time.

II. Absolute space, in its own nature, without relation to anything
external, remains always similar and immovable. Relative space is some
movable dimension or measure of the absolute space, which our senses
determine by its position to bodies; and which is commonly taken for
immovable space.”

The first notion of time, which Newton called absolute and math-
ematical, allowed him to write mathematical equations for the laws of
mechanics and gravitation. Used as a curvilinear coordinate on a planet’s
trajectory, it gave the necessary tool to deal with infinitesimals. The sec-
ond notion, which he called common and sensible, allowed him to relate
the motions of different physical systems. Physical time enters through
Kepler’s area law as a measure of inertial motions, which planetary mo-
tions can be compared with. The mathematical representations of time
and space as real parameters, clearly privileged by Newton, still under-
lies the differential formalism of modern physical theories. On another
hand, the idea of a universal arena for all motions, represented by ob-
servable time and space built from real clocks, lies at the basis of modern
coordination systems and metrology.

The introduction of electromagnetic fields as intrinsic physical enti-
ties, with the recognition of their universal velocity of propagation [2],
raised the question of the consistency of the physical laws for electro-
magnetism and mechanics. This led to a questioning of their constitu-
tive basis, represented by space and time. In his drastic solution to this
compatibility problem, Einstein emphasized the primary role played by
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time, and especially by physical time delivered by clocks [3]:

”If we wish to describe the motion of a material point, we give
the values of its co-ordinates as functions of time. Now we must bear
carefully in mind that a mathematical description of this kind has no
physical meaning unless we are quite clear as to what we understand by
”time”. We must keep in mind that all judgments where time plays a role
are always judgments about simultaneous events. When, for instance,
I say: ”This train has arrived here at 7 o’clock”, this roughly means:
”The passage of the small hand of my watch on the 7 and the arrival of
the train are simultaneous events.”

”... this definition is no longer sufficient when it is the matter of
temporally relating series of events which occur at places far from my
watch.”

”... So we see that we cannot attach any absolute signification to
the concept of simultaneity, but that two events which, viewed from a
system of co-ordinates, are simultaneous, can no longer be looked upon
as simultaneous events when envisaged from a system which is in motion
relatively to that system.”

The breakthrough of relativity theory was made possible by insisting
on the necessary observable character of time and space. Introducing and
privileging the notion of event, Einstein argued that space and time had
to be reconstructed from physical observables. This can be performed
using some primitive physical systems, like clocks and light signals, to
deliver and disseminate time observables, and then some primitive pro-
cedures, like clock synchronization and event localization, to coordinate
events both in time and in space. This conception of a space-time related
to observables delivered by physical systems and to a set of consistent
procedures to coordinate their values led to theoretical predictions and
applications, globally known as relativistic effects. The relativistic con-
ception of space and time and its associated constructive procedures lie
at the heart of modern metrology [4] and high precision coordination
systems, such as the Global Positioning System [5, 6].

Although the relativistic conception was first developed in a classical
context, its modern applications must face the quantum nature of phys-
ical observables. It is then clear that physical time and space belong to
the quantum world. Indeed, in modern metrology, time and space units
are defined from atoms and hence are deeply rooted in quantum the-
ory. The time delivered by an atomic clock is intrinsically the phase of a
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quantum oscillator. Electromagnetic signals used in synchronization and
localization procedures are quantum fields, so that the time references
they carry must be defined as quantum observables. But this raises a
new compatibility problem, that is the existence of a description of space
and time which relies on quantum and relativistic observables. The dif-
ficulty in obtaining a description satisfying both demands has been first
clearly stated by Schrödinger, and revives the fundamental distinction
made by Newton [7]:

”But in quantum mechanics, ... time is not treated as an observ-
able, there is no operator which could be used to find its “statistics”. It
is a parameter the value of which is supposed to be exactly known: it is
in fact the old good time of Newton and quantum mechanics does not
worry about the existence of the old good clock which she would need
to know the value of this parameter t.

... But it seems to me doubtless that we will have to give up this too
classical notion of time, and not only because of relativity. This notion of
time is a serious lack of coherence in quantum mechanics (or in its usual
interpretation), without mentioning the postulates of relativity. For the
knowledge of the variable t is obtained in the same manner as that of
any other variable, by observing a physical system, namely a clock. t is
therefore an observable and must be treated as an observable; time must
in general have a “statistics” and not a “value”. The exceptional role of
time is thus not justified.”

As underlined by Schrödinger, the formalism of quantum mechanics
provides time position a different status as that of space positions, so
that it is not compatible with relativistic requirements. As is well known,
this compatibility is restored in quantum field theory, but at the price of
having both time and space lose their observable character. In standard
quantum field theory, both space and time positions are represented as
classical real parameters. Even if space positions may be given a repre-
sentation in terms of quantum operators conjugate to momentum [8, 9],
it is commonly admitted that time cannot be given a similar description
as an operator conjugate to energy [10, 11]. This entails in particular
that one does not dispose for space-time positions of the basic constitu-
tive relations of quantum and relativity theory. That is, commutation
relations between conjugate observables do not have a covariant form, or
else, relativistic transformations of space-time positions cannot be ob-
tained from an algebra of quantum generators. Such a situation leads to
strong conflicts between the relativistic and quantum frameworks when
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attempting to built a consistent theory including gravity [12, 13, 14].
But this situation need not be definitive. In fact, as we shall discuss

here, the whole relativistic approach of space-time may be implemented
within the framework of quantum field theory [15, 16, 17]. We shall
describe how synchronization and localization procedures allow one to
define quantum observables representing positions in space and time and
satisfying canonical commutation relations with momentum and energy.
Considering quantum electromagnetic fields, explicit expressions for the
observables carried by one or two photons will be obtained [18]. A major
difference with the classical case is the appearance of spin among local-
ization observables. We will show that this reflects a new alternative
which is imposed by quantum requirements: either space-time position
observables are chosen to be hermitian, and then they have a non van-
ishing commutator related to spin, or they are chosen to be commuting
observables, in which case they must be complex, with an imaginary
part related to spin. As we shall briefly discuss, this non commuta-
tive or complex property of localization observables entails a revision
of the covariance rules which underlie the formalism of general relativ-
ity. These rules usually relate the transformations of classical positions
and momenta under changes of reference frames, and generally relate
them to the transformations of a metric field. We shall see that they
nonetheless admit generalizations under the form of quantum commu-
tation relations [19], which thus provide extensions of the basic rules of
differential geometry, under the form of algebraic relations.

2 Synchronization and localization

The whole construction of space-time begins with the definition of a pri-
mary notion, that of local time. The local time for a given observer is
a physical observable, which is delivered by a clock located at the same
place in space [3]. Local time is best provided by the most precise and
accurate clocks available, that is in today’s applications, by atomic clocks
[5]. This allows one to define the properties which are required for clas-
sifying all events occurring at the same place, that is time simultaneity
and time ordering: the time position of an event can be identified with
the clock indication which coincides with it.

One then needs to extend this local notion of time to the whole space
or, equivalently, to be able to identify the different local times associ-
ated with remote clocks. For that purpose, two observers need to share
some information in order to compare the indications of their respective
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local clocks. As emphasized by Einstein, this can be accomplished in a
consistent way by the exchange of propagating signals, like electromag-
netic fields. This method is also the one used by today’s most efficient
systems for disseminating a time reference or for synchronizing clocks all
around the Earth [5]. A first observer may use electromagnetic fields as
a support for encoding a time reference, representing in the most faithful
way the time delivered by his clock, and then for propagating this time
reference to a second observer (see Figure 1). Comparing the received
time reference with the indications of his own clock, the second observer
may then proceed to the identification of the two time variables, that is
to the synchronization of the clocks.

Fig 1 Information on time is encoded in electromagnetic signals shared
by remote observers.

In a classical framework, one can assume that one localizes electro-
magnetic energy at will. The exchanged energy may be concentrated as
precisely as one wishes around given values of light cone variables:

te −
xe

c
= ue ur = tr −

xr

c
(1)

ue = ur (2)

te and tr are the emission and reception times, as delivered to the emitter
and receiver by their own clocks; xe and xr are the space coordinates
of the emitter and receiver, as measured along the line of sight; c is the
velocity of light. In that case, the light cone variables play the role of
transfer observables: their constant value along the propagation path
may be used to identify the classical time observables delivered by two
remote clocks.
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In a quantum framework, such an assumption no longer holds, if
only because of limitations imposed on energy localization by Heisen-
berg inequalities. In that case, transfer observables need to be defined
on the exchanged quantum fields. Such quantum observables have to
provide in the most faithfull way as possible time references for both
observers: they should have the transformation properties of their clas-
sical analogs under frame transformations, and they should be preserved
during propagation. Such quantum transfer observables may be defined,
using general properties of the electromagnetic quantum field [15, 16].
An example will be given in the following, in the case where a single
photon is exchanged.

Construction of space coordination follows the construction of time.
Indeed, an event may be completely localized both in space and time us-
ing several transfers of time (at least the same number as the space-time
dimension). For the simplicity of the discussion, let us first consider a
two dimensional space-time, which can be viewed as a two dimensional
projection of the real situation. Concrete realizations of space-time local-
ization, like the Global Positioning System [5, 6], require the use of light
cones, and in higher number to raise degeneracies between solutions. An
event in space-time is then defined as the intersection of two electromag-
netic signals, i.e. two time transfers, and may thus be characterized by
the two references carried by these signals.

Considering that the two clocks regulating the emission of the elec-
tromagnetic signals have been synchronized, one can see that the two
references carried by the signals are equivalent to two different values
of the common time defined by the clocks. The latter values may be
considered as coordinates and used to characterize events in space-time
(see Figure 2).
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t

x/c

t+x/c

t−x/c

Fig 2 A space-time event is defined by electromagnetic signals
propagating in different directions.

Classically, the positions of an event, both in space x and in time t,
will be deduced from the light cone variables u− and u+ of the two time
transfers:

t− x

c
= u− t +

x

c
= u+ (3)

Classical localization then leads to a coordination of space-time events by
means of space-time coordinates taking real number values. In the quan-
tum case, algebraic relations may still be used to deduce the space-time
positions of an event from the observables of the corresponding time
transfers [15]. However, as entailed by the nature of the observables
entering synchronization and localization procedures, quantum coordi-
nation of space-time events can no more be performed in terms of real
numbers but results in positions that are quantum operators.

From the preceding construction, it must be clear that synchroniza-
tion and localization rely on the symmetries which characterize the prop-
agation of signals, in that case, Maxwell laws for electromagnetism. This
is exemplified by the universal constant c, i.e. light velocity, which enters
the correspondence (3) between transfer and localization observables.
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Classically, and in our four-dimensional space-time, this means that a
space-time event is in fact obtained as the vertex of a light cone (Figure
3). These light cones reflect the fundamental symmetry group which
underlies the propagation of electromagnetic signals.

xµ

Fig 3 Classically, localization of a space-time event is associated with a
light cone

In particular, causal relations can only be determined with respect
to the relative positions of light cones. In a quantum context, it is no
more possible to identify space-time events with vertices of light cones.
However, the symmetry group of Maxwell equations still rules the propa-
gation of electromagnetic fields. As discussed in the following, quantum
synchronization and localization may be performed by merely exploiting
the symmetry properties underlying the propagation of quantum fields.

3 Conformal algebra

Since the early beginning of relativity theory, emphasis was put on the
role of symmetry groups in determining the general properties of space-
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time transformations [20]. It was also realized very soon that Maxwell
equations are invariant under the whole group of symmetries of the light
cone [21, 22]. One can write the latter

(x− x′)2 = ηµν(x− x′)µ(x− x′)ν = 0
µ, ν = 0, 1, 2, 3 ηµν = diag(1,−1,−1,−1) (4)

where ηµν is Minkowski metric, and where x and x′ denote the coordi-
nates of two arbitrary points on a same light cone. The linear transfor-
mations of coordinates x, x′ which preserve (4) form a well known group
of projective geometry, the SO(4, 2) Lie group of conformal transforma-
tions [23]. Conformal transformations are generated by 15 generators
which may be interpreted as infinitesimal transformations of the refer-
ence frame. In particular, the conformal algebra contains the Poincaré
algebra, which is generated by space-time translations Pµ and by four
dimensional rotations corresponding to Lorentz transformations Jµν :

(Pµ, Pν) = 0
(Jµν , Pρ) = ηνρPµ − ηµρPν

(Jµν , Jρσ) = ηνρJµσ + ηµσJνρ − ηµρJνσ − ηνσJµρ (5)

At this level, the algebra (5) is defined in an abstract way, using for
the definition of Lie brackets the differential operators representing in-
finitesimal linear transformations of the light cone parameters (4). Clas-
sically, these parameters may be identified with the coordinates obtained
through space-time localization, so that the symmetries of propagation of
electromagnetic fields directly correspond to the symmetries of Maxwell
equations.

As is well-known, such symmetries imply the existence of physical
quantities which are conserved during propagation and correspond to
conservation laws: Pµ corresponds to energy-momentum, while Jµν cor-
responds to angular momentum. At the quantum level, the generators
of symmetry may be constructed from the energy-momentum tensor and
identify with the quantum operators associated with the conserved quan-
tities. This means that the Lie algebra (5) is realized within the algebra
of quantum observables, with Lie brackets obtained as quantum commu-
tators, up to a universal constant h̄ (Planck constant):

(A,B) ≡ AB −BA

ih̄

A ·B ≡ AB + BA

2
(6)
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As it will appear useful in the following, we have also introduced a no-
tation for the symmetrized quantum product.

Maxwell equations are also invariant under dilatation, with generator
D, and special conformal transformations [21, 22], with generators Cµ

satisfying the following relations:

(D,Pµ) = Pµ (D, Jµν) = 0
(D,Cµ) = −Cµ

(Jµν , Cρ) = ηνρCµ − ηµρCν

(Cµ, Cν) = 0
(Pµ, Cν) = −2ηµνD − 2Jµν (7)

Special conformal transformations allow one to generalize to uniformly
accelerated frames the invariance properties which hold for Lorentz
transformations, i.e. transformations to frames moving with uniform
velocity [24]. Conformal symmetries not only hold at the classical level,
but also for quantum electromagnetic fields [25]. Genuine quantum no-
tions, such as the electromagnetic vacuum state and the photon number,
may also be shown to be conformally invariant [26, 27, 28]. We show in
the following how conformal symmetries may be exploited for defining
transfer and localization observables, and determining in a universal way
their transformations under changes of frame.

An important advantage of the symmetry approach is its indepen-
dence on a specific underlying theory. From conformal symmetry of the
theory, one deduces the existence of quantum observables satisfying the
commutation relations (5) and (7). When built from the field energy-
momentum tensor, these observables may take explicit expressions which
depend on the elementary quantum fields, but the algebra they generate
does not depend on this construction.

4 Quantum transfer observables

We now define transfer observables from quantum fields. We first remark
that conformal invariance is not satisfied by all massless quantum fields
[29]. Representations of the conformal algebra in terms of massless quan-
tum fields have been thouroughly studied and shown to include solutions
of Klein-Gordon equations for scalar fields, solutions of Weyl equations
for spin 1/2 fields, solutions of Maxwell equations for electromagnetic
fields, and solutions of Bargmann-Wigner equations for massless fields
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of arbitrary helicities [30]. Although the properties discussed here apply
to all these fields, we shall be mainly concerned with electromagnetic
fields, hence with solutions of Maxwell equations.

The simplest quantum system one may use for time transfer is made
of only one photon. The electromagnetic field in a one photon state
satisfies the conformal algebra, with the constraint of a vanishing mass.
With this constraint, the translation generators Pµ in (5) satisfy a sup-
plementary algebraic condition, corresponding to the vanishing of the
Poincare invariant P 2. Furthermore, to be consistent with conformal
symmetry, all relations obtained from this constraint by applying con-
formal transformations must also be satisfied. This finally leads to a
necessary and sufficient set of five algebraic relations between conformal
generators:

P 2 = 0
Pλ · Jλµ + Pµ ·D = 0
2Jλ

µ · Jλν + Pµ · Cν + Pν · Cµ = 2ηµν(σ2 − 1)

Cλ · Jλµ − Cµ ·D = 0
C2 = 0 (8)

σ denotes the helicity and only depends on the squared total angular
momentum J2 = JµνJ

µν and dilatation D2 (ηµν is used in the following
to raise or lower indices):

σ2 =
1
2
J2 + D2 + 1 (9)

The helicity σ is a conformal invariant and determines all three usual
Casimir invariants of the conformal algebra SO(4, 2). For one photon
states, it can only take one of the two values ±1 [18]. In general, relations
(8) characterize representations of the conformal algebra on the light
cone.

The light cone condition between components of the energy-momentum
still allows one to define conjugate observables of the spatial components
Pi. They play the role of position observables for the photon [18]:

Ui =
1
P0

· J0i i = 1, 2, 3 (10)

Positions (10) for the photon are defined as quantum observables and
generalize, in terms of quantum operators, the classical expressions which
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where used by Einstein in his discussion of the inertia of energy [31].
When expressed in terms of the field energy-momentum tensor, they take
the form of barycentric coordinates for the field energy. As expected,
only three space-time positions may be defined for the photon. Indeed,
the latter can only be localized in space and time up to an arbitrariness
proportional to its energy-momentum Pµ. The three degrees of freedom
may be associated with the space-time observables Ui, which represent
three transfer observables.

Alternatively, for fields satisfying the conformal massless condition
(8), momenta Pµ and transfer observables Ui, together with the helicity
σ, may be considered as building a complete set of space-time degrees
of freedom. The conformal generators (5) and (7) (with condition (8))
may be recovered as algebraic expressions of these observables:

Jij = Pi · Uj − Pj · Ui − σεijk
P k

P0

D = P · U +
1
2

C0 = −P0 · U2 +
σ2

P0

Ci = 2D · Ui − Pi · U2 + 2σεijk
P k

P0
U j − σ2 Pi

P 2
0

(11)

When ignoring helicity dependent terms, the conformal generators (11)
take a classical form, provided the classical coordinates on the light cone
and their translations are replaced by quantum positions and momenta.
This classical correspondence justifies the interpretation of the transfer
observables Ui as quantum generalizations of the classical light cone
coordinates (3). However, in the full quantum case, further terms appear
in (11) which depend on the helicity. Quantum expressions take into
account the intrinsic angular momentum, or spin, carried by the photon,
which are completely described by its helicity. These terms imply in
particular that the photon cannot be identified with an idealized classical
ray.

As a direct consequence of their definition (10), in the enveloping
algebra of conformal generators, the transfer observables have non null
commutation relations, which are related to helicity:

(Ui, Uj) = σεijk
P k

P 3
0

(12)
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This property shows that the transfer observables one must use in a
quantum framework cannot be treated as classical coordinates. Indeed,
as usual in a quantum framework, relations (12) lead to Heisenberg in-
equalities which, in the case of non vanishing helicity, prohibit a perfectly
accurate and simultaneous knowledge of all components of the transfer
observables. Relations (11) and (12) further entail that chirality must
play a primary role in the definition of space-time observables.

5 Quantum localization observables

As previously discussed, full localization of an event in space and time
requires the use of several time transfers: the space-time positions of
an event are defined by means of fields which propagate in different
directions. In that case, the total energy-momentum of the fields which
are involved in localization corresponds to a non vanishing mass. From
the total energy-momentum tensor of the fields which characterize the
event, and more precisely from the associated symmetry generators, it
is then possible to define the localization observables Xµ and Sµ (using
the symmetrized product defined in (6)):

Xµ =
Pλ · Jλµ + Pµ ·D

P 2

Sµ = −1
2
εµνλρP

νJλρ Sµν = εµνλρ
Pλ

P 2
Sρ (13)

In contrast to their classical counterparts (3), the localizations observ-
ables defined by (13) contain spin observables, either represented by a
vector Sµ (Pauli-Lubanski vector [32]) or by an equivalent tensor Sµν .
Equivalently, these observables may be obtained by requiring that the
generators of the Weyl algebra, i.e. Poincaré generators and dilatation,
take their usual expressions:

Jµν = Pµ ·Xν − Pν ·Xµ + Sµν

D = Pµ ·Xµ (14)

Commutation relations of the quantum operators Xµ defined by (13)
are completely determined by the conformal algebra (5) and (7). As in
the case of transfer observables, the quantum operators Xµ define con-
jugate observables of the energy-momentum Pµ, and represent quantum
position observables. In this case however, four space-time positions are
defined, which include a time operator X0, conjugate to the energy P0:

(Pµ, Xν) = −ηµν (15)
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This result contradicts the common opinion that such a time operator
cannot exist [10, 11]. In fact, some assumptions which sustain this opin-
ion can be seen to fail in the present case. The impossibility crucially
relies on a self-adjointness assumption concerning the time operator.
But, as a result of its definition (13), the time operator, although hermi-
tian, fails to be self-adjoint: its definition domain explicitly excludes an
important part of the Hilbert space, namely states having a vanishing
mass (like zero or one photon states). Non self-adjoint operators are well
known to be quite acceptable representations of physical observables [33].
They even appear to be unavoidable when trying to represent localiza-
tion in a non-commutative space-time [34]. Thus defined, the position
observables allow one to write their conjugate relations with momenta
in a Lorentz covariant way (15), or equivalently, to realize relativistic
transformations within the algebra of quantum observables.

Indeed, positions transform classically under Lorentz transformations
and dilatation:

(Jµν , Xρ) = ηνρXµ − ηµρXν

(D,Xµ) = −Xµ (16)

This does not mean that observable space-time positions may be treated
as classical coordinates. In fact, as was the case for transfer observables,
localization observables appear to have a non vanishing commutator:

(Xµ, Xν) =
Sµν

P 2
(17)

where Sµν is the spin tensor defined in (13). The identification of spin
with the position commutator asserts the necessity to include spin among
space-time localization observables. As for transfer observables, chirality
enters in a basic way the definition of space-time positions.

Recalling the fundamental relation between causality and the build-
ing elements of space-time, it may be useful to provide some geometrical
interpretation of the emergence of spin among localization observables.
As previously remarked, the quantum fields used in synchronization or
localization are built with photons, and cannot be identified with classi-
cal light rays. Their non vanishing helicity already leads to irreducible
uncertainties, related to Heisenberg inequalities, which precludes their
representation under the form of infinitely thin lines. As exhibited by
a semi-classical interpretation of the constitutive relations (8) and (13),
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the quantum fields used in localization cannot intersect exactly. The size
of the overlapping region is directly related to the total helicity and to
the spin born by the quantum fields [18]. A more realistic representation
may be given to the localization geometrical setting under the form of
a hyperboloid, with a waist size related to the spin and helicity of the
fields, and to the inverse squared mass (see Figure 4). This simple rep-
resentation illustrates the difference between the quantum localization
procedure and its classical analog represented in Figure 3.

One remarks that the existence of position observables crucially relies
on the non vanishing mass of the total field used for localization (13).
Furthermore, a mass observable may be defined, following Einstein [31],
from the energy-momentum Pµ of the fields

M2 = PµPµ(
Pµ,M

2
)

=
(
Jµν ,M

2
)

= 0 (18)

Xµ

Fig 4 In a quantum world, localization of a space-time event is better
described by a hyperboloid
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The mass observable is invariant under all Poincaré transformations,
but it nonetheless cannot be identified with a pure number: according
to the conformal algebra (7), it transforms under dilatation and special
conformal transformations:

(
D,M2

)
= 2M2

(
Cµ,M

2
)

= 4M2 ·Xµ (19)

with Xµ defined as in (13). Equivalently, quantum positions can be
defined from the shift of the mass observable under transformations to
accelerated frames (19). Rewriting the transformation (19) for the mass
and for a small but finite acceleration aµ, the quantum red shift law then
takes the same form as the classical Einstein law [19]:

∆=
aµ

2
Cµ

(∆,M)=M · Φ
Φ=aµXµ (20)

The accelerated mass is proportional to the rest mass and to a gravita-
tional potential a ·X depending linearly on the position measured along
the acceleration. It may also be read as a conformal metric factor arising
in transformations to accelerated frames and depending on observables
Xµ in the same way as the classical metric factor depends on classical
coordinates [35].

6 Complex positions

Localization of events in space-time makes spin observables emerge be-
sides position observables. At this point, it is worth remarking that one
may define an equivalent set of localization observables which satisfy
remarkable commutation properties. Introducing a complex structure
under the form of an involution ((±i)2 = −1) which commutes with the
whole conformal algebra, new localization observables may be defined in
the following way:

x±
µ = Xµ ∓ i

Sµ − σPµ

P 2

s±µν = Sµν ± i
PµSν − PνSµ

P 2
(21)

σ is an arbitrary scalar, i.e. conformal invariant, which leaves commu-
tation relations unchanged. An example will be given in the following,
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but it is already clear from (21) that σ must have the same chirality
properties as spin, i.e. it must be a pseudo-scalar. For each choice of
the complex structure (±i), there corresponds a set of observables x±

µ

and s±µν which are complex and satisfy commutation relations with a
canonical form:

(
Pµ, x

±
ν

)
=−ηµν

(
x±
µ , x

±
ν

)
=0

(
Pµ, s

±
νρ

)
=

(
x±
µ , s

±
νρ

)
= 0

(
s±µν , s

±
ρσ

)
=ηνρs

±
µσ + ηµσs

±
νρ − ηµρs

±
νσ − ηνσs

±
µρ (22)

Within each set of complex observables, different position components
commute between themselves and commute with all spin components.
The latter furthermore obey the commutation relations of a Lorentz rep-
resentation. Each set of complex observables thus realizes, in a quantum
framework, the Poisson brackets algebra of usual classical space-time de-
grees of freedom. Of course, these new localization observables are not
hermitian, and furthermore they do not commute with their adjoints:

(
x+
µ , x

−
ν

)
=

Pµ

P 2
(x+

ν − x−
ν ) +

Pν

P 2
(x+

µ − x−
µ ) − 2iσ

ηµν
P 2

(23)

It follows that properties which characterize classical coordinates can-
not be met simultaneously: one can define either hermitian localization
observables, with a real spectrum but with non canonical commuting
properties, or canonical localization observables, with commuting posi-
tion components, but which cannot be hermitian. In the quantum case,
this dilemma takes the form of two equivalent sets of observables consti-
tuting the basic elements of space-time. These two sets are in one-to-one
correspondence through a complex conjugation.

As entailed by the definition of complex observables (21), commu-
tation relations between adjoint operators (23) explicitly show that the
complex structure is linked to chirality. This is confirmed by the relation
between the complex structure and spin orientation: the two complex
spins (21) may be seen to be either self-dual or anti-self-dual under four
dimensional duality:

s±µν = ± i

2
εµνρσs

±ρσ (24)

where εµνρσ is the completely antisymmetrical Lorentz invariant tensor.
Let us note that this connection reveals a universal property, as it also
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holds for the spin quantum observables which may be defined for a Dirac
electron [36]. Indeed, quantum position and spin observables (21) may
also be used to describe a Dirac electron in space-time, and obtain a
quantum description both of the associated Clifford algebra and of the
electron motion [37]. In that case, the involution entering the definition
of the complex structure (±i) identifies with the usual γ5 matrix which
characterizes the spin orientation of the electron.

Relations (21) and (24) establish a universal connection between the
choice of a complex structure and the choice of a space-time orientation.
This property confirms the already noted fundamental role played by he-
licity and spin in defining the basic elements of space-time: they appear
as internal degrees of freedom implementing an intrinsic chiral nature of
space-time, related to the existence of an underlying complex structure.

7 Two photons system

As an illustration of the previous results, we briefly discuss the sim-
plest quantum field system allowing localization, that is the two photons
states. The conformal algebra for the two photons system follows from
the energy-momentum stress tensor of the system. Each generator of
the conformal algebra for the total system is simply obtained as the sum
of the corresponding generators associated with each photon. A detailed
study of the conformal algebra shows that the three Casimir invariants
of SO(4, 2) are not independent, but only depend on two conformal in-
variants [18]: the total spin modulus s and the total helicity σ of the two
photons system:

−SµSµ

P 2
=

1
2
SµνS

µν=s(s + 1)

σ1 + σ2=σ (25)

σ1 and σ2 are the two conformal invariants corresponding to the helicities
of the two photons. Conformal invariance of the total spin modulus s
appears as a remarkable property holding for two photons states only.

Assuming that the two photons are not collinear i.e. that their total
mass does not vanish, localization observables (13) and their complex
analogs (21) may be defined. Then, as in the case of a single photon (11),
one may use the energy-momentum and a set of localization observables
to rewrite all generators of the conformal algebra. It is remarkable that
the expressions for all conformal generators take their classical form,
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whatever the choice of set of complex observables:

Jµν = Pµ · x±
ν − Pν · x±

µ + s±µν

D = Pµ · x±
µ ∓ iσ

Cµ = 2D · x±
µ − Pµ · x±2 + 2x±λs±λµ (26)

For each choice of a complex structure, all observables entering expres-
sions (26) satisfy canonical commutation relations (22), so that complex
observables defined by (21) appear as the quantum localization observ-
ables which are closest to their classical analogs. One may remark that,
in the two photons case, the arbitrary conformal invariant σ appearing
in the definition of complex observables (21) identifies with the total
helicity.

A major consequence of both the canonical commutation relations
between complex localization observables (22) and of the classical expres-
sions taken by all conformal generators (26) is that complex observables
transform classically under all conformal transformations. In particular,
transformations of complex positions under special conformal transfor-
mations take simple classical forms. For transformations to uniformly
accelerated frames, with finite acceleration aµ, simple expressions are
readily obtained:

x±′
µ =

x±
µ + 1

2aµx
±2

1 + ax± + a2

4 x±2
(27)

This result holds for each complex set, so that transformations of hermi-
tian position Xµ and spin Sµ are easily deduced and seen to differ from
the analogous classical transformations.

8 Metric effects

As entailed by their general definition through synchronization and local-
ization procedures, the behavior of space-time observables under frame
transformations is universally determined by symmetry groups. Quan-
tum positions have been seen to transform in the same way as their
classical analogs under Poincaré and dilatation generators, that is under
Weyl transformations (see (15) and (16)). But, as previously noticed,
these transformations do not take a classical form any more, when special
conformal generators are considered. In that case, conformal symmetry
still leads to universal expressions, but which can be seen to mix posi-
tions and spin observables. For a transformation ∆ to a frame moving
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with a small but finite uniform acceleration aµ (defined according to
(20)), they read:

(∆, Pµ)=aν(Xν · Pµ −Xµ · Pν + Sµν) + aµX · P

(∆, Xµ)=−aν(Xν ·Xµ − Sν · Sµ

(P 2)2
) +

aµ
2

(X2 +
s(s + 1)

P 2
)

(∆, Sµ)=aν(Xν · Sµ −Xµ · Sν) + aµX · S (28)

If one ignores the spin dependent term in the transformation of momen-
tum, spin and momentum transformations exhibit the same connection
as in the classical case: the transformation of spin is a linear opera-
tor taking the same expression as the linear operator associated with
the transformation of momentum (see (28)). Similarly, if spin depen-
dent contributions are ignored, positions transform classically, provided
quantum position operators with a symmetrized product are used. This
means in particular that the spin independent part of positions shift has
for differential the previous linear operator entering the transformations
of spin and momentum (see (28)). Thus, ordinary covariance properties
would still hold at the quantum level, were it not for spin dependent
corrections. However, the spin dependent term in the transformation of
momentum is a direct consequence of the conformal algebra (see (7)),
while those in the transformation of positions follow from the complex
or non commutative nature of position observables. It should already be
clear from these commutation properties that the covariance rules which
lie at the basis of ordinary differential geometry cannot be applied to
quantum observables without change.

But this does not mean that the covariance rules which play a cru-
cial role in the formalism of general relativity must be completely aban-
doned. Indeed, the algebraic formalism, which is best suited to the
quantum framework, also bears in itself some constitutive rules which
are amenable to extensions of the covariance rules. Conformal invari-
ance implies in particular that the fundamental commutator between
momenta and positions is a pure number (15). Then, as a direct conse-
quence of the conformal Lie algebra, Jacobi identities between any triple
of operators, and in particular between momenta Pµ, positions Xν and
acceleration ∆ are satisfied, leading to the following identities:

(∆, (Pµ, Xν)) = 0
(Pµ, (∆, Xν)) = (Xν , (∆, Pµ)) (29)
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Relations (29) are easily seen to include the properties which were pre-
viously discussed in analogy with covariance rules. Indeed, as spin and
momentum commute, the left-hand side of the second equality of (29)
just coincides with the linear differential associated with the spin inde-
pendent part of the position shift. Similarly, as positions act as conju-
gate operators of momenta, the right-hand side of (29) coincides with
the linear operator describing the transformation of momentum. Rela-
tions (29), which follow from the conformal invariance of the canonical
commutator between positions and momenta can thus be considered as
an algebraic extension, within the quantum framework, of the classical
covariance rules of differential geometry [19].

As previously discussed, the transformation of mass under a special
conformal transformation takes the same form in the quantum frame-
work as in the classical one (20), so that it can even be used as an
equivalent definition of position observables. It is also remarkable that,
although involving non classical terms in their explicit expressions, both
sides of the second equality of (29) satisfy another basic identity associ-
ated with general relativity [19]:

(Pµ, (∆, Xν))+(Pν , (∆, Xµ)) = 2ηµνΦ
Φ=aρXρ (30)

Relations (30) represent algebraic extensions of the classical relations
which determine, in general relativity, the changes of the metric field
in terms of changes of coordinates. These relations give in particular a
quantum description of Einstein effect, by relating the variations of clock
rates to the gravitational field. Relations (30) and (20) are written here
in terms of quantum position operators instead of classical coordinates.
They may thus be considered as defining a quantum generalization of
the metric field which describes gravitation.

9 Conclusion

We have shown that the synchronization and localization procedures
underlying the definition of space-time according to relativity may be
implemented in a quantum framework. This meets the logical neces-
sity of describing physical positions in space-time as quantum operators.
Moreover, the resulting framework gains in simplicity with respect to the
classical case. Indeed, the classical framework uses at least two different
algebraic structures, one describing physical observables, usually given
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by a commutative algebra over real numbers, and another one describ-
ing their space-time transformations, usually given by a Lie algebra of
symmetries. In contrast, within the quantum framework, only one alge-
bra is needed, as the Lie algebra of symmetries is embedded in the non
commutative algebra of quantum observables.

A significant by-product of the previous scheme is the definition of
a time operator. This allows one to write fully covariant canonical rela-
tions between positions and momenta, and to circumvent some recurrent
obstructions to a fully algebraic implementation of relativistic transfor-
mations, as required by quantum theory [12, 13, 14]. Another impor-
tant feature of the quantum implementation is the occurrence of further
localization observables, namely spin observables, besides positions in
space-time. Spin may be seen either to express the non vanishing com-
mutator of hermitian quantum positions, or the complex imaginary part
of commuting quantum positions. This doubling of position observables
reflects the existence of a complex structure linked to space-time orien-
tation, so that chirality enters the description of space-time at a basic
level. A similar connection has also been remarked to underlie the geom-
etry associated with Dirac fields [38], and also a consistent description
of the motion of a Dirac electron [37].

Non commutativity does not imply to abandon the rules, entailed by
ordinary differential geometry, which have proved useful to the formalism
of general relativity. We have shown here that purely algebraic exten-
sions of the covariance rules and of their connection to the metric field
may be given in terms of quantum positions. This encourages one to look
for a quantum algebraic formulation of the founding principles, such as
the equivalence between gravitation and accelerated motion. One must
nonetheless remark that localization in physical space-time, as discussed
here, must be distinguished from the locality properties in parameter
space which are used in classical theory as well as in standard quan-
tum field theory. This entails that the relations between causality and
localization is space-time should be reconsidered.
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