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ABSTRACT; Vacuum field fluctuations exert radiation pressure on
mirrors in quantum vacuum. For a pair of mirrors this effect is well
known as the Casimir force, that is an attractive force between two
mirrors at rest in vacuum. When a single mirror is moving in vacuum,
radiation pressure leads to a dissipative force which opposes itself to
the mirrors motion. Accordingly the electromagnetic field does not
remain in the vacuum state but photons are emitted by the mirror
into vacuum. This motion-induced radiation and the associated radia-
tion reaction force are dissipative effects related to motion in quantum
vacuum, although this motion has no further reference than vacuum
itself.

This article describes the photon emission of a high-finesse cavity os-
cillating globally in quantum vacuum. Novel effects of the quantum ra-
diation like pulse shaping and frequency up-conversion are predicted,
which could be used to experimentally demonstrate motion-induced
dissipative effects. Possible experimental realisations are discussed in
the end of the paper.

P.A.C.S.:0.3.70.+k; 12.20.Ds; 42.50.Lc

1 Introduction

Relativity of motion is one of the basic principles of physics since Galileo.
In classical physics this principle applies without further considerations,
as vacuum is considered to be completely empty. However, the face of
the problem today is changed by quantum theory. Quantum vacuum
is no longer empty. It contains irreducible field fluctuations which lead
to mechanical effects for any scatterer in vacuum. In this paper I will
discuss some observable effects of these fluctuations associated with the
motion of mirrors in vacuum.
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I will focus my attention on the vacuum fluctuations of the electro-
magnetic field. These fluctuations are characterised by a mean energy
of 1

2�ω per field mode of frequency ω. On a microscopic scale, their cou-
pling to electrons in atoms lead to phenomena like spontaneous emission
and the Lamb shift of energy levels for a single atom, or van der Waals
forces between two atoms or molecules. But vacuum fluctuations have
also observable effects on macroscopic objects, for the following reason.
While the mean value of the electromagnetic field vanishes in the vacuum
state, the mean value of the squared field is not zero. As a consequence,
vacuum fluctuations have a non-vanishing radiation pressure and thus
exert mechanical action on scatterers. For macroscopic objects, the most
famous effect induced by vacuum fluctuations is the Casimir force, an
attractive force arising between two mirrors at rest in vacuum [1]. But
vacuum fluctuations produce also mechanical effects related to the mo-
tion of scatterers in vacuum. For a single mirror moving in vacuum a
dissipative force may arise, opposing itself to the mirror’s motion [2]. In
fact, even when the mirror is at rest in vacuum, it experiences a fluc-
tuating force due to the radiation pressure of field fluctuations [3, 4].
However, as the radiation pressure is the same on both sides of the mir-
ror at rest, no mean force appears in this case. The dependence of the
dissipative force is directly connected to the spectral properties of the
fluctuating force through the fluctuations-dissipation relations [5] as will
be shown in the following.

2 The dissipative force

Let me begin with the simple model of a perfect mirror in a two-
dimensional space-time. In order to motivate the origin of the dissipative
effect of quantum vacuum, I will first consider a mirror in a thermal field.
As is well known, in a thermal field, the dissipative force Fdiss(t) is pro-
portional to the mirror’s velocity q′(t)

Fdiss(t) = − �θ2

6πc2
q′(t) (1)

The force may equivalently be written in the frequency domain

Fdiss[ω] =
�θ2

6πc2
iωq[ω] (2)

where Fdiss[ω] and q[ω] are the Fourier transform of the force and mirror’s
displacement. In both formulas, θ is the field temperature expressed in
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frequency units

θ =
2πkBTfield

�
(3)

�, kB and c are the Planck constant, the Boltzmann constant and the
speed of light respectively. This force is a classical expression which
tends towards zero when temperature goes to zero. In fact, it neglects
the effect of vacuum fluctuations.

When this effect is taken into account, the linear susceptibility is
found to scale as the third power of frequency at the limit of zero tem-
perature

Fdiss[ω] =
�

6πc2
iω3q[ω] (4)

This result, which could be expected from mere dimensional arguments,
implies that the force is proportional to the third order time derivative
of the mirror’s position

Fdiss(t) =
�

6πc2
q′′′(t) (5)

The linear susceptibilities (2,4) are directly connected to the spectral
properties of the fluctuating force exerted upon a mirror at rest through
the fluctuations-dissipation relations [5]. At an arbitrary temperature
the dissipative force is just the sum of the 2 contributions (2) and (4).
These expressions can also be generalized to the case of a real mirror
with frequency-dependent reflection and transmission amplitudes [6].

The dissipative force arising for a mirror moving in quantum vacuum
has interesting consequences with respect to the problem of relativity
of motion. In contrast to the dissipative force experienced by a mirror
in a thermal field, the dissipative force in quantum vacuum vanishes
for a motion with uniform velocity. This is a direct consequence of the
Lorentz invariance of quantum vacuum. It also vanishes for a motion
with uniform acceleration. The appearance of vacuum in an accelerated
frame is a much debated question [7]. For the present problem of mo-
tion of a mirror in vacuum there is a clear answer at our disposal. No
dissipative force arises for a motion with uniform acceleration and this
fact may be explained as a consequence of the conformal invariance of
electromagnetic vacuum.
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However, a dissipative force arises for a mirror moving in vacuum
with a non-uniform acceleration. For example, an oscillating mirror will
find its motion damped out through the coupling to vacuum fluctuations
towards a motion with uniform velocity. As the mirror is moving without
any further reference than vacuum fluctuations themselves, one may say
that vacuum fluctuations act as a sort of reference with respect to which
motion takes place. In other words, this implies that quantum vacuum
may be considered as defining privileged reference frames for motion.

3 Observation of dissipative effects?

¿From a fundamental point of view, it would be very interesting to get
experimental evidence of the disspative effects related to motion in vac-
uum. So far, these effects have not yet been observed for macroscopic
objects like mirrors. As a matter of fact, the orders of magnitude are
exceedingly small for the fluctuating force as well as for the dissipative
force. This raises the question which will be discussed in this paper: how
can one increase the order of magnitude of dissipative effects of vacuum
fluctuations on mirrors and eventually render those effects observable ?

A first idea is to observe changes in the field rather than in the me-
chanical forces. Indeed, due to energy conservation, photons are emitted
into vacuum when the mirror’s motion is damped. In other words, the
dissipated energy is transformed into radiation emitted by the mirror.
Let us consider a mirror oscillating in vacuum at a frequency Ω with an
amplitude q0 as shown in figure 1. The number of emitted photons N

q0

Figure 1: Single mirror oscillating in vacuum. The arrows represent the
vacuum field which, in a monodimensional space, may be considered as
two counterpropagating fields.
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during the measurement time T can be calculated to be

N =
Ω3q2

0T

3πc2
=

ΩT

3π
v2

c2

v = q0Ω (6)

Ω3 characterizes the already discussed motional susceptibility and v is
the mirror’s maximal velocity. Since N scales as the square of the ra-
tio between the mirrors mechanical velocity and the speed of light, it
remains very small for any possible macroscopic motion. If we consider
the velocity of a macroscopic object to be bound by the sound velocity in
typical materials (e.g. quartz), one obtains at most one emitted photon
per 1010 oscillation periods.

A second idea for improving the orders of magnitude of this motion-
induced radiation is to study a cavity oscillating in vacuum instead of a
single mirror [8]. In this configuration one may profit from the resonant
amplification of radiation inside the cavity. The resonant enhancement is
determined by the cavity finesse F which gives the number of roundtrips
of the field before it leaves the cavity and depends on the mirrors am-
plitude reflection coefficients r chosen equal here for simplicity

F =
π

1 − r2
(7)

Hence the cavity has to be treated as an open system with mirrors hav-
ing reflection coefficients smaller than unity so that the field can leave
the cavity by transmission through the mirrors. This distinguishes the
present calculations from the numerous works devoted to photon produc-
tion between a pair of perfectly reflecting mirrors [2, 10] in which case
the amount of radiation emitted outside the cavity cannot be evaluated.

Motion-induced radiation is effectively enhanced if the photons ra-
diated by the oscillating mirrors are emitted at a cavity resonance fre-
quency. In the following I will concentrate on a motion, where the cavity
oscillates as a whole in vacuum as shown in Figure 2. This means that
both mirror oscillate with respect to quantum vacuum and not with
respect to each other. For this situation, motion-induced radiation is
amplified inside the cavity when the mechanical oscillation frequency Ω
is an odd multiple of the fundamental cavity resonance frequency π/τ
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q0
q0

Figure 2: Cavity oscillating globally in vacuum with an amplitude q0 at
a frequency Ω with a constant mechanical length L.

[8]

Ω =
3π
τ
,
5π
τ
,
7π
τ
, . . .

τ =
L

c
(8)

τ is the time of flight of photons between the two mirrors separated
by a distance L. At perfectly tuned resonance, the number of photons
emitted by the cavity is the product of motion-induced radiation emitted
by a single oscillating mirror (6) by the cavity finesse F

N = F ΩT

3π
v2

c2
(9)

Since the cavity finesse can be a very large number, up to 109 − 1012 for
instance for microwave cavities, this increases considerably the order of
magnitude of motion-induced radiation.

In addition, for a high finesse cavity, the system shows novel physical
signatures [11] which might become very important in an experimental
observation in order to discriminate motion-induced radiation from po-
tential stray effects. These signatures will be discussed in the following
two sections.

4 Pulse shaping

For a single reflection, the field scattered by the oscillating mirror under-
goes a phase shift of the order of v

c compared to the incoming field. This
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phase shift is always small for a macroscopic mirror. However, inside the
cavity the field is scattered a great many times by the moving mirrors
leading to an accumulation of the dissipative effects of vacuum on the
moving mirrors. For the cavity oscillating globally in vacuum, the phase
shifts over a great number of reflections accumulate in an optimal way.
One may then introduce effective parameters to characterize the system.
The first one is an effective phase velocity Fv, the second one an effective
phase shift η, which is the ratio of the effective velocity to the velocity
of light and which characterizes the efficiency of the multiple scattering

η = F v

c
(10)

While the single scattering parameter v
c is necessarily very small for

macroscopic motions, this is not the case for the multiple scattering
parameter η thanks to the multiplication by the cavity finesse.

Figure 3: Space-time diagram of the multiple scattering process for a
cavity oscillating as a whole in vacuum.

The multiple scattering process is represented schematically on the
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space-time diagram of Figure 3. On this diagram light rays are presented
by lines making a 45-degree angle with the space and the time axis.
The moving mirrors correspond to the sinusoidal lines. The scale of the
mirrors oscillations is largely exaggerated.

The important point is that multiple scattering gives rise to periodic
orbits. An incoming light ray is attracted to the neighboring stable orbit
while it is repelled from the neighboring unstable orbit. When consider-
ing a fixed number of scattering processes one obtains the input-output
transformation shown in Figure 3. An ensemble of equally spaced light
rays entering the cavity will leave the cavity with a different temporal dis-
tribution, where the field is concentrated into short time intervals. This
process leads to the formation of regularly spaced field pulses bouncing
back and forth the cavity. At each scattering on one of the mirrors,
there is a small probability for a photon for escaping the cavity and
therefore being detected outside the cavity. This probability is given by
the inverse of the cavity finesse. Based on this qualitative argument one
may calculate precisely the energy density emitted into vacuum by the
oscillating cavity as a function of time. The result is shown in Figure 4
where is plotted the energy density for three different values of η. This
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Figure 4: Energy density emitted by the cavity as a function of time for
different effective phase shifts η. With increasing values of η the energy
starts to concentrate in pulses emitted periodically by the cavity.
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plot is based on an analytical solution of the multiple scattering problem
in terms of homographic mappings of phase exponentials [11]. This ap-
proach remains valid in the case of interest η ∼ 1 whereas an approach
linearizing the fields in the phase shifts would be restricted to η � 1.

5 Frequency up-conversion

Another interesting feature is the frequency spectrum of the emitted
radiation shown in Figure 5. Radiation is emitted at the resonance
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Figure 5: Spectrum of the radiation emitted by the cavity for η = 0.9.
The peaks correspond to cavity resonance frequencies. The spectrum
is plotted for a cavity oscillating globally at a mechanical frequency
Ω = 5πc/L. Photons are created at frequencies higher than the me-
chanical oscillation frequency through frequency up-conversion in the
opto-mechanical coupling between vacuum fluctuations and the mirrors
motion. Furthermore the radiation spectrum vanishes for frequencies
equal to a multiple integer of the mechanical excitation frequency.

frequencies of the cavity corresponding to the peaks in the spectrum.
The spectrum shown here is plotted for a cavity oscillating at a frequency

Ω =
5π
τ

(11)

This means that the cavity performs five oscillations during one roundtrip
of the field inside the cavity. Photons are emitted at multiple integers of
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the fundamental cavity frequency, that is at specific rational multiples
of the mechanical excitation frequency Ω

ω =
π

τ
,
2π
τ
,
3π
τ
,
4π
τ
,
6π
τ
, . . .

=
Ω
5
,
2Ω
5
,
3Ω
5
,
4Ω
5
,
6Ω
5
, . . . (12)

A striking feature is that no radiation is emitted at multiple integers of Ω.
There the spectrum vanishes rigorously. This constitutes an interesting
property in so far as it is very different from the expected behavior of
any pick-up or spurious field which would be strong at multiples integers
of the mechanical oscillation frequency. In addition, photons are emitted
not only for frequencies lower but also for frequencies higher than the
oscillation frequency Ω which means that a process of frequency up-
conversion takes place in the system.

6 Orders of magnitude

Clearly, the specific temporal and spectral signatures of the emission
may help to discriminate motion-induced radiation from potential stray
effects in an experimental observation.

To be more specific about the orders of magnitude, let me recall
that I have assumed the input fields to be in the vacuum state. This
assumption requires the number of thermal photons per mode to be
smaller than 1 in the frequency range of interest

�ω � kBT (13)

Low temperature requirements thus point to experiments using small
mechanical structures with optical resonance frequencies as well as me-
chanical oscillation frequencies in the GHz range. This corresponds to
an operation temperature

T ∼ 10mK (14)

At such a temperature, the finesse of a superconducting cavity [17] can
reach 109 − 1012. A peak velocity ranging from v ∼ 2.5 · 10−3m/s for a
finesse of 1012 to v ∼ 0.25m/s for a finesse of 109 would then be sufficient
to obtain an effective phase shift η close to unity (η ∼ 0.9). Under these
conditions, the radiated flux of motion-induced photons created outside
the cavity ranges from 0.001 photon/second for a finesse of 1012 to 1
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photon per second for a finesse of 109. Inside the cavity, the stationnary
photon number is in both case of the order of 1. This clearly illustrates
that a very high finesse cavity needs much longer detection times as
the mirrors transmission to the outside is so small. Nevertheless photon
fluxes of these orders of magnitude are measurable by efficient photon-
counting detection available in the GHz range. Alternatively, the field
produced inside the cavity could be probed with the help of Rydberg
atoms [17].

It is important to emphasize that the peak velocity considered here
is only a small fraction of the typical sound velocity in materials so
that fundamental breaking limits do not oppose to these numbers. This
velocity corresponds to a small amplitude q0

q0 ∼ v

Ω
∼ 10−11m (15)

but to a very large acceleration a

a ∼ Ωv ∼ 109m/s2 (16)

The observation of motional radiation in vacuum seems to be achiev-
able by an experiment of this kind. The difficulty remains to find means
for exerting a very large force to excite the motion of the cavity while
keeping the optical part of the experiment at a very low temperature and
unaffected by the stray fields induced by the excitation. In the following
section several excitation mechanisms and experimental possibilities will
be discussed in this respect.

7 Discussion of experimental possibilities

I will now discuss to which extent and under which conditions it is possi-
ble to reach the orders of magnitude presented before. I will concentrate
on two excitation mechanisms for the oscillation of the cavity, the first
one being through radiation pressure, the second one using the piezo-
electric effect. However before studying the excitation mechanisms, let
me specify the mirrors suspension system and possible mechanical pa-
rameters.

7.1 Mounting system

In order to have an efficient coupling between the mirrors’ mechanical
motion and the modes of the electromagnetic vacuum one has to suppose
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Figure 6: Niobium layer on massive support, producing either open (a)
or closed (b,c) cavities.

a mirror of macrsocopic size. In the follwoing I will assume as an example
a mirror of surface A = 25mm2. A typical material for superconducting
cavities is Niobium which has a density of ρ = 10g/cm3. One needs a
1µm thick layer of Niobium in order to achieve a finesse of 109. The
mirrors volume is then 2.5·10−4cm3, leading to a mass of 2.5 mg. The
Niobium layer would probably to be fixed to a massive support, capable
to evacuate the excitation heating (see different possibilities on Figure
6). This support should not vibrate due to radiation pressure and should
thus have a very different mechanical behavior than Niobium, as for
example quartz.

7.2 Excitation of the mirrors motion through radiation pressure

For simplicity I consider the excitation of one single mirror, while the
other one will remain motionless. Photons belonging to translational
cavity modes can nevertheless be distinguished by the their frequency
(2n + 1)π/τ for odd modes.

In order to move a mirror of mass m with an acceleration a, a force
F = ma is needed. The force exerted by radiation pressure of a laser
beam is given by

F = 2hνN/c (17)

where N is the photon flux per second and ν the photonic frequency in
units of Hz. The laser power needed is then

P = Fc = 2hνN (18)
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Figure 7: Schematic set-up of the excitation of the mirror’s mechanical
motion through radiation pressure using a second cavity.

The central idea is to use a second high-finesse cavity next to the
moving one in order to enhance the radiation pressure for the mirror’s
excitation (see Figure 7). The excitation can be performed with mi-
crowave photons having the same frequency as the mechanical oscillation
or with optical photons where the signal should be modulated at Ω. I
will suppose a mirror with a mass of m ∼2.5mg oscillating at a frequency
of Ω = 1GHz. Depending on two different regimes for the cavity finesse
which can be realized experimentally, that is F = 109 and F = 1012, I
consider two different maximum velocities such that the effective phase
shift η values about 0.9 as considered before for the radiated energy
density and the radiation spectrum.

For a cavity finesse of the order of F = 109 a mirror’s maximum
speed of about v=25cm/s gives an effective phase shift of 0.9. At 1GHz
this mechanical velocity corresponds to an acceleration of a = 109m/s2

which means that a force of about 2·103N would have to be applied to
the mirror in order to excite a sufficient mechanical motion. Using an
excitation microwave cavity with a finesse of the order of F = 109, a
laser power of the excitation beam of about 300 W would be needed.
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For very high finesse cavities reaching values of F = 1012, the mirrors
maximum speed needs only to be about v = 2.5 × 10−4m/s, amounting
to an acceleration of a = 106m/s2 and to an excitation force of about
F = 2N. Using again a preamplifying high finesse cavity this lowers
the power of the excitation laser beam to 300mW, which is very easily
achievable.

A possible problem with this mechanism might be that the moving
mirror is also part of the excitation cavity, which is thus not continuously
resonant. This should have an influence insofar as the cavity finesse is
very large and the resonance peak therefore very narrow. On the other
hand, the mirrors motion does not need to be continuously excited. A
second problem is that it might be extremely difficult to separate the
excitation field from motion-induced radiation as both lie in the same
frequency range.

Both problems might be circumvented by using the radiation pressure
of optical photons and to modulate the signal at Ω in order to excite the
mirror’s motion. These photons would not be detected by a microwave
detector. However in the optical domain the preamplifying excitation
cavity can only have a finesse up to about 106. Under these conditions,
for a moving cavity of finesse F = 109 a laser input power of 300kW
would be needed to excite the mirror’s oscillation. For a moving cavity
with a very high finesse of F = 1012 and a mirror maximum speed of
v = 2.5 × 10−4m/s, a laser input power of only about 10W would be
sufficient.

One may resume this discussion of the mechanical excitation through
radiation pressure in the following way. While an excitation using mi-
crowave photons is more easily achievable concerning orders of mag-
nitude of the laser power it will produce considerable spurious effects
against which the motion-induced radiation would have to be distin-
guished, making the specific signatures of motion-induced radiation ex-
tremely important. On the other hand, an excitation through optical
radiation pressure implies higher laser powers which are however per-
fectly achievable, especially in the case where the finesse of the moving
cavity reaches 1012. A great advantage of this method would be the
absence of spurious signals coming from the mechanical excitation.

7.3 Excitation of the mirrors motion with a piezoelectric crystal

Considering the mirrors mounting system as shown in Figure 6 it is also
natural to think eventually of using the piezoelectric effect to excite the
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mechanical motion. One might benefit from a high mechanical quality
factor of the support to excite the motion of the Niobium layer. In-
deed mechanical quality factors of quartz for hypersonic acoustic waves
(Ω ∼ 10MHz) have been reported to be of the order of 106 − 108 in the
low temperature domain. However to my knowledge, it remains uncer-
tain if the quality factors hold in the GHz domain. On the other hand
several papers investigate the piezoelectric constant of quartz at Gigacy-
cle frequencies called hypersonic waves [12, 13, 14] . There the excitation
has been measured up to frequencies of 10GHz.

The efficiency of the conversion of electromagnetic energy into acous-
tic energy for the piezoelectric effect is given by [13]

P ac
out = P em

in

C2Qλq

2πV
(19)

C2 =
4πd2

11c11
ε

C is the piezoelectric coupling factor which depends on the piezoelectric
constant in a specific direction, here d11, and on the elastic constant c11.
Q is the mechanical quality factor, λ the wavelength of the electromag-
netic wave, q the crystal’s thickness, V an appropriately chosen effective
volume of the interaction and ε the dielectric constant of the medium.
Because of the the dependence on the Q value, the sensitivity might in
practice be considerably improved by using superconductive cavities at
low temperatures.

There exist two possibilities to couple an electromagnetic wave to a
piezoelectric crystal, either with a reentrant cavity or a direct coupling
via an impedance adaptation system [15]. The reentrant cavity allows
to couple to a crystal with a large surface, that is a diameter of about
φ ∼ 5mm, but the coupling efficiency is only of the order of η = −30dB.
The impedance adaptation system allows for a better coupling of about
-15dB, but only to small surfaces corresponding to a diameter of the
order of φ ∼ 0.1mm. Such a surface seems to small in order to have suf-
ficient coupling between the mechanical motion and the electromagnetic
vacuum field modes. For this reason I will not consider this possibility
in the following although the coupling is more efficient.

If one excites mechanical motion via piezoelectric effect on one end
of a crystal, electromagnetic energy will be emitted through the inverse
effect on the crystal’s other end. This might cause a difficulty for the de-
tection of motion-induced radiation. This difficulty can be circumvented
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either by an efficient screening with a metallic mirror, or by replacing
the crystal with aluminium onto which one poses a quarter-wave thick
layer of ZnO [15].

The orders of magnitude for the amplitude of the moving surface
which can be reached with the reentrant cavity are exposed in the fol-
lowing. Suppose an electromagnetic source of Pin = 1W. The acoustic
power is then given by

Pac =
Pin

10−η/10
(20)

This power is converted into mechanical motion of the surface with an
amplitude q0 at a frequency Ω

Pac =
1
2
ZΩ2q2

0A (21)

Z is the acoustic impedance and A the moving surface. As before I
suppose a mirror of surface A = 25 mm2. The coupling efficiency is of
about -30dB. The acoustic input power is then

Pac =
1000mW
10−30/10

= 1mW (22)

For an oscillation frequency of 1GHz and with an acoustic impedance
for Aluminium of Z = 4 × 107kg/m2/s one finds

q0 =

√
2Pac

ZΩ2A
∼ 10−12m (23)

In order to reach an effective phase shift of the order of η ∼ 0.9,
where the effects of pulse shaping and frequency up-conversion appear,
a minimum amplitude q0 of the mechanical motion is needed. As shown
before, for a cavity finesse F = 109 this amplitude corresponds to

q0 = 10−11m (24)

while for a cavity finesse of F = 1012 the required amplitude is

q0 = 10−14m (25)

With the conservative cavity finesse, an excitation using the piezoelec-
tric effect is therefore within reach using the reentrant cavity system.
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For a moving cavity with an even better finesse of 1012, the oscillation
amplitude which may be reached using the piezoelectric effect is even
three orders of magnitude larger than what is needed. The piezoelec-
tric effect therefore seems a possible alternative maybe better suited and
more easily implemented experimentally than excitation through radia-
tion pressure.

8 Consistency check : condition for superconduction

An experiment designed to observe the dissipative effects of quantum
vacuum will necessarily employ a superconducting cavity in order to
achieve a cavity finesse of about F ∼ 109 − 1012. This fact gives a
physical limiting condition for the excitation of the mirrors mechanical
motion. No matter how motion will be excited, the maximum field
strength at the surface of the superconductor is limited to [16]

Emax = 25MV/m (26)

For higher field strengths Cooper pairs are broken up and the super-
conductor becomes normally conducting. As consistency check we may
therefore calculate the maximum velocity which can be excited by such
a field.

The power corresponding to the maximum field strength is

Pmax = ε0cE
2
maxA (27)

where A is the mirrors surface in units of m. If a field of such a power
acts on a surface it can produce a change of impulsion ∆p on the sur-
face during a time interval ∆t. The change of impulsion per unit time
corresponds to the maximum force Fmax tolerated

∆p = 2
Pmax∆t

c
= Fmax∆t (28)

We can then deduce the expression of the maximum force and thus,
by using explicitly an oscillating motion, the maximum velocity of the
mirror

Fmax = ε0E
2
maxA

= ma = mΩ2q0 (29)
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leading to a maximum velocity of

vmax = Ωq0 =
ε0E

2
maxA

mΩ
(30)

With ε0 = 8.85 × 10−12As/Vm and supposing as before a mirror of
mass m ∼ 2.5mg and an oscillation frequency of 1GHz, the numerical
value for the maximum velocity is found to be

vmax ∼ 2 × 10−4m/s (31)

which is in accordance with the maximum velocity for a cavity finesse
of 1012. There is therefore no contradiction between using a supercon-
ducting cavity and the sufficiently strong excitation of the mirror’s me-
chanical motion in order to observe motion-induced radiation with its
particular signatures.

9 Conclusion

To resume the possibilities of observing expermentally motion-induced
radiation emitted by an oscillating high finesse cavity, the emitted pho-
tons may be detected outside the cavity by performing sensitive photon-
counting detection of the radiated flux. Inside the cavity the state of the
field could be probed with the help of Rydberg atoms [17]. However, to
excite the motion, a huge force would have to be applied onto the mir-
rors which might create spurious signals against which one would have
to distinguish experimentally the motion-induced photons. This is why
the particular signatures of the effect are extremely important.

The challenge of this experiment does indeed not come from one
particular constraint, but from the fact that all of the above discussed
conditions will have to be fulfilled simultaneously. The present paper
shows that there is no fundamental objection to the realisation of such an
experiment, but that in the contrary it is possible, although difficult, to
meet the ensemble of necessary conditions in an experiment. However, as
dissipative effects of vacuum fluctuations are a fundamental phenomenon
related to important conceptual questions in physics, their observation
would be worth the effort.
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