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ABSTRACT. The object of this contribution is twofold. On one hand,
it rises some general questions concerning the definition of the elec-
tromagnetic field and its intrinsic properties, and it proposes concepts
and ways to answer them. On the other hand, and as an illustration of
this analysis, a set of quadratic equations for the electromagnetic field
is presented, richer in pure radiation solutions than the usual Maxwell
equations, and showing a striking property relating geometrical optics
to all the other Maxwell solutions.

P.A.C.S.: 03.50.De; 04.20.-q

1 Introduction

I think that the principal mission of the scientific culture is not to in-
crease our knowledge, as it is frequently stated, but to ameliorate our
understanding of the world. It is clear that, although frequently con-
nected, and sometimes intimately, these two goals present deep differ-
ences in content and in extent.

Scientific culture, like any other human culture, when absorbed with-
out reflection, is also alienation. In particular, the present state of the
classical electromagnetic theory shows abundantly this feature. And it is
trying to escape a little to this alienation on the subject that my collab-
orators and myself built up some concepts and results, of which a part
is presented here [1].

This contribution wishes to ameliorate our understanding of the elec-
tromagnetic field, and consists of very simple concepts, arguments and
propositions. But, even simple, these elements present a certain interest:
they rise pertinent questions on classical fields, outline answers, propose
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new formalisms and lead directly to new equations with striking prop-
erties. It is about these points that I would like to talk here.

Here we are interested by the texture of the physical electromagnetic
fields [2].

The first problem that a field theory faces, be it electromagnetic or
not, is the adequacy between the physical phenomena trying to be de-
scribed by the theory and the solutions that the theory provides. Some
aspects of this problem, and in particular the elements that make to-
day not one-to-one the relation between physical phenomena and field
theories, are commented in Section 2.

The second problem is that of the adequacy between the physical
quantity describing the field itself (here the electromagnetic field) and
the mathematical object chosen by the theory to represent this quantity
(vectors for the electric and magnetic fields, anti-symmetric tensor for
the total electromagnetic one). Section 3 analyses briefly this problem
and points out its experimental character.

By texture of an electromagnetic field we mean the particular link
among the ingredients of the mathematical object chosen to represent
this electromagnetic field, as well as among its gradients, specially the in-
variant or intrinsic ingredients. After remembering the notions of regular
and pure radiation electromagnetic fields, those of proper energy density
of an electromagnetic field and of observer at rest with respect to a reg-
ular electromagnetic field are presented in Section 4. It also presents
the intrinsic relation between the electromagnetic field and its principal
directions, the physical interpretation of them in terms of the electric
and magnetic fields with respect to any observer, and the one-to-one de-
composition of the electromagnetic energy tensor in two pure radiation
components. It follows a method allowing, for the first time, to obtain
the necessary and sufficient conditions to be imposed on an electromag-
netic field in order to admit eigen-directions with prescribed differential
properties. Some comments about the general form of the charge scaling
law and the superposition law for any electromagnetic theory are added.

It is usually ignored that, whatever be the tensorial object describing
an ordinary electromagnetic field, a strong one could change not only its
intensity but even its specific tensor character. In Section 5 a formal
example is given in which strong electromagnetic fields would be given
by Lorentz tensors, and some results necessary to handle this eventuality
are presented.
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Finally, in Section 6, as a precise application of the above concepts, a
quadratic generalization of Maxwell equations is presented. These new
equations for the electromagnetic field admit “more light” (pure radi-
ation solutions) than the Maxwell ones, but exactly the same charged
electromagnetic fields (regular solutions). They have the striking prop-
erty, on one hand, of being a geometric optics approximation of Maxwell
equations and, on the other hand, of containing the exact Maxwell equa-
tions themselves.

2 Phenomena and Field Theories

a) For Newton (resp. Maxwell) classical field theory, the field outside
the sources in a finite region of the space (resp. space-time) determines
completely the masses (resp. charges) that produce it, and consequently
the field everywhere (resp. in all the causal past of the region). For
this reason, we call here for short pure field theories the local versions
of these theories, and of their possible local generalizations (including
General Relativity), at the exterior of the sources; that is to say, the set
of regular solutions in a local domain of the corresponding differential
equations in vacuum [3] [4].

Denote by F the set of all physical phenomena of a certain class
and by S the set of (physical or unphysical) phenomena described by
solutions to a field theory for this class. Obviously, the set of physical
phenomena described by such a field theory, F ∩ S , generically differs
from the whole set F∪S : F∩S ⊂ F∪S . Thus, generically F contains
a subset F̂ of physical phenomena not described by the field theory, F̂
≡ F−F ∩ S , as well as S contains a subset Ŝ of solutions to the field
theory which are unphysical, Ŝ ≡ S−F∩S , so that we have F∪S ≡
F̂ ∪ (F ∩ S) ∪ Ŝ .

Theories for which the subset F̂ vanishes are called complete. The-
ories for which the subset Ŝ vanishes are called strict.

b) For non-complete theories, the analysis of the subset F̂ of phe-
nomena not described by field theories sets out, in general, a problem at
once of observation, experimentation and inferential logic. But, in par-
ticular, some cases may be analysed (at least partially) with the standard
methods of theoretical physics. Among these cases, one may mention the
possible existence of space-time metrics insensitive to the polarization of
gravitational waves. If one accepts that the curvature of the space-time
due to the presence of a gravitational field follows a “universal law of
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gravitational deformation”, then one can locally separate unambiguously
the metric from the gravitational field, which turns out to be given by a
two-form [5]. One can then show that the polarization of a gravitational
wave is not “detected” by the space-time metric.

Another case able to be analysed theoretically is that of charge-
independent and non-radiation electromagnetic fields. One knows that,
under Maxwell equations, to shake a charged particle allows to detach
parts of its field, which get away at the velocity of light (radiation field
component of charged accelerated particles). The hypothesis that strong
electromagnetic fields are better represented by Lorentz tensors than by
two-forms, offers the possibility to detach from particles non-escaping
(non-radiation) parts of the field.

Also, there exist arguments to suspect that the solutions to Maxwell
equations representing light could be insufficient. This possible lack of
sufficiency of Maxwellian light may be defined precisely, and equations
avoiding it may be obtained.

At present, of these three examples, the second one is the more spec-
ulative [6], and although in Section 5 we give some elements to handle
Lorentz tensors related to two-forms, it will not be study in depth. The
first one has been briefly presented in [5], and needs a critical and com-
parative analysis with the standard points of view. Finally, the third
example has been analised in [7], and will be explained in some detail in
the last section of this paper.

c) Contrarily to an extended opinion, the unphysical solutions Ŝ
of non-strict field theories fill in, roughly spoken, almost all the space
of solutions of the field equations, the solutions F ∩ S , that describe
physical phenomena being a set of “very null” measure [8].

This situation is due to the existence of several mechanisms that
generate unphysical solutions. Among them, the more important ones
are:

- Negative masses: in gravitational theories, the solutions to field
equations depend on a set of constants that are related to the masses of
the system, but the (Newton or Einstein) gravitational field theories do
not contain neither algorithms nor constraint insuring that all the cor-
responding masses of their exterior solutions are positive. For example,
in Newton gravitational theory, the number of unphysical solutions with
a finite number N of singularities (corresponding to a distribution of N
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masses such that at least one of them is negative) associated to every

physical solution is given by
∑N

i=1(
N
i
) = 2N − 1 [9].

- Duality invariance: Maxwell equations at the exterior of sources
are invariant by duality rotations, i.e. by transformations of the form
F ′ = cosφF +sinφ∗F . They are such that the sum of arbitrarily duality
rotated physical fields is not in general a duality rotation of a physical
field. Duality rotations introduce magnetic monopole charges but we do
not know neither algorithms nor constraint equations allowing to know if
a given (local, exterior) solution F to the field equations is able or not to
generate, by a duality rotation, a physical field. Now, for fields admitting
a finite number of singularities, the number of unphysical solutions that
correspond to every physical one is RN [9].

- Advanced-retarded symmetry: the principle of causality and the
finite character of the velocity of perturbations in relativistic field the-
ories lead to consider physical phenomena as generated by retarded in-
teractions (electromagnetism and relativistic gravitation). But Maxwell
equations (and in some sense Einstein ones) admit indistinctly retarded
and advanced solutions, and no general algorithms or constraint equa-
tions are known to distinguish them. Furthermore, Maxwell theory be-
ing linear, arbitrarily weighted sum of advanced and retarded solutions,
λFretarded +µFadvanced , is a new solution, and one has also RN unphys-
ical solutions corresponding to every physical one admitting N singular-
ities [9].

In fact, we may conclude that there are not known complete and strict
classical pure field theories. The only known example of a strict theory
is the little Newtonian gravitational theory of one point particle [10]; in
spite of its restricted character, this example is heuristically very rich,
and allows to have an inkling of what a complete and strict pure field
theory looks like and in what situations it may be useful. It is very
striking that, apart from this particular example, no other tentative had
taken place since the creation of the concept of field.

d) The construction of a new field theory, with or without the above
characteristics and whatever be the motivations (to avoid singularities
of their solutions, to include in field form the equations of motion, to
take directly into account terms of self-interaction, to include additional
pure radiation solutions, etc) needs the following two tasks:

* to represent the physical field quantities by pertinent mathe-
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matical objects,

* to find convenient differential equations for them.

Paradoxically, the first of these points has been systematically ig-
nored. For this reason, the following section presents comments on some
aspects related to it.

3 Mathematical Representation of Physical Fields

a) In classical physics, the points of our physical space or space-time
are (locally) identified with the points of the mathematical spaces R3

or R4 . For this reason, the vector character of, say, the position vector
is only a matter of mathematical definition.

But, once this identification is made, the particular tensor character,
at every one of these points, of any physical quantity has to be theoret-
ically founded and experimentally verified [11].

Thus, the adequacy of a physical quantity with its formal or mathe-
matical representation involves:

• the consideration of the offer of mathematical objects: scalars,
vectors, tensors, spinors, etc,

• the good comprehension of their invariant ingredients as well as of
the structure involving these invariants and

• the experimental confrontation necessary to guarantee that the
correct choice of representation has been made.

b) Concerning the first of these points, it is important not to forget,
as it is frequent, that the notion of ’tensor field’ is always attached to a
group, although frequently implicit. Thus, in Newtonian mechanics the
acceleration of a particle is a vector for the whole Galileo group G of
coordinate transformations between inertial observers, its velocity is a
vector for the restricted group I , I ⊂ G , of coordinate transformations
leaving invariant (internal or adapted) a given inertial observer, and its
position is only a vector for the more restricted group I0 , I0 ⊂ I ⊂ G ,
of coordinate transformations that leave the origin O unchanged. Al-
though trivial, this example shows that, when exploring new, enlarged
situations, the invariance group of (the mathematical representation of)
a physical quantity has to be analysed carefully. In Special Relativity,
this has not been the case, for example, in generalizing Maxwell equa-
tions from inertial observers to accelerated ones.
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The electric field e and the magnetic field h measured by an inertial
observer are assumed [12] to be vectors under the above mentioned group
I of coordinate transformations adapted to that observer. But they are
not vectors under the whole Poincaré group P , of coordinate transfor-
mations between arbitrary inertial observers. As it is well known, there
does not exist any function of the sole electromagnetic quantities e and
h that be a tensor under P . In order to construct a tensor under P , two
important features are needed. The first one is the addition, to the two
quantities e and h , of the (unique) kinematical quantity characterizing
the inertial observer: its unit velocity u . The second one is the substitu-
tion of the search of the vector character of the two initial ingredients e
and h by that of the anti-symmetric tensor character of a sole function
F of the three ingredients e , h and u . Both features lead to the well
known result F ≡ F (e, h, u) = u ∧ e− ∗(u ∧ h) [14].

Faced to such a denouement and in such a spirit, the extension of the
above electromagnetic quantity F to a larger group of accelerated ob-
servers (be it in Minkowski space-time or in the curved ones of General
Relativity) involves the following two physical questions: is the elec-
tromagnetic field Fa measured by an accelerated observer a function
Fa(e, h, u) of its kinematical quantity u alone, or does it depend also on
its (now non vanishing) acceleration a , Fa = Fa(e, h, u, a) ? does the
electromagnetic field quantity Fa measured by an accelerated observer
remain a second order anti-symmetric tensor? [15].

Neither of the principles of relativity, covariance or minimal coupling,
in their usual formulations, allow to give a clear answer to these ques-
tions. In fact, we have no other arguments that mathematical simplicity
or physical dogmatism to clearly eliminate contributions of the above
two aspects on the mathematical representation of the electromagnetic
field quantities on the space-time.

c) But even the assumption that the electric and magnetic fields
measured by an inertial observer are vectors under his adapted group I
has to be submitted to experimental agreement. The assertion that they
are vectors means that, if we measure the force fα needed to cancel them
at different angles α , we must obtain the cosines law fα = f0 cosα .

Up to what precision such a law is true for the electric and/or the
magnetic fields?

Observe that a law different from the cosines law, even very slightly
different, will oblige to represent these fields by means of geometric
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objects drastically different from vectors (although analytically related
[13]).

Experiments such as, for example, the measure of the ratio iner-
tial/gravitational mass of a body are undoubtedly interesting; but those
trying to measure the adequacy of the laws associated to the vector or
tensor character of the fundamental electromagnetic fields (among oth-
ers) would provoke a similar interest. Unfortunately, this is not the case
at present.

4 Intrinsic Elements of the Electromagnetic Field

a) In spite of the above comments, we shall suppose here, unless oth-
erwise stated, that an electromagnetic field in the space-time is (locally)
described by a two-form F (second order anti-symmetric covariant ten-
sor field) such that, if u is the unit velocity of an arbitrary observer, the
electric and magnetic fields for him are given by

e = i(u)F , h = i(u) ∗ F , (1)

where i stands for the interior product and ∗ for the Hodge operator
associated to the space-time metric g . Then, one has equivalently F =
u ∧ e− ∗(u ∧ h) [14], where ∧ stands for the exterior product.

For many technical uses, it is sufficient to work with this two-form
F . But, at every point of the space-time, F is an element of the tensor
algebra over the real four dimensional vector space. Consequently, F
cannot be but a subset of vectors and numbers at every point, that is to
say, a set of vector fields and scalar functions on the space-time. In the
tensor formalisms, these ingredients are called the invariants or intrinsic
elements of F [16].

b) It is well known that the independent scalar functions of F are
two, usually chosen as

φ ≡ trF 2 , ψ ≡ trF ∗F , (2)

where tr is the trace operator, and one has the relations φ = 2(h2−e2) ,
ψ = −4(eh) , which reveal their implication on the fields e and h ; they
allow fixing, in the plane determined by these fields, one of them as a
function of the other.

But what it seems not known is the implications of these scalars on
the energy variables.
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Remember that the physical components with respect to an observer
u of the Minkowski energy tensor T of F ,

T =
1
2
(F 2 + (∗F )2) (3)

are the energy density ρ , the Poynting vector s and the stress tensor
τ , respectively given by

ρ ≡ i2(u)T , s ≡ ⊥(u)i(u)T , τ ≡ ⊥(u)T , (4)

where |s| is the energy across the space-like unit volume element per
unit of time, ⊥ denoting the projector orthogonal to u .

Note that ρ and |s| are relative-to-the-observers quantities (i.e. not
invariant). A simple but interesting result is that the difference of theirs
squares is an invariant quantity [17]:

ρ2 − |s|2 = χ2 , (5)

where

χ2 ≡ 1
24

(φ2 + ψ2) . (6)

We see that all the observers for which the Poynting vector vanishes see
the same energy density ρ , that this energy density is a minimum and
that this minimum amounts the invariant quantity χ . This is why one
is naturally lead to give the following definition [18]:

Definition: The invariant χ is called the proper energy density of
the electromagnetic field, and the observers that see it as their energy
density, for which the Poynting vector vanishes, are said at rest with
respect to the electromagnetic field.

All other observer will see an energy density ρ corresponding to the
rest energy χ incremented by the Poynting energy |s| according to (5)
[19].

The stress tensor τ is also a relative-to-the-observer quantity, related
to the Poynting vector and to the energy density by the eigen-value
equation:

i(s)τ = ρ s . (7)

A consequence of the above relation is that, in spite of the relative-to-
the-observer character of all the elements of this equation, the other two
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eigen-values of τ are invariants. They just amount, up to a sign, the
proper energy density: ±χ [18].

c) Among all the electromagnetic fields F , there exists a particularly
important class, the pure radiation electromagnetic fields. Usually they
are physically characterized as those for which no observer sees a van-
ishing Poynting vector, or alternatively as those such that the electric
and magnetic components are orthogonal and equimodular. But, by its
physical clarity I prefer the following one [20].

Definition: An electromagnetic field F is a pure radiation field if
its proper energy density vanishes, χ = 0 , or alternatively if the whole
energy density is radiated as Poynting energy, ρ = |s| .

All these definitions are equivalent and still equivalent to any of the
following relations:

s = ρn , τ = ρn⊗ n , F = � ∧ p , (8)

where n denotes the unit vector in the direction of the Poynting vector
and � and p , i(�)p = 0 , define respectively the principal direction and
the polarization of F .

Two-forms of the form F = � ∧ p are called null. For this reason,
pure radiation electromagnetic fields are also called null fields.

It is important to note that for every observer u there always exist
a vector �u in the principal direction of the null field such that F =
1
ρ (�u∧e) . It follows �u = ρ u+s , which gives the physical interpretation
of the principal direction: it is the null lift of the Poynting vector s with
respect to the observer u .

d) The non null electromagnetic fields are called regular, and rep-
resent (radiating or not) electromagnetic fields with Coulombian part.
They at rest or proper energy density χ never vanishes, χ 	= 0 , and
they are of the form

F = α � ∧m + β ∗ (� ∧m) , (9)

where � and m, are normalized null vectors, i.e.:

�.� = m.m = 0 , �.m = 1 , (10)

defining the principal directions of F , and α and β are simply related
to φ and ψ :

φ = 2(α2 − β2) , ψ = −4αβ . (11)
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In terms of them, the electromagnetic proper energy density χ is given
by

χ =
1
2
(α2 + β2) . (12)

We have seen that the principal direction � of a null field is given by
the null lift of the Poynting vector.

What is now, in the regular case, the physical interpretation of the
principal directions defined by � and m ? What is their relation with
the Poynting vector?

Paradoxically, these questions seem to have been never asked. In
order to answer them, but also to control on F specific properties of �
and m, it is worthwhile to solve intrinsically, covariantly and explicitly,
the eigenvector problem related to these principal directions [21].

The answer is generated by the operator C [22], given in the following
proposition.

Proposition 1 (Coll-Ferrando) : The principal directions {� }, and
{m} of a two-form F are given by the vectors

� = C(x) , m =t C(x) , (13)

where the operator C , called the principal concomitant of F , is given
by

C ≡ αF − β ∗F + T + χ g , (14)

tC is its transposed and x is an arbitrary time-like direction.

Now, taking x = u in (13)one can prove the following results [20]:

Proposition 2 (Coll-Soler): The invariant directions {�} and {m}
of a regular electromagnetic field F are given by the null shifts �u and
mu respectively of the vectors

�⊥ = s− r , m⊥ = s + r , (15)

where s is the Poynting vector and r is given by:

r ≡ α e + β h . (16)
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Corollary: The Poynting vector s with respect to an observer u
of an electromagnetic field F is half the sum of the projection of the
invariant principal vectors �u and mu of F :

s =
1
2
[�⊥ + m⊥] . (17)

This corollary strongly suggests a privileged decomposition of an elec-
tromagnetic field into two pure radiation components. In fact, one can
prove the following result:

Proposition 3 (Coll-Soler): For every observer u , the energy tensor
T of any regular electromagnetic field F may be obtained univocally as
the composition of two pure radiation energy tensors along the principal
directions of the field,

T =
1
2χ

(T�u Tmu + Tmu T�u) − χ g (18)

where T�u and Tmu are given by

T�u =
2

(ρ + χ)
�u ⊗ �u , Tmu =

2
(ρ + χ)

mu ⊗mu . (19)

This result allows to say that the principal directions of a regular elec-
tromagnetic field are the null shifts of the Poynting vectors corresponding
to the two pure radiation electromagnetic fields whose composition (18)
generates the field.

e) From a technical point of view, Proposition 1 constitutes a very
interesting tool. It allows to solve inverse problems concerning the neces-
sary and sufficient conditions to be verified by a tensor in order to insure
particular differential properties of some of its eigen-spaces. Up to now,
the only known result on such problems corresponded to a very simple
situation [23]. As an example, we give here for the electromagnetic field
the following one, related to the permanence of a pure radiation field
[22]:

Proposition 4 (Coll-Ferrando): An electromagnetic field F has a
geodesic principal direction if, and only if, its principal concomitant C,
given by (14), satisfies

tr{C ∧ i(C)∇C} = 0 . (20)
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where C is considered as a vector valued one-form.
In the last Section, similar techniques have been used to find the

non-linear generalization of Maxwell equations.

f) The real vector space structure of the solutions of Maxwell equa-
tions means physically:

- that Maxwell equations admit a charge-scaling law for every elec-
tromagnetic field, and that this law is multiplicative, and

- that Maxwell equations admit a superposition law for every two
electromagnetic fields, and that this law is additive.

The construction of a new electromagnetic field theory involves,
sooner or later, to ask about the existence of these two laws, as well
as about their respective multiplicative and additive character.

For “not-everything” theories, as would be the case of those we are
talking about here, the existence of such laws may be epistemically re-
quired. It is thus their non-linear character that has to be specified. Let
us write them respectively in the form

µ • F = f(µ, F ) , F ⊕G = g(F,G) . (21)

Whatever be the tensor character of the field, the above equations may
be submitted to restrictions coming from desired or suspected conditions.
For example, the parameter µ in (21) may be restricted to take discrete
values corresponding to multiples of a elementary charge; the function f
be such that f(−1, F ) = −F for any F ; or the function g be symmetric
in its arguments etc. But here we are interested only in the general
implications imposed by the two-form character of the electromagnetic
field F . The corresponding general expressions are given by the following
proposition [24].

Proposition 5 (Coll-Ferrando): i) The more general charge-scaling
law for an electromagnetic two-form F is of the form

µ • F = mF F + m∗F ∗F (22)

where mF and m∗F are functions of the parameter µ and of the two
invariant scalars of F . ii) The more general superposition law for two
electromagnetic two-forms F and G is of the form

F ⊕G= pF F + qG G + r[F,G] [F,G] (23)
+ p∗F ∗F + q∗G∗G + r∗[F,G] ∗[F,G]
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where pF ,..., r∗[F,G] are functions of the two invariant scalars of F , of
the corresponding scalars of G , and of the two mixed scalars tr FG and
tr F∗G , and [F,G] is the commutator of F and G , [F,G] ≡ FG−GF .

The proof of expression (22) follows from the fact that {F, ∗F} is a
basis, in the module of the two-forms over the functions, for the powers
of F , and that of expression (23) follows from the fact that the six two-
forms of its second member form a basis for the Lie algebra generated
by F and G [25].

5 Electromagnetic Field as a Lorentz Tensor

a) Some generic situations seem to indicate that the linearity of the
electromagnetic field equations is due to the weakness of these fields in
our ordinary experimental conditions.

Usually, those that take seriously this idea, try to apply more or less
reasonable criteria to find non linear equations for the electromagnetic
two-form F . This is to forget that, if a weak electromagnetic field
is represented by the two-form F , strong electromagnetic fields may
change not only its intensity, but even its tensor character.

Formally speaking, the first examples of such situations are given by
Group Theory: (the linear space of) the algebra of a group is nothing
but the set of “weak elements” of the group.

In this sense, the electromagnetic case is very suggestive: Maxwell
equations, which are at the basis of Special Relativity, structure the
electromagnetic fields at every point as anti-symmetric tensors, just like
the elements of the algebra of the Lorentz group that generates Special
Relativity.

Thus, at least from a formal point of view, one is lead to test the idea
that the “good” strong electromagnetic fields ought to be represented
by Lorentz tensor fields L , which, in the case of little intensity, would
reduce to simple two-forms F .

The following two paragraphs do not pretend to present the first
ingredients of a new electromagnetic theory (which nevertheless is in
progress) but only to illustrate by a formal example the general idea
that strong fields may change the tensor character of a weak field repre-
sentation, and to show that this idea is workable and interesting in some
of its consequences.

b) Thus, let us accept that strong electromagnetic fields are correctly
represented by Lorentz tensor fields [26]. Then, “near” the Maxwellian
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weak electromagnetic solutions (technically: in the exponential domain
of the Lorentz Group), Lorentz tensors L representing generic electro-
magnetic fields are related exponentially to their weak counterpart F :
L = expF .

The exponential and the logarithmic branches allow to exchange the
variables F and L in the exponential domain, and also the correspond-
ing equations. Nevertheless, the solutions to these differential equations
in terms of Lorentz tensors will belong, not only to the exponential do-
main, or to the rest of the connected-to-the-identity component but even
to whole disconnected group. The Lorentz tensors corresponding to these
last regions are not the exponential of two-forms, so that, even impos-
ing to L the transformed Maxwell equations, we will have much more
electromagnetic solutions than the exponential of the Maxwell ones.

But the new solutions corresponding to the disconnected components
will never reduce continuously, when varying the integration constants,
to the identity, i.e. will never become vanishing electromagnetic fields.
The possibility of the physical existence of such fields is by itself very
interesting (see paragraph 2.b).

Let us already note that, for not strong electromagnetic fields L ,
for which two-forms F exist such that L = expF , one has L = g
for vanishing F . But the metric g is nothing but the inertia or grav-
itational tensor field of Minkowski or of general Riemann space-times
respectively: Lorentz tensor fields are objects that may simultaneously
describe electromagnetic and gravitational fields.

For the above reasons, I believe that such fields are worthy of deeper
analysis.

c) The basic elements for such an analysis are the functions exp and
ln . To handle them in the context of a field theory, it is imperative to
sum their usual infinite series expansion.

Paradoxically, the sum of these series is still an open problem even
for many simple groups. For the sum of the exponential series for the
Lorentz group one has [27]:

Proposition 6 (Coll-Sanjosé): The exponential of a two-form F in
a space-time of metric tensor g is given by

expF = εg g + εT T + εF F + ε∗F ∗F , (24)
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where

εg = 1
2(coshα + cosβ)

εT = 1
α2 + β2 (coshα− cosβ)

εF = 1
α2 + β2 (α sinhα + β sinβ)

ε∗F = 1
α2 + β2 (−β sinhα + α sinβ)

(25)

For the sum of the logarithmic series we present here, for simplicity,
only the result for non symmetric proper Lorentz tensors on the principal
branch [28].

Proposition 7 (Coll-Sanjosé): The logarithm of a non symmetric
proper Lorentz tensor field L is given by

lnL = haL
aL + εh∗aL ∗aL (26)

where aL is the anti-symmetric part of L , ε is the sign of the scalar
tr aL ∗aL , and haL and h∗aL are the functions

haL = 1
µ2 − ν2 {(µ2 − 1)1/2 arg coshµ + (1 − ν2)1/2 arccos ν}

h∗aL = 1
µ2 − ν2 {(1 − ν2)1/2 arg coshµ− (µ2 − 1)1/2 arccos ν}

(27)

of the invariant scalars µ and ν of L given by

µ ≡ 1
4{trL +

√
2trL2 − tr2L + 8}

ν ≡ 1
4{trL−

√
2trL2 − tr2L + 8} .

(28)

In this scheme, some simple charge-scaling and superposition laws
on proper tensors homologous to the linear ones on their associated two-
forms may be imposed. The more natural ones are, of course, those of
the Lorentz group structure:

λ • L = exp{λ lnL} , L⊕M = L×M , (29)

where × denotes the cross product [29]. The expression of this last
law in terms of the associated two-forms is known as the BCH-formula
(Baker-Campbell-Hausdorff), and its explicit and covariant summation
for the Lorentz group has been recently given. This summation is, as it is
due, of the form (23) were the particular values of the scalar coefficients
pF ,..., r∗[F,G] , may be found in [30].
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6 Quadratic Electromagnetic Field Equations

a) This Section presents a non-linear pure field theory of electromag-
netism, very likely the nearest to Maxwell theory. As this last one, our
non-linear theory supposes that the electromagnetic field is a two-form
F , but our field equations for it turn out to be quadratic.

I consider this theory as slightly better than Maxwell one, because it
contains exactly the additional solutions we wanted to have. But apart
from this fact, it inherits all the other bad aspects of Maxwell theory,
particularly the duality invariance and the advanced-retarded symmetry.
In spite of that, I believe it is worthwhile to present it: as a slightly
improvement on Maxwell theory, of course, but also as an illustration
of some of the concepts and ingredients above mentioned and, overall,
because of its striking properties.

b) At the exterior of sources, Maxwell equations for an electromag-
netic two-form F are

dF = 0 , δF = 0 , (30)

where d and δ denote respectively the exterior differential and the di-
vergence (up to sign) operators.

For regular fields, expression (9) may also be written

F = αU + β ∗U (31)

where U is a unit two-form,

trU2 = 2 , trU ∗U = 0 , (32)

representing the induced metric volume on the time-like two-plane U
of vectors x such that i(x) ∗ U = 0 . Maxwell equations admit for the
weights α and β the conditional system in U [31]

δ [δ U ∧ U − δ ∗U ∧ ∗U ] = 0 ,

δ [δ U ∧ ∗U + δ ∗U ∧ U ] = 0 ,
(33)

from which α and β are determined up to a constant related to initial
values. Time-like two-planes U verifying (33) are called Maxwellian,
because they generate all the regular solutions to Maxwell equations.
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Equivalently, Maxwell equations for regular electromagnetic fields may
be written, modulo initial conditions, in the Rainich energy form [32]

trT = 0 , T 2 ∧ g = 0

δT = 0 , d
∗(T ×∇T )

trT 2 = 0

⎫⎬
⎭ (34)

c) It is important to note that neither equations (33), nor equations
(34) are valid when F is null. For a null or pure radiation field, F =
�∧p , the eight Maxwell equations (30) group in four sets of two equations
implying and only implying the following properties:

• the null direction is geodesic,
• the polarization is parallel transported along the null direction,
• the null direction is distortion-free,
• the gradient of the energy density is specifically related to the

polarization vector.

d) This set of coupled equations appear as excessively restrictive in
some frequent situations.

It is the case in theoretical studies on wave-guides, where some au-
thors [33] claim that Maxwell equations have an insufficient number of
pure radiation solutions.

Also, in Special Relativity, meanwhile spherically symmetric pure ra-
diation electromagnetic fields are forbidden for evident topological rea-
sons, Maxwell equations are the sole responsible of the banning of cylin-
drically symmetric pure radiation fields, among others.

Even worse, there exists no vacuum gravitational space-times in
which Maxwell equations admit generic pure radiation solutions; in other
words, a torch cannot bring light in General Relativity. This is due to the
Bel-Goldberg-Sachs theorem [34], that reduces drastically the existence
of shear-free geodesic null directions in curved space-times.

e) Pure electromagnetic fields, in particular plane waves, like iner-
tial observers, free particles or free fields, are paradigmatic concepts in
physics. Their existence can only be proved locally and with rough pre-
cision, but their importance resides both, in the simple concepts that
they involve and in the non-trivial constructions that they are able to
provide.
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On the other hand, the extraordinary success of Maxwell equations
in Physics is so enormous, that any answer allowing them to save their
form or their structure is in general preferred. Thus, there exist some
theoretical answers to the above anomalies, still making Maxwell equa-
tions unchanged. But we shall suppose here what is the more direct
conclusion from the above three points, namely that:

Maxwell equations contain insufficient
pure radiation electromagnetic fields.

Of the above four pairs of Maxwell equations for the null case, the
third pair is the responsible for the non existence of cylindrical waves
in Minkowski and generic waves in curved space-times, and the fourth
restricts severely the number of solutions to those imposing a particular
relation between the orientation of the polarization and the intensity
of the field. There are these restrictions those that prevent to identify
electromagnetic pure radiation fields with beams of electromagnetic rays.
This is why we propose to substitute Maxwell equations M(F ) by a new
set of equations S(F ) restricted to the following schedule of conditions:

i. the pure radiation electromagnetic field solutions of
the new equations S(F ) must be all those having:

• their principal direction geodetic,
• their polarization parallel propagated,

ii. the regular electromagnetic field solutions to the new
equations S(F ) must differ as little as possible from
the corresponding regular solutions to Maxwell equa-
tions M(F ) .

f) There exists a natural class of operators on algebras, called deriva-
tions. A derivation d of an algebra (+, 
) is an operator that verifies
the Leibniz rule for the product, d(f 
 g) = df 
 g+ εf f 
dg , where εf
is the parity sign of the element f . Leibniz rule allows to associate to
any other operator d\ on the algebra an internal binary composition law
{f, g} , that we call the Leibniz bracket of d\ with respect to the algebra
(+, 
) , by means of the relation {f, g} + d\(f 
 g) = d\f 
 g + εf f 
 d\g .
So, one can say that, for a given algebra, an operator is a derivation iff
its Leibniz bracket vanishes.

It is well known that the exterior derivative d is a derivation of the
exterior algebra (+,∧) , but that the divergence operator δ is not.
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Definition: The Schouten bracket {F,G} of two exterior forms F
and G is the Leibniz bracket of the divergence operator δ with respect
to the exterior algebra:

{F,G} ≡ δF ∧G + (−1)p F ∧ δ G− δ (F ∧G) (35)

where p is the parity of F .

With this instrument, and applying concepts of the preceding Sec-
tions to write down these specifications in terms of the electromagnetic
field itself, one can proof:

Proposition 8 (Coll-Ferrando): The equations S(F ) on the electro-
magnetic field two-form F that satisfy the above schedule of conditions
are:

S(F ) ≡

⎧⎨
⎩

δ [F 2 + (∗F )2] = 0

{F, F} + {∗F, ∗F} = 0 ,
(36)

where { , } is the Schouten bracket.

g) Our new electromagnetic field equations S(F) verify the schedule
of conditions in the strongest sense: all the null two-forms with geodetic
principal direction and parallel propagated polarization are solutions of
them, and their regular solutions are exactly the regular Maxwellian ones,
in spite of the apparent difference between our equations (36) and the
Maxwell ones (30). Denoting by Σ(S) and Σ(M) respectively the space
of solutions of our system and that of Maxwell equations, and by {FN}
the set of null two-forms with geodetic principal direction and parallel
propagated polarization, one has

Σ(S) = Σ(M) ∪ {FN} (37)

Thus our new equations strictly make nothing but to add to Maxwell
equations the up to now missing pure radiation solutions. But it is im-
portant to note that, if the charge-scaling law remains the usual product
by a number, now the superposition law with ingredients in {FN} is
no longer additive. In spite of our result (23) of Proposition 5, for the
moment we have been unable to found it.

Maxwell succeed in formulating the action at a distance laws of
Coulomb, Biot-Savart, Ampere and Faraday in terms of the electro-
magnetic force fields (adding its displacement current), obtaining his
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celebrate equations [35]. Imagine for a moment he tried to formulate
them, in terms of the energetic fields (energy density, Poynting vector,
stress tensor), instead of in terms of the force fields. Then, he would
obtained, instead of his equations, the Rainich ones (34), valid only for
regular fields; in other words, he would not discovered the electromagnetic
character of the light!

The last of Rainich equations (34) is indeterminate for null energy
tensors, but, with the help of null two-forms, and expressed in term of
them, this indeterminacy may be solved, the result being our equations
(36). In other words, Maxwell could discovered our equations!

Our equations are the necessary and sufficient conditions for null prin-
cipal directions to be geodetic with a parallel transported polarization.
These are the basic ingredients of the geometric optics approximation.
But Maxwell equations are nothing but the same equations for regular
fields, so that we have:

the exact equations of the geometric optics approximation of
Maxwell equations for null fields, are the exact Maxwell equa-
tions for regular fields.

This result may be considered as a classical version of Feynman’s
point of view on quantum electrodynamics.

7 Conclusion

A little number of the many unclear aspects enveloping electromagnetism
have been commented. Some of them concern, more generally, the very
notion of (pure) field theory and the form and properties of its equations
(Section 2). And others affect the double aspect, theoretical and exper-
imental, of the tensor character and texture of the electromagnetic field
itself (Sections 3 and 4). Its invariant elements, proper energy density,
observers at rest, space-like principal directions, which paradoxically re-
mained until now mere mathematical variables, have been physically
analysed (Section 4).

It has been shown that strong fields could not only increase the in-
tensity of the ordinary ones but also change their tensor character; and
the example of Lorentz tensors, which, although formal, shows the main
features of this eventuality, has been presented (Section 5).

Finally, a physical application of some of the techniques presented
for the study of the texture of the electromagnetic field has been given:
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an electromagnetic theory that generalizes that of Maxwell, providing
“more light” than that contained in it, but rigorously respecting all the
not purely radiation ones (Section 6). The new solutions could make
our theory (more) complete, if they were detected by appropriate exper-
iments; otherwise, lacking in physical meaning, they would make it less
strict. But in any case, the new theory suffers, at least, of the same level
of non-strictness than Maxwell theory.

The problem of finding a complete and strict field theory of electro-
magnetism remains therefore open. It has not been possible to develop
here other equally important unclear aspects of the current field theo-
ries, but they constitute so many reasons of dissatisfaction raised by the
current notion of “field theory”.

The history of science reveals not only the brilliant evolution of some
ideas, but also and abundantly, the bad or null evolutions of many others.
It is the task of the physicist, theorist or experimental, to correct this
situation. I hope that the simple results presented here be an incentive
in this direction.

References

[1] Many of the results and ideas included here are the reflection of a friendly
and fruitful collaboration for a very long time with L. Bel, J.J. Ferrando,
J.A. Morales, F. San José and A. Tarantola.

[2] We are here interested by the electromagnetic fields in vacuum, irrespec-
tive of the sources that produce them. The sources will be located at, or
around, the singularities of these vacuum fields, and an important but
unsolved problem of all the usual field theories is to find an algorithm
allowing to locate, from the knowledge of the regular, exterior field on a
local, finite, region, its singularities and the values of the charges asso-
ciated to them. To our knowledge, at present such an algorithm is only
known for the very simple gravitational theory of one Newtonian point
particle (see reference [10]).

[3] The other extreme point of view considers straightaway electromagnetism
in presence of matter, involving fields, inductions, charge densities, cur-
rents and constitutive equations. One of the best descriptions of this
scenario, based in a particularly elegant axiomatics, may be found in F.
W. Hehl and Y. N. Obukhov, Foundations of Classical Electrodynamics,
in press.

[4] We work here with this pure field notion better than with a matter model
because in this last case the equations obtained, on one hand, contain the



Concepts for a theory of the electromagnetic field 269

vacuum ones and, on the other, are “closed” by the constitutive equations.
This amounts to say that they are equivalent to the vacuum ones plus a
particular class of electromagnetic matter models, so that the “texture
part” of them is equally concerned by our purposes.

[5] B. Coll, A Universal Law of Gravitational Deformation for General Rel-
ativity, in Proc. of the ERE-98 Spanish Relativity Meeting in honour of
the 65th Birthday of Lluis Bel “Gravitation and Relativity in General”
ed. J. Martin et al., World Scientific (1999). See also http://coll.cc .

[6] The possibility to detach from particles non-scaping parts of the field,
may be related to the existence, for Lorentz tensors, of four disconnected
components. Only the one containing the unit Lorentz tensor is directly
related to two-forms, that is to say, to ordinary electromagnetic fields.

[7] B. Coll and J.J. Ferrando, Non Linear Maxwell Equations in Proc. of
the ERE-93 Spanish Relativity Meeting “Relativity in General” Éditions
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