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1 Introduction

First, we would like to recall why the measurement postulate has been
introduced in the orthodox interpretation of the quantum theory. Let
us assume that a system of particles is completely described by a wave-
function, that always evolves according to a linear equation (such as
the Schrödinger equation). We plan to measure an observable A of the
system. To measure the observable A, one has to build an apparatus that
correlate the eigenstates of A to position eigenstates of the apparatus,
so that any measurement is finally a measurement of positions. For
example, when the spin component of a spin-1

2 particle is measured,
as in the Stern-Gerlach experiment, we finally measure a point on a
screen, so a position (either in the upper half-plate, either in the lower
half-plate). This remark is important since it gives a privileged role
to position, and so superpositions get an absolute meaning. Now if we
prepare the system in a superposition of eigenstates of A, and if we
send it towards the measuring apparatus, we can obtain superpositions
of macroscopic objects (measuring devices, cats, humans, and so on),
on account of the linear character of the equation of motion. But we
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do not observe those macroscopic superpositions, but eigenstates of the
observable being measured, with probabilities given by Born’s law. In
order to account for the experimental results, the measurement postulate
is introduced:

When an observer measure the observable A of the system, he
founds one of the eigenvalues of A, with probability given by
Born’s law. Because of the repeatability of experiments, the
wave-function of the system collapses to the corresponding
eigenstate when the measurement occurs.

The measurement postulate introduces a boundary between two worlds:
a quantum world, made of systems, described by wave-functions, and
a classical world, made of observers, described by positions. What is
wrong with that? According to the orthodox interpretation, there is no
element of reality in the quantum world: the particles of the quantum
world do not have any probability of being anywhere (they do not exist).
Elements of the classical world do have such probabilities: they exist
(their positions are elements of reality). And the orthodox interpretation
offers no explanation for that. People whose main concern is quantum
gravity must face this kind of problem, for it is meaningless to speak of
a wave-function of the universe in the orthodox interpretation.

To get rid of the frontier between the classical and the quantum
worlds, one could say that the world is described by a wave-function and
by the positions of the particles that it contains. There is a theory, built
along these lines; it is the non-relativistic de Broglie-Bohm pilot-wave
theory. Pilot-wave theory is a realistic theory, in so far as the positions
of the particles exist and are simply revealed by position measurements
(the positions are beables, a term coined by Bell). If there are n particles,
the universe is thus completely described by the couple ( �X(t),Ψ(t, �X)),
where �X is a point in a configuration space of dimension 3n. Ψ(t, �X)
evolves according to the Schrödinger equation, whereas the equation
of motion for �X(t) is such that if we consider a set of universes with
the same wave-function and initial configurations chosen according to
the probability density |Ψ(t0, �X)|2, then the final configurations will be
distributed according to |Ψ(t, �X)|2 (for any later time t). So the non-
relativistic pilot-wave theory gives the same experimental predictions
as the orthodox interpretation of the non-relativistic quantum theory,
without relying on concepts such as systems and observers.
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Pilot-wave theory is weakly non-local; that means that the equation
of motion for the positions of the particles is non-local, but that does not
lead to any supra-luminal signaling. Now, the widespread claim is that
those interpretations are ruled out by Bell’s inequality ([2], chap 7) and
the experiments that have been carried out later. If fact local ones are
ruled out, but since non-locality is commonly claimed to be unacceptable
(even weak non-locality, which does not lead to paradoxical situations),
it is said that any hidden-variables theory is incompatible with the quan-
tum theory. That is the wrong way to present the theoretical situation.
To present it correctly, we have to return to the EPR paradox [5], which
in essence says that some quantum correlations cannot be explained in
a local way, unless we say that the quantum theory is incomplete. Since
local hidden-variables theories are ruled out by Bell’s inequality and ex-
periments, the only way to explain quantum correlations is to revert to
non-locality (which is in fact hidden in the collapse postulate). Then, to
suppress the ill-defined measurement postulate, it is preferable to inter-
pret the quantum theory by a non-local hidden-variables theory, such as
the non-relativistic pilot-wave theory. It is worth underlining that Bell,
who is often credited of the refutation of hidden-variables theories, has
been one of the main advocates of the pilot-wave theory ([2], chap. 11,
14, 15 and 17).

The question that comes to mind is to know if the quantum field
theory can also be interpreted as a non-local hidden-variables theory.
At the time Bell wrote his paper [1] (or [2], chap. 19), Bohm had al-
ready shown that it was possible to build a realistic interpretation of
any bosonic quantum field theory [3]. To achieve that goal, Bohm took
the field as the beable, however he was not able to do the same for
fermions. The aim of Bell was then to show that it was also possible
to build a realistic interpretation of any fermionic quantum field theory,
along the pilot-wave ideas [1]. Bell managed doing so but he took a dif-
ferent beable: the fermion number density. It is slightly different from
the non-relativistic pilot-wave theory, whose beables are the positions of
the particles. The model is also formulated on a spatial lattice (space is
discrete but time remains continuous). His model is stochastic, but he
suspected that the theory would become deterministic in the continuum
limit. We have shown [4] that it is indeed the case, so that there is a
deterministic Bell model.

In this article, we consider in more details the deterministic Bell
model for quantum electrodynamics. First, we will give a brief presen-
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tation of the non-relativistic pilot-wave theory, since the deterministic
Bell model is in fact very similar to it. Then, we will give a presentation
of the Dirac quantum field theory, axed around the notion of negative-
energy electrons. In that approach, there are only particles of charge
−e but of positive and negative energy: their total number (fermion-
number) is conserved. We will see that this approach is a convenient
one to study localized properties (such as fermion-number density). The
reinterpretation of the theory is then made in terms of positrons, as holes
in the Dirac sea. In section 5, we build the deterministic Bell model for
the free Dirac quantum field theory. In the next section, the results are
generalized to quantum electrodynamics.

2 The non-relativistic pilot-wave theory

Let us consider a system containing n non-relativistic electrons. In
the orthodox interpretation, these electrons are completely described
by a wave-function Ψs1...sn(t, �x1, . . . , �xn), which is the solution of the
Schrödinger equation (s1, . . . , sn are spin-component indices). The prob-
ability density to observe the system in a configuration (�x1, . . . , �xn) at
time t is given by

ρ(t, �x1, ··, �xn) =
s1=2∑
s1=1

· ·
sn=2∑
sn=1

Ψ∗
s1...sn(t, �x1, . . . , �xn)Ψs1...sn(t, �x1, . . . , �xn) .

From the relation ∫
d3�x1 . . . d

3�xnρ(t, �x1, . . . , �xn) = 1

and with the help of the Schrödinger equation, it can be shown, at least
in the usual cases, that there exist currents �j1, . . . ,�jn such that

∂ρ(t, �X)
∂t

+
k=n∑
k=1

�∇�xk
·�jk(t, �X) = 0 . (1)

We use �X as a short notation for (�x1, . . . , �xn).

The main idea of the pilot-wave theory is to say that the positions
of the electrons are in fact elements of reality (or beables); that means
that the electrons have definite positions �x1(t), . . . , �xn(t) that are simply
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revealed by position measurements. So the complete description of a sys-
tem at time t would involve the wave-function Ψs1...sn(t, �x1, . . . , �xn), but
also the n position variables �x1(t), . . . , �xn(t). To complete the theory,
one must give the equations of motion for these objects. For the wave-
function, the Schrödinger equation is retained. As far as the position
variables are concerned, the only constraint on the equation of motion is
that the predictions of the orthodox interpretation of the quantum the-
ory are reproduced. Is there a general form for that equation of motion?
There are only two basic objects defined at time t: the wave-function of
the system and the position of the system ( �X(t) = (�x1(t), . . . , �xn(t))).
So the velocity of the system would be fixed by those objects. In other
words, the equation of motion is a velocity-law:

�X(t + dt) = �X(t) + �V Ψ(t, �X)| �X= �X(t) ,

where �V Ψ(t, �X) = (�vΨ
1 (t, �X), . . . , �vΨ

n (t, �X)).
Let us see what is the constraint imposed on the velocity-law by

requiring that the pilot-wave theory is in agreement with the orthodox
quantum theory. Let us define r(t, �X) as the probability density for
the system to be in configuration �X at time t. The probability density
is defined in the usual way: we consider a set of systems, labeled by
an index α, with the same wave-function but different realizations of
the beable �Xα(t). Then the probability density is defined over these
many experiments α. If the positions are simply revealed by position
measurements, the probability density for the system to be observed in
a configuration �X is equal to the probability density for the system to be
in configuration �X. Hence, to reproduce the predictions of the orthodox
quantum theory, the following relation

ρ(t, �X) = r(t, �X)

must be satisfied. Let us assume that this is true for some initial time
t0; then the relation that must be satisfied is

∂ρ(t, �X)
∂t

=
∂r(t, �X)

∂t
. (2)

We first consider the right-hand part. A consequence of the conservation
of the total probability ∫

d3n �Xr(t, �X)
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is the existence of a continuity equation

∂r(t, �X)
∂t

+ �∇ �X · (r(t, �X)�V Ψ(t, �X)) = 0 . (3)

With the help of eq. (1) and eq. (3), eq. (2) can be rewritten as

�∇ �X · (r(t, �X)�V Ψ(t, �X)) =
k=n∑
k=1

�∇�xk
· (r(t, �X)�vΨ

k (t, �X))

=
k=n∑
k=1

�∇�xk
·�jk(t, �X) .

Taking

�vΨ
k (t, �X) =

�jk(t, �X)

r(t, �X)
=

�jk(t, �X)

ρ(t, �X)
, (4)

the predictions of the orthodox quantum theory are regained. A com-
plete study of the pilot-wave theory can be found in [7].

3 The free Dirac quantum field theory

Our aim now is to show that the idea of positive and negative energy elec-
trons is convenient for the study of localized properties, such as fermion-
number density (or charge density).

3.1 The Dirac equation in first quantization

The classical Dirac equation is

i
∂ψ(t, �x)

∂t
= −i�α · �∇ψ(t, �x) + mβψ(t, �x) ,

where the hermitian matrices β and αj (j = 1, 2, 3) satisfy the relations

{αj , β} = 0 {αj , αk} = 2δjk β2 = 1

and where ψ(t, �x) is a four-component spinor field. A particular repre-
sentation of the matrices is given by the Pauli-Dirac choice:

β =
(

1 0
0−1

)
�α =

(
0�σ
�σ0

)
,
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where the σj are the usual Pauli matrices.

The Dirac equation can be rewritten in a covariant form by intro-
ducing the γ matrices, defined by the relations

γ0 = β = γ0 γj = αj = −γj .

Doing so leads to

iγµ∂µψ(t, �x) −mψ(t, �x) = 0 .

It can also be shown that the γ matrices satisfy the relations {γµ, γν} =
2gµν . Then, it is easy to check that each component of the Dirac field is
a solution of the Klein-Gordon equation

(� + m2)ψa(t, �x) = 0 ,

with a = 1, 2, 3, 4. Since the free solutions of the K-G equation are
e−iE�ptei�p·�x and eiE�pte−i�p·�x, with E�p =

√
|�p|2 + m2 and �p ∈ R

3, the
general forms of the free solutions of the Dirac equation are

us(�p)e−iE�ptei�p·�x vs(�p)eiE�pte−i�p·�x ,

with s = 1, 2 and �p ∈ R
3. To give an interpretation of the Dirac equa-

tion, one must find a conserved current, whose time-component is posi-
tive; the current jµ = ψ̄γµψ, where ψ̄ = ψ†γ0, is suitable. The quantity
j0(t, �x) = ψ†(t, �x)ψ(t, �x) is thus the probability density to find an elec-
tron at point �x at time t. Normalization still remains to be discussed.
If the free particle has momentum �pΣ in an inertial frame Σ, where the
universe appears to have a volume VΣ, then the following relation must
be satisfied: ∫

VΣ

d3�xψ†
�pΣ

(t, �x)ψ�pΣ(t, �x) = 1 ,

in every inertial frame. That means that the spinors must be normalized
to

u†
s(�p)us(�p) =

E�p

V m
v†s(�p)vs(�p) =

E�p

V m
,

where V is the volume of the universe in the inertial frame where the
particle is at rest.
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The time component of the current is positive, a task that was im-
possible with the Klein-Gordon equation. But the negative energy states
are still there. Once interactions are taken into account, their presence
would lead to the instability of the hydrogen atom, for example. To
avoid this, Dirac has assumed that all the negative energy states were
occupied. Hence a positive energy electron cannot transit to a negative
energy state, due to the Pauli exclusion principle. That state of lowest
energy is called the Dirac sea. The absence of a negative energy state
of momentum �p (a hole in the Dirac sea) would be seen as a particle of
positive energy E�p, momentum −�p and charge e. That led eventually to
the prediction of anti-particles known as positrons.

3.2 The Dirac theory in second quantization

The first step, in the construction of the corresponding quantum field
theory, is to find a real classical relativistic action, that leads to the Dirac
equation, when the variational principle is applied on it. The following
action

S =
∫

d3�xdtL(t, �x) =
∫

d3�xdtψ̄(t, �x)[iγµ∂µ −m]ψ(t, �x)

is a good candidate. It is real, up to a four-divergence. The momenta
conjugate to the fields are

πa(t, �x) =
∂L

∂ψ̇a(t, �x)
= iψ∗

a(t, �x) π∗
a(t, �x) =

∂L
∂ψ̇∗

a(t, �x)
= 0 .

The next step is quantization; classical fields become quantum fields,
satisfying the equal-time canonical anti-commutation relations

{ψa(t, �x), ψ†
b(t, �y)} = δab δ

3(�x− �y) {ψa(t, �x), ψb(t, �y)} = 0 . (5)

Since the quantum field ψ(t, �x) is a solution of the Dirac equation, it is
a superposition of free classical solutions with operators as coefficients:

ψ(t, �x) =

√
1
V

∑
s,�p

√
m

E�p
[cs(�p)us(�p)e−iE�ptei�p·�x + ζs(−�p)vs(�p)eiE�pte−i�p·�x]

(summation is made over all the momentum �p = (n1
2π
L , n2

2π
L , n3

2π
L ),

with V = L3 and n1, n2, n3 ∈ R
3). Taking

{cs(�p), c†r(�q)} = δrsδ�p�q {ζs(�p), ζ†r (�q)} = δrsδ�p�q ,
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and all other anti-commutators vanishing, the relations (5) are regained.

Let us now give an interpretation of the operators c and ζ. The
hamiltonian is obtained through the Legendre transformation

HD =
∫

d3�xψ†(t, �x)(−i�α · �∇ + mβ)ψ(t, �x)

=
∑
s,�p

√
|�p|2 + m2(c†s(�p)cs(�p) − ζ†s(�p)ζs(�p)) .

The momentum is

�P =
∫

d3�xψ†(t, �x)(−i�∇)ψ(t, �x) =
∑
s,�p

�p(c†s(�p)cs(�p) + ζ†s(�p)ζs(�p)) .

We define the fermion-number as the operator

F =
∫

d3�xψ†(t, �x)ψ(t, �x) =
∑
s,�p

(c†s(�p)cs(�p) + ζ†s(�p)ζs(�p)) ,

ψ†(t, �x)ψ(t, �x) being the fermion-number density. Fermion-number
means number of fermions, that is number of positive-energy electrons
plus number of negative-energy electrons. The fermion-number is con-
served ([HD, F ] = 0); the corresponding current is jµ = ψ̄γµψ = (F, �J)
with ∂µj

µ = 0. Since there are only electrons of charge −e, the fact that
the fermion-number is conserved is equivalent to the charge conservation.
The current �J is

�J =
∫

d3�xψ†(t, �x)�αψ(t, �x) =
∑
s,�p

�p(c†s(�p)cs(�p) − ζ†s(�p)ζs(�p)) .

The charge density is Q(�x) = −eF (�x) and the charge current is −e �J .

We define a vacuum |0D〉 as a state destroyed by the operators c and
ζ:

cs(�p)|0D〉 = 0 ζs(�p)|0D〉 = 0 ∀ s, �p .

This vacuum |0D〉 is not the Dirac sea (the Dirac sea is obtained from
|0D〉 by filling all the negative-energy states). Then c†s(�p)|0D〉 and
ζ†s(�p)|0D〉 are naturally interpreted as a one-electron states. Here is an
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array with the properties of the one-electron states

HDc
†
s(�p)|0D〉 = E�p c

†
s(�p)|0D〉 HDζ

†
s(�p)|0D〉 = −E�p ζ

†
s(�p)|0D〉

Fc†s(�p)|0D〉 = c†s(�p)|0D〉 Fζ†s(�p)|0D〉 = ζ†s(�p)|0D〉
�Pc†s(�p)|0D〉 = �pc†s(�p)|0D〉 �Pζ†s(�p)|0D〉 = �pζ†s(�p)|0D〉
�Jc†s(�p)|0D〉 = �pc†s(�p)|0D〉 �Jζ†s(�p)|0D〉 = −�pζ†s(�p)|0D〉

We see that the negative-energy electrons are not appropriated to the
momentum space: it is difficult to give an interpretation of the state
ζ†s(�p)|0D〉 since it has a charge −e, momentum �p and a charge current e�p.
However, these states are well suited to the study of localized properties.
To see that, let us switch to the Schrödinger picture; the Schrödinger
fields are the Heisenberg fields taken at time t = 0

ψS(�x) = ψ(t = 0, �x) = ψ(�x)

and we have the Schrödinger equation

i
∂|Ψ(t)〉

∂t
= HD|Ψ(t)〉 .

The fermion-number F =
∫
d3�xψ†(�x)ψ(�x) is the total number of

positive-energy and negative-energy electrons, and the density of elec-
trons (or fermion-number density) is thus given by

ψ†(�x)ψ(�x) = ψ†
a(�x)ψa(�x) .

What are the eigenstates of the the fermion-number density? Let us
start from a state |Φ〉, such that

ψ†(�x)ψ(�x)|Φ〉 = f(�x)|Φ〉 , (6)

and apply on operator ψ†
b(�y) on |Φ〉. From eq. (6) and from the relations

(5), it can be seen that

ψ†(�x)ψ(�x)ψ†
b(�y)|Φ〉 = (δ(�x− �y) + f(�x))ψ†

b(�y)|Φ〉 ,

so that any of the four operators ψ†
b(�y) creates a quantum of the fermion-

number at point �y. Thus the signification of ψ†
b(�y) is that it creates an

electron at point �y. In the same way, it can be seen that the operators
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ψb(�y) are annihilators of electrons at point �y. To obtain the eigenstates
of the fermion-number density, one has to start from a state which is
annihilated by any operator ψb(�y) and apply various creators ψ†

aj
(�xj) on

it. That state is simply the vacuum |0D〉:

ψb(�x)|0D〉 = 0 ∀�x ∈ R
3 ∀b ∈ {1, 2, 3, 4} .

Here is an array with the first eigenstates of the fermion-number density.

F = 0 |0D〉
F = 1 ψ†

a1
(�x1)|0D〉 ∀ a1 ∈ {1, 2, 3, 4} ∀�x1 ∈ R

3

F = 2 ψ†
a1

(�x1)ψ†
a2

(�x2)|0D〉 ∀ a1, a2 ∈ {1, 2, 3, 4} ∀�x1, �x2 ∈ R
3

. . . . . .

The structure of the Fock space is then

F = H1 ⊕ (H1 ⊗H1)as ⊕ (H1 ⊗H1 ⊗H1)as ⊕ . . . .

where H1 is the Hilbert space with fermion-number number equal to 1
(thus completely spanned by the orthonormal basis {ψ†

a(�x)|0D〉 ∀ a, �x}),
where ⊕ is the direct sum, ⊗ the direct-product, and as means that the
space is restricted to its antisymmetric part.

Since [HD, F ] = 0 and in accordance with the well-known super-
selection rule that forbids superpositions of states with different values of
the fermion-number, we know that |Ψ(t)〉 is an eigenstate of the fermion-
number. Let us consider the case where there is only one quantum of
the fermion-number:

F |Ψ(t)〉 = |Ψ(t)〉 .

Then |Ψ(t)〉 can be decomposed along the eigenstates of the fermion-
number density (ψ†(�x)ψ(�x)) with fermion-number equal to 1; these
eigenstates are

ψ†
a(�x)|0D〉 �x ∈ R

3, a ∈ {1, 2, 3, 4} .

Thus, in our case,

|Ψ(t)〉 =
∑
a

∫
d3�xΨa(t, �x)ψ†

a(�x)|0D〉 .
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Inserting the previous equation in the Schrödinger equation, using the
relations (5), and the definition of the hamiltonian, one finds that

i
∂Ψ(t, �x)

∂t
= −i�α · �∇Ψ(t, �x) + mβΨ(t, �x) ,

which is the Dirac equation. So the link is made between the first and
the second quantization.

Usually, the theory formalism is rewritten by introducing the posi-
trons, thanks to the the substitutions

ζs(�p) → d†s(−�p) ζ†s(�p) → ds(−�p) .

Then another vacuum has to be defined (let us call it |0〉):
cs(�p)|0〉 = 0 ds(�p)|0〉 = 0 ∀ s, �p .

That vacuum |0〉 is the usual vacuum. The operator ζ†s(�p)ζs(�p) is re-
placed by ds(−�p)d†s(−�p), which is also equal to −d†s(−�p)ds(−�p) + 1.
Making that substitution in the previous observables leads to

HD =
∑
s,�p

√
|�p|2 + m2(c†s(�p)cs(�p) + d†s(�p)ds(�p))

F =
∑
s,�p

(c†s(�p)cs(�p) − d†s(�p)ds(�p))

�P =
∑
s,�p

�p(c†s(�p)cs(�p) + d†s(�p)ds(�p))

�J =
∑
s,�p

�p(c†s(�p)cs(�p) − d†s(�p)ds(�p)) ,

up to some constants which have been dropped. Another observable
is usually defined, when we talk of positrons and electrons; it is the
particle-number

N =
∑
s,�p

(c†s(�p)cs(�p) + d†s(�p)ds(�p)) .

The properties of the one-particle states are

HDc
†
s(�p)|0〉 =

√
|�p|2 + m2c†s(�p)|0〉 HDd

†
s(�p)|0〉 =

√
|�p|2 + m2d†s(�p)|0〉

Fc†s(�p)|0〉 = c†s(�p)|0〉 Fd†s(�p)|0〉 = −d†s(�p)|0〉
�Pc†s(�p)|0〉 = �pc†s(�p)|0〉 �Pd†s(�p)|0〉 = �pd†s(�p)|0〉
�Jc†s(�p)|0〉 = �pc†s(�p)|0〉 �Jd†s(�p)|0〉 = −�pd†s(�p)|0〉 .
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Thus, when we study properties related to the momentum space, the
electrons and positrons point of view is the best one. However, the
localized-particle states are not so natural. These states are defined as
the eigenstates of the operator

n(�x) =
s=2∑
s=1

[C†
s(�x)Cs(�x) + D†

s(�x)Ds(�x)] , (7)

where

Cs(�x) =
1√

(2π)3

∫
d3�pcs(�p)ei�p·�x Ds(�x) =

1√
(2π)3

∫
d3�pds(�p)ei�p·�x .

Eigenstates of the particle density are obtained from the vacuum |0〉 by
applying several creators C†

sj (�xj) or D†
sk

(�xk) on it. These states are the
Newton-Wigner states.

The particle-number is different from the fermion-number

F =
∑
s,�p

(c†s(�p)cs(�p) + ds(�p)d†s(�p)) = C +
∑
s,�p

(c†s(�p)cs(�p) − d†s(�p)ds(�p))

(where C is an infinite constant). It is worth mentioning that the
particle-number does not commute with the fermion-number density
ψ†(�x)ψ(�x). It is possible to find well-behaved functions f such that

[
∫

d3�xf(�x)ψ†(�x)ψ(�x), N ] �= 0 .

The proof is given in appendix A. In the electrons and positrons point
of view, the charge density is defined as

Q(�x) = −e : ψ†(�x)ψ(�x) : ,

where the dots mean normal-ordering. A corollary is that eigenstates of
the charge density are not eigenstates of the particle-number.

4 Localized measurements

In the non-relativistic pilot-wave theory, the hidden variables are the
positions of the particles. In the quantum field theory context, what
hidden variables must we choose? The first natural answer seems to be
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the particle density. We will now argue why the particle-density (eq.
(7)) is not a good choice for a beable.

The first point is that the observable n(�x) appears very artificial,
since it is not made of the fields ψ(�x) and ψ†(�x). Remember that any
measurement is made with a measuring apparatus that correlate eigen-
states of the observable being measured to eigenstates of the apparatus.
So, when we look at localized properties, we are interested in hamilto-
nian densities. Of course, n(�x) is hermitian, but that does not imply
that it has a physical meaning. In fact, when we measure localized prop-
erties, if we want to attain high precision, we have to use high energy
(small wavelengths), and that leads to pairs creation. So it seems that
the idea of an eigenstate containing a particle localized in a small re-
gion, looses his meaning when the region is sufficiently small. There is
a second argument that shows that n(�x) does not have physical mean-
ing: if we start from a state C†

s(�x)|0〉 at time t and if we let it evolve
according to the Schrödinger equation for a small time ∆t, then it can
be shown that it has a small probability to be outside the light-cone of
the event (�x, t) (see [6] and also [8]). The third point is more related to
the general ideas of the pilot-wave theory. In fact, the crucial ingredient
of the pilot-wave theory is the existence of a continuity equation linked
to the chosen beable. Since the particle number is not conserved, we do
not expect such an equation for the particle density.

In the non-relativistic pilot-wave theory, the hidden variable is the
particle density, but since there are only electrons, the particle density is
proportional to the charge density. Then can we take the charge density
as the beable? That has been suggested by Bell, in his interpretation of
the lattice fermionic quantum field theories [1]. To be more precise, Bell
suggested that the fermion-number density ψ†(�x)ψ(�x) could be given
the beable status. All the critics that we made of the particle density do
not apply to the fermion-number density. The fermion-number density
does not commute with the particle number. If we start from a state
ψ†
a(�x)|0D〉 at time t, the charge will stay in the light cone. And finally,

the fermion-number is conserved, so we expect a continuity equation.

5 The Bell model for the free Dirac quantum field theory

Since the fermion-number is conserved ([HD, F ] = 0), and in accor-
dance with the well-known super-selection rule, the pilot-state |Ψ(t)〉
is an eigenstate of the fermion-number; let us define the corresponding
eigenvalue by ω: F |Ψ(t)〉 = ω|Ψ(t)〉. So the pilot-state can be decom-
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posed along the eigenstates of the fermion-number density with fermion-
number equal to ω:

|Ψ(t)〉 =
1
ω!

∫
d3�x1 · ·d3�xωΨa1··aω (t, �x1, ··, �xω)ψ†

a1
(�x1) · ·ψ†

aω
(�xω)|0D〉

(from now on, we use Einstein’s convention: any repeated index is
summed over). It is thus possible, from the Schrödinger equation, to
obtain an equation satisfied by Ψa1··aω

(t, �x1, ··, �xω). It can be shown
that this equation is

i
∂Ψa1··aω

(t, �X)
∂t

=
j=ω∑
j=1

[−i�αaja · �∇�xj
+ mβaja]Ψa1··(aj→a)··aω

(t, �X) ,

(8)

where �X is a short notation for (�x1, . . . , �xω). We consider the case ω = 2.
It can be easily generalized. The pilot-state is

|Ψ(t)〉 =
1
2!

∫
d3�x1d

3�x2Ψa1a2(t, �x1, �x2)ψ†
a1

(�x1)ψ†
a2

(�x2)|0D〉 .

Let us apply the hamiltonian on |Ψ(t)〉:

HD|Ψ(t)〉 =
1
2!

∫
d3�x1d

3�x2d
3�xΨa1a2(t, �x1, �x2)

[i�∇ψ†
a(�x) · �αab + mψ†

a(�x)βab]ψb(�x)ψ†
a1

(�x1)ψ†
a2

(�x2)|0D〉

=
1
2!

∫
d3�x1d

3�x2d
3�xΨa1a2(t, �x1, �x2)[i�∇ψ†

a(�x) · �αab + mψ†
a(�x)βab]

(δa1bδ(�x− �x1)ψ†
a2

(�x2) − δa2bδ(�x− �x2)ψ†
a1

(�x1))|0D〉

=
1
2!

∫
d3�x1d

3�x2Ψa1a2(t, �x1, �x2)

[i�αaa1 · �∇ψ†
a( �x1)ψ†

a2
(�x2)|0D〉 − i�αaa2 · �∇ψ†

a( �x2)ψ†
a1

(�x1)|0D〉
+mβaa1ψ

†
a( �x1)ψ†

a2
(�x2)|0D〉 −mβaa2ψ

†
a( �x2)ψ†

a1
(�x1)|0D〉]

=
1
2!

∫
d3�x1d

3�x2Ψa1a2(t, �x1, �x2)

[i�αaa1 · �∇ψ†
a( �x1)ψ†

a2
(�x2)|0D〉 + i�αaa2 · ψ†

a1
(�x1)�∇ψ†

a( �x2)|0D〉
+mβaa1ψ

†
a( �x1)ψ†

a2
(�x2)|0D〉 + mβaa2ψ

†
a1

(�x1)ψ†
a( �x2)|0D〉] . (9)
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The second equality comes from the relations (5) and from the fact that
|0D〉 is annihilated by any operator ψa(�x). The third equality results
from an integration over �x. The fourth equality is a consequence of the
anti-commutation of the fields ψ†. Integrating by parts eq. (9) and
renaming the dummy indices gives

HD|Ψ(t)〉 =
1
2!

∫
d3�x1d

3�x2[−i�αa1a · �∇�x1Ψaa2(t, �x1, �x2)

−i�αa2a · �∇�x2Ψa1a(t, �x1, �x2) + mβa1aΨaa2(t, �x1, �x2)

+mβa2aΨa1a(t, �x1, �x2)]ψ†
a( �x1)ψ†

a2
(�x2)|0D〉 .

And since

i
∂Ψ(t)〉
∂t

=
i

2!

∫
d3�x1d

3�x2
∂Ψa1a2(t, �x1, �x2)

∂t
ψ†
a1

(�x1)ψ†
a2

(�x2)|0D〉 ,

the Schrödinger equation is equivalent to the above-mentioned result (eq.
(8)) for the case ω = 2.

The probability density to observe the universe in a configuration
(�x1, . . . , �xω) is

ρ(t, �x1, . . . , �xω) = Ψ∗
a1··aω

(t, �x1, ··, �xω)Ψa1··aω (t, �x1, ··, �xω) . (10)

With the help of equation (8), it can be shown that we have the following
continuity equation

∂ρ(t, �X)
∂t

+
k=ω∑
k=1

�∇�xk
·�jk(t, �X) = 0 , (11)

where

�jk(t, �x1, . . . , �xω) = Ψ∗
a1··aω

(t, �x1, ··, �xω)�αajaΨa1··(aj→a)··aω
(t, �x1, · · �xω) .

Let us go on with the proof: with the help of eq. (8), the time-derivative



Beables for Quantum Electrodynamics 289

of ρ(t, �X) (eq. (10)) is equal to

ρ̇(t, �X) = −Ψ∗
a1··aω

(t, �X)
j=ω∑
j=1

[�αaja · �∇�xj
+ imβaja]Ψa1··(aj→a)··aω

(t, �X)

−
j=ω∑
j=1

�∇�xj
Ψ∗

a1··(aj→a)··aω
(t, �X) · (�αaja)

∗Ψa1··aω
(t, �X)

+im

j=ω∑
j=1

Ψ∗
a1··(aj→a)··aω

(t, �X)(βaja)
∗Ψa1··aω

(t, �X)

Noting that (�αaja)
∗ = (�α†)aaj = �αaaj , that (βaja)

∗ = (β†)aaj = βaaj ,
and renaming the dummy indices, we see that the terms containing a
factor m cancel each other out. So there remains

ρ̇(t, �X) = −Ψ∗
a1··aω

(t, �X)
j=ω∑
j=1

[�αaja · �∇�xj
]Ψa1··(aj→a)··aω

(t, �X)

−
j=ω∑
j=1

�∇�xj
Ψ∗

a1··(aj→a)··aω
(t, �X) · �αaajΨa1··aω (t, �X) ,

and the conclusion (eq. (11)) follows directly.
All this expressions are totally similar to those found in the non-

relativistic pilot-wave theory. The positions of the fermions (electrons
of positive and negative energy) play the role of the positions of the
particles in the non-relativistic theory. Their number is conserved in
both cases; that leads to continuity equations, eq. (11) being the analog
of eq. (1). In the Bell model of the free Dirac quantum field theory,
the universe is described by a pilot-state, solution of the Schrödinger
equation, and by a point (�x1(t), . . . , �xω(t)). Proceeding just as in the
non-relativistic pilot-wave theory (see eq. (4)), it is easy to see that if
the kth fermion is moving according to the velocity-law

�vk(t) =
Ψ∗

a1··aω
(t, �x1, ··, �xω)�αakaΨa1··(ak→a)··aω

(t, �x1, · · �xω)
Ψ∗

b1··bω (t, �x1, ··, �xω)Ψb1··bω (t, �x1, ··, �xω)
,

then all the predictions of the orthodox quantum field theory are re-
gained. Of course, for any physical state (any state obtained from |0〉 by
creating a finite number of electrons and positrons), ω is infinite. But
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the number of fermions ω is countable if the volume of the universe is
finite. Another remark is that is also totally equivalent to say that the
charge-density is the element of reality.

6 A deterministic Bell model for quantum electrodynamics

The complete hamiltonian for quantum electrodynamics is

H = HD + HΓ − e

∫
d3�xψ̄(�x)γµψ(�x)Aµ(�x) ,

where HD is the free Dirac hamiltonian and HΓ is the free photon hamil-
tonian. The pilot-state is defined as the solution of the Schrödinger
equation

i
∂|Ψ(t)〉

∂t
= H|Ψ(t)〉 .

Since [H,F ] = 0, and according to the charge super selection rule, the
pilot-state is an eigenstate of the fermion-number; let us define the cor-
responding eigenvalue by ω

F |Ψ(t)〉 = ω|Ψ(t)〉 .

A complete basis for that particular class of states is then given by

|γ〉 ⊗ ψ†
a1

(�x1) . . . ψ†
aω

(�xω)|0D〉
�x1, . . . , �xω ∈ R

3 a1, . . . , aω ∈ {1, 2, 3, 4} γ ∈ {γ} ,

where the set of all |γ〉 form a complete basis of the photons Fock space
and where ψ†

a1
(�x1) . . . ψ†

aω
(�xω)|0D〉 is an eigenstate of the fermion density

with fermion-number equal to ω. Hence we have that

|Ψ(t)〉 =
a1=4∑
a1=1

· ·
aω=4∑
aω=1

∑
γ

∫
d3�x1 · ·d3�xωΨγ

a1...aω
(t, �x1, . . . , �xω)

|γ〉 ⊗ ψ†
a1

(�x1) . . . ψ†
aω

(�xω)|0D〉 .
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Inserting that expression in the Schrödinger equation, it is possible to
show that the equation satisfied by Ψγ

a1...aω
(t, �x1, . . . , �xω) is

i
∂Ψγ

a1··aω (t, �X)
∂t

=
j=ω∑
j=1

[−i�αaja · �∇�xj
+ mβaja]Ψ

γ
a1··(aj→a)··aω

(t, �X)

−
j=ω∑
j=1

∑
γ′

〈γ|e(βγµ)ajaAµ(�xj)|γ′〉Ψγ′

a1··(aj→a)··aω
(t, �X)

+
∑
γ′

〈γ|HΓ|γ′〉Ψγ′

a1··aω
(t, �X) . (12)

The probability density to observe the system in a configuration �X at
time t is

ρ(t, �X) = Ψγ∗
a1··aω

(t, �X)Ψγ
a1···aω

(t, �X)

(sum over any repeated index). Let us calculate ρ̇(t, �X) with the help of
eq. (12). We have that ρ̇(t, �X) =

− Ψγ∗
a1··aω

(t, �X)
j=ω∑
j=1

[�αaja · �∇�xj
+ imβaja]Ψ

γ
a1··(aj→a)··aω

(t, �X)

−
j=ω∑
j=1

�∇�xj
Ψγ∗

a1··(aj→a)··aω
(t, �X) · (�αaja)

∗Ψγ
a1··aω

(t, �X)

+ im

j=ω∑
j=1

Ψγ∗
a1··(aj→a)··aω

(t, �X)(βaja)
∗Ψγ

a1··aω
(t, �X)

+ i
∑
γ γ′

Ψγ∗
a1··aω

(t, �X)
j=ω∑
j=1

〈γ|e(βγµ)ajaAµ(�xj)|γ′〉Ψγ′

a1··(aj→a)··aω
(t, �X)

− i
∑
γ γ′

Ψγ∗
a1··aω

(t, �X)〈γ|HΓ|γ′〉Ψγ′

a1··(aj→a)··aω
(t, �X)

− i
∑
γ γ′

j=ω∑
j=1

Ψγ′∗
a1··(aj→a)··aω

(t, �X)〈γ′|e(βγµ)∗aaj
A†

µ(�xj)|γ〉Ψγ
a1··aω

(t, �X)

+ i
∑
γ γ′

Ψγ′∗
a1··(aj→a)··aω

(t, �X)〈γ′|H†
γ |γ〉Ψγ

a1··aω
(t, �X) .



292 S. Colin

Noting that the matrix β is hermitian and that the dummy indices can
be renamed, it is easy to check that the terms containing a factor m
cancel each other out. In the same way, on account of the hermiticity of
HΓ, A†

µ(�x) and (βγµ), and due to the possible renaming of the dummy
indices, the terms containing photon fields cancel each other out, so that

ρ̇(t, �X) = −Ψγ∗
a1··aω

(t, �X)
j=ω∑
j=1

[�αaja · �∇�xj
]Ψγ

a1··(aj→a)··aω
(t, �X)

−
j=ω∑
j=1

�∇�xj
Ψγ∗

a1··(aj→a)··aω
(t, �X) · �αaajΨ

γ
a1··aω

(t, �X) .

That last equation can be rewritten as

∂ρ(t, �X)
∂t

+
k=ω∑
k=1

�∇�xk
·�jk(t, �X) = 0 ,

where

�jk(t, �x1, . . . , �xω) = Ψγ∗
a1··aω

(t, �x1, ··, �xω)�αajaΨ
γ
a1··(aj→a)··aω

(t, �x1, · · �xω) .

Then, if the kth fermion moves with velocity

�vk(t) =
Ψγ∗

a1··aω (t, �X)�αakaΨ
γ
a1··(ak→a)··aω

(t, �X)

Ψγ∗
b1··bω (t, �X)Ψγ

b1··bω (t, �X)

∣∣∣∣
�X= �X(t)

,

all the predictions of the orthodox interpretation of quantum electrody-
namics are regained, if any measurement amounts to a measurement of
the charge density.

7 Conclusion and open questions

We hope to have shown that it is possible to have a picture of what
is going on in quantum electrodynamics, by taking the fermion-number
density, or charge density, as an element of reality. Of course, this is still
a work in progress. The point of view we have adopted is not convenient
for practical calculations, but that was not the goal we were pursuing.

A line of research that should be followed is the study of the non-
relativistic limit of the Bell model for quantum electrodynamics, in or-
der to show if we obtain the non-relativistic pilot-wave theory in that
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limit. Another line of research is the application of these ideas to bosonic
quantum field theories. On one hand, in the Klein-Gordon quantum field
theory, there is no state annihilated by a charge annihilator, so it is an
argument against the Bell model for the Klein-Gordon quantum field
theory, at least in the present form of the Bell model. On the other
hand, charge is conserved, so we expect a continuity equation for the
charge. Perhaps that the solution will come by looking at things locally.
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A Calculation of the commutator [N,ψ†(�x)ψ(�x)]

We want to show that

[N,ψ†(�x)ψ(�x)] �= 0 , (13)

where

N =
∑
r

∫
d3�k[c†r(�k)cr(�k) + d†r(�k)dr(�k)] , (14)

even we think about the fields as distributions. We use the following
relation (F stands for fermion):[F1F2, F3F4]

=F1[F2, F3F4] + [F1, F3F4]F2

=F1{F2, F3}F4 − F1F3{F2, F4} + {F1, F3}F4F2 − F3{F1, F4}F2 .

Let us recall the expressions of the spinor fields:

ψ(�x) =

√
1

(2π)3
∑
s

∫
d3�p

√
m

E�p
[us(�p)ei�p·�xcs(�p) + vs(�p)e−i�p·�xd†s(�p)]

ψ†(�x) =

√
1

(2π)3
∑
s

∫
d3�p

√
m

E�p
[u†

s(�p)e
−i�p·�xc†s(�p) + v†s(�p)e

i�p·�xds(�p)] .

By using the anti-commutation relations

{cs(�k), c†r(�p)} = δsrδ
3(�k − �p) {ds(�k), d†r(�p)} = δsrδ

3(�k − �p) ,

and all other anti-commutators vanishing, we find that

{ψ†
a(�x), cr(�k)} =

√
1

(2π)3

√
m

E�k

u†
ar(�k)e−i�k·�x {ψa(�x), cr(�k)} = 0

{ψa(�x), c†r(�k)} =

√
1

(2π)3

√
m

E�k

uar(�k)ei�k·�x {ψ†
a(�x), c†r(�k)} = 0

{ψa(�x), dr(�k)} =

√
1

(2π)3

√
m

E�k

var(�k)e−i�k·�x {ψ†
a(�x), dr(�k)} = 0

{ψ†
a(�x), d†r(�k)} =

√
1

(2π)3

√
m

E�k

v†ar(�k)ei�k·�x {ψa(�x), d†r(�k)} = 0 ,
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so that [ψ†
a(�x)ψa(�x),

∑
r

∫
d3�kc†r(�k)cr(�k)]

=
∑
r

∫
d3�k

(
ψ†
a(�x){ψa(�x), c†r(�k)}cr(�k) − c†r(�k){ψ†

a(�x), cr(�k)}ψa(�x)
)

=
m2

(2π)3
∑
s,r

∫
d3�pd3�k√
E�pE�k

[u†
s(�p)ur(�k)e−i(�p−�k)·�xc†s(�p)cr(�k)

+ v†s(�p)ur(�k)ei(�p+�k)·�xds(�p)cr(�k) − u†
r(�k)us(�p)ei(�p−

�k)·�xc†r(�k)cs(�p)

− u†
r(�k)vs(�p)e−i(�p+�k)·�xc†r(�k)d†s(�p)] .

Since r, s, �p and �k are dummy variables, we find that

[ψ†
a(�x)ψa(�x),

∑
r

∫
d3�kc†r(�k)cr(�k)] =

m2

(2π)3
∑
s,r∫

d3�pd3�k√
E�pE�k

[v†s(�p)ur(�k)ei(�p+�k)·�xds(�p)cr(�k)]−

m2

(2π)3
∑
s,r

∫
d3�pd3�k√
E�pE�k

[u†
r(�k)vs(�p)e−i(�p+�k)·�xc†r(�k)d†s(�p)] .

In the same way, we obtain [ψ†
a(�x)ψa(�x),

∑
r

∫
d3�kd†r(�k)dr(�k)]

=
∑
r

∫
d3�k

(
−ψ†

a(�x)d†r(�k){ψa(�x), dr(�k)} + {ψ†
a(�x), d†r(�k)}dr(�k)ψa(�x)

)

=
m2

(2π)3
∑
s,r

∫
d3�pd3�k√
E�pE�k

[−u†
s(�p)vr(�k)e−i(�p+�k)·�xc†s(�p)d

†
r(�k)

− v†s(�p)vr(�k)ei(�p−�k)·�xds(�p)d†r(�k) + v†r(�k)us(�p)ei(�p+
�k)·�xdr(�k)cs(�p)

+ v†r(�k)vs(�p)e−i(�p−�k)·�xdr(�k)d†s(�p)] .

This can be simplified to

[ψ†
a(�x)ψa(�x),

∑
r

∫
d3�kd†r(�k)dr(�k)] =

− m2

(2π)3
∑
s,r

∫
d3�pd3�k√
E�pE�k

[u†
s(�p)vr(�k)e−i(�p+�k)·�xc†s(�p)d

†
r(�k)]+

m2

(2π)3
∑
s,r

∫
d3�pd3�k√
E�pE�k

[v†r(�k)us(�p)ei(�p+
�k)·�xdr(�k)cs(�p)] .
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Putting the two results together, we get

[ψ†
a(�x)ψa(�x), N ] =

− 2m2

(2π)3
∑
s,r

∫
d3�pd3�k√
E�pE�k

[u†
s(�p)vr(�k)e−i(�p+�k)·�xc†s(�p)d

†
r(�k)]+

2m2

(2π)3
∑
s,r

∫
d3�pd3�k√
E�pE�k

[v†r(�k)us(�p)ei(�p+
�k)·�xdr(�k)cs(�p)] ,

which is not equal to zero, even if we think about fields as distributions.
If we start from the state d†s(p0)c†s(p0)|0〉, it is clear that there are well-
behaved functions f such that

〈0|
∫

d3�xf(�x)[ψ†(�x)ψ(�x), N ]|d†s(p0)c†s(p0)|0〉 �= 0 .
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