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Electromagnetic vacuum fluctuations,

Casimir and Van der Waals forces
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ABSTRACT. Electromagnetic vacuum fluctuations have observable
consequences, like the Casimir force between mirrors in vacuum. This
force is now measured with good accuracy and agreement with theory
when the effect of imperfect reflection of mirrors is properly taken into
account. We discuss the simple case of bulk metallic mirrors described
by a plasma model and show that simple scaling laws are obtained at
the limits of long and short distances. The crossover between the short
and long-distance laws is quite similar to the crossover between Van
der Waals and Casimir-Polder forces for two atoms in vacuum. The
result obtained at short distances can be understood as the London
interaction between plasmon excitations at the surface of each bulk
mirror.

P.A.C.S.: 03.70.4+k; 42.50.Ct; 73.20.Mf

1 Introduction

An important prediction of quantum theory is the existence of irreducible
fluctuations of electromagnetic fields even in vacuum, that is in the ther-
modynamical equilibrium state with a zero temperature. These fluctu-
ations have a number of observable consequences in microscopic physics
for example in atomic physics the Van der Waals force between atoms
in vacuum.

Vacuum fluctuations also have observable mechanical effects in
macroscopic physics and the archetype of these effects is the Casimir
force between two mirrors at rest in vacuum. This force was predicted by
H. Casimir in 1948 [1] and soon observed in different experiments which
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confirmed its existence [2, 3, 4, 5]. Recent experiments have reached a
good precision, in the % range, which makes possible an accurate com-
parison between theoretical predictions and experimental observations
[6, 7].

Such a comparison is important for at least two reasons. On one
hand, the Casimir force is a mechanical consequence of vacuum fluctu-
ations which raise a serious challenge at the frontier of quantum theory
with the physics of gravitation; it is therefore important to test this pre-
diction with the greatest care and accuracy. On the other hand, several
experiments are searching for hypothetical new forces predicted by the
models of unification of fundamental forces and the main target of these
experiments is now the distance range between the nanometer and mil-
limeter; in this distance range, the Casimir force is the dominant inter-
action between neutral objects so that these experiments are essentially
limited by the accuracy in the knowledge of the Casimir force. Refer-
ences on these topics as well as further discussions of the motivations for
studying the Casimir force may be found in [8, 9].

Casimir considered an ideal configuration with two perfectly reflect-
ing mirrors in vacuum. But the experiments are performed with real re-
flectors, for example metallic mirrors which show perfect reflection only
at frequencies below the plasma frequency characterizing the metal. Ac-
counting for imperfect reflection and its frequency dependence is thus
essential for obtaining a reliable theoretical expectation of the Casimir
force in a real situation. This is also true for other corrections to the
ideal Casimir formula associated with the experimental configuration:
experiments are performed at room temperature, with the effect of ther-
mal fluctuations superimposed to that of vacuum fluctuations; in most
experiments, the force is measured between a plane and a sphere, and
not between two parallel planes; also, the surface state of the plates,
in particular their roughness, should affect the force. Here, we will fo-
cus our attention on the evaluation of the Casimir force between two
plane mirrors with arbitrary frequency dependent reflection amplitudes
and ignore the other corrections associated with the effect of a non zero
temperature or a non plane geometry.

The consideration of real mirrors is important not only for the analy-
sis of experiments but also from a conceptual point of view. Real mirrors
are certainly transparent at the limit of high frequencies and this allows
one to dispose of the divergences associated with the infiniteness of vac-
uum energy. This point was already alluded to in Casimir’s papers and
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an important step in this direction was the Lifshitz theory of the Casimir
force between two dielectric bulks [10, 11]. Here we will use the general
expression of the Casimir force obtained for two plane mirrors character-
ized by arbitrary frequency dependent reflection amplitudes [12]. This
expression is directly associated with an interpretation of the force as re-
sulting from the radiation pressure exerted by vacuum fluctuations upon
the two mirrors which form a Fabry-Perot cavity. The balance between
repulsive and attractive contributions associated with resonant and an-
tiresonant frequencies gives the net Casimir force. This method always
leads to a finite result as a consequence of the causality properties and
high-frequency transparency obeyed by any real mirror. In other words,
the properties of real mirrors are sufficient to obtain a regular expression
of the Casimir force, in spite of the infiniteness of vacuum energy.

In the next section, we will first recall this general expression of the
Casimir force between real mirrors and briefly discuss its application to
theory-experiment comparison. We will then focus our attention on the
simplest model of metallic mirrors, namely bulk mirrors with the optical
response of metals described by the plasma model. This model is not suf-
ficient for an accurate evaluation of the Casimir force but its simplicity
allows one to discuss qualitatively a lot of interesting physical features.
In particular, we will discuss the analogies and differences between the
results obtained with this model for the Casimir force between macro-
scopic mirrors and for the Casimir-Polder force between two atoms in
vacuum. In both cases, simple power laws are obtained at the limits of
long and short distances. The indices of these power laws are different
in the two cases but the crossovers between short and long-distance laws
present profound analogies. Let us briefly mention the convention we
usually use to name the different interaction ranges (there is no overall
accepted denomination yet). While we name the long range interac-
tion between atoms usually Casimir-Polder force, as Casimir and Polder
were the first to derive the correct expression in the retarded intercation
limit, we call the short distance limit of the interaction between atomic
bodies the van der Waals or London interaction, after the two physicists
the first of whom predicted phenomenologically while the second derived
quantum mechanically the correct interaction law.

Furthermore, we will show that the Casimir force at short distances
can be understood as the London interaction between the elementary
excitations of both scatterers, that is the surface plasmons of the two
bulk mirrors. These surface plasmons are oscillating electromagnetic
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fields, strongly localized at the surface of a metal (evanescent waves)
and associated with the collective motion of electrons.

Before entering this discussion, we may emphasize that the existence
of vacuum fluctuations alters the physical conception of empty space : in
contrast to classical physics, quantum theory forces us to consider vac-
uum as permanently filled by field fluctuations having observable effects.
Van der Waals and Casimir forces are nothing but the effects of vacuum
radiation pressure on microscopic or macroscopic objects at rest. Vac-
uum radiation pressure also induces dynamical effects for objects moving
in vacuum and these effects are directly connected to the problem of rel-
ativity of motion. Discussions of these dynamical effects and references
may be found in [13].

2 Casimir force between real mirrors

We now come to a more precise discussion of the Casimir force. Casimir
calculated this force in a geometrical configuration where two plane mir-
rors are placed a distance L apart from each other, parallel to each
other, the area A of the mirrors being much larger than the squared
distance (A > LQ). Considering the ideal case of perfectly reflecting
mirrors Casimir obtained the following expression for the force
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We have chosen the sign convention found in most papers on Casimir
force with a positive value of Fc,s corresponding to an attraction, that
is also a negative pressure.

This ideal Casimir formula only depends on geometrical quantities
A and L and on two fundamental constants, the speed of light ¢ and
Planck constant A. This remarkable universal feature corresponds to
the fact that the optical response of perfect mirrors is saturated : mir-
rors cannot reflect more than 100 % of the incoming light, whatever
their atomic constitution may be. This makes an important difference
between ideal Casimir forces and the Van der Waals forces, discussed
below, which depend on atomic polarizabilities. Now experiments are
performed with metallic mirrors which do not reflect all field frequencies
perfectly. This has certainly to be taken into account in the comparison
between theoretical estimations and experimental measurements. This
also entails that the Casimir force between real mirrors depends on the
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atomic structure constants which determine the optical properties of the
latter.

Imperfectly reflecting mirrors will be described by scattering ampli-
tudes which depend on the frequency, wavevector and polarization while
obeying general properties of stability, high-frequency transparency and
causality. The two mirrors form a Fabry-Perot cavity with the conse-
quences well-known in classical or quantum optics : the energy density
of the intracavity field is increased for the resonant frequency compo-
nents whereas it is decreased for the non resonant ones. The Casimir
force is but the result of the balance between the radiation pressure of
the resonant and non resonant modes which push the mirrors respec-
tively towards the outer and inner sides of the cavity [12]. This balance
includes not only the contributions of ordinary waves propagating freely
outside the cavity but also that of evanescent waves. These two sectors
of ordinary and evanescent waves are directly connected by analyticity
properties of the scattering amplitudes (see a more precise discussion
below).

The Casimir force may then be written as an integral over frequencies
w, transverse wavevectors k and a sum over polarizations p of the vacuum
field modes. Due to the analycity properties, the integral may be written
also over imaginary frequencies w = i¢ (with & real)
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In this expression, p represents the multiplication factor for the field after
a round trip in the cavity : it is the product of the reflection amplitudes
r1 and ro of the two mirrors and of an exponential phase factor. The
fraction £ is the sum of similar factors over the number of round trips
inside the Fabry-Perot cavity

P 2 3
——=p+p +p +... 3
AR (3)
In other words, p is the ‘open loop function’ associated with the cavity
while ﬁ is the ‘closed loop function’ taking into account the feedback;
all these quantities are evaluated at imaginary frequencies through an
analytical prolongation from their values at real frequencies.
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Expression (2) holds for dissipative mirrors as well as for non dis-
sipative ones [14]. It is regular for any frequency dependence of the
reflection amplitudes obeying natural physical conditions : causality of
the amplitudes and high-frequency transparency for each mirror, stabil-
ity of the closed loop function associated with the Fabry-Perot cavity.
Expression (2) tends towards the ideal Casimir formula (1) as soon as
the mirrors are nearly perfect for the modes contributing to the inte-
gral. Incidentally, these results show that the Casimir force between two
plane mirrors can be evaluated without any renormalization technique :
as guessed by Casimir in his original paper, the properties of real mirrors
themselves are sufficient to enforce regularity of the Casimir force.

The condition under which the ideal Casimir result is approached
will be specified below for bulk mirrors described by the plasma model.
More generally, the reduction of the Casimir force (2) with respect to the
ideal formula (1) due to the imperfect reflection of mirrors is described

by a factor
F

= 4
FCas ( )
We may proceed analogously for discussing the Casimir energy be-

tween real mirrors, evaluated by integrating the force

E = —/L F(L') dL’ (5)

For the energy, we use the standard convention of thermodynamics, with
a negative value corresponding to a binding energy '. The force (1)
between perfect mirrors is thus translated to

nr

hem? A
Fee == To01s )
Meanwhile, the force (2) between real mirrors corresponds to the energy
d?k [ d¢ b
E=AZ/4W/ o b log (1 - g} [i€) 7)

This energy has its absolute value reduced by the effect of imperfect
reflection and the reduction is conveniently described by a factor
E
= 8
ECaS ( )

1This convention is opposite to that used in our papers quoted in the list of
references but it is better adapted to the forthcoming discussions.

nE
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This factor plays an important role in the discussion of the most precise
recent experiments.

In these experiments, the force has been measured between a sphere
and a plane and not between two plane parallel mirrors. The Casimir
force in this geometry is estimated from the proximity force approxi-
mation [15] which amounts to integrate the contributions of the various
inter-plate distances as if they were independent. Although the accuracy
of this approximation remains to be mastered, it is usually thought to
give a reliable approximation. The force in the sphere-plane geometry is
then given by the radius R of the sphere and by the Casimir energy as
evaluated in the plane-plane configuration for the distance L of closest
approach

2rR

Fsphere—plane:T |Eplane—plane| (9)
Using the results (6-8) obtained in the plane-plane geometry, one finally
obtains the Casimir force in the sphere-plane geometry

hem3 R
Fspherefplane:WnE (10)

This theoretical expression is used for comparison with recent precise
measurements of the force [6]. It accounts for the effects of imperfect
reflection and plane-sphere geometry which have a significant impact on
the value of the Casimir force. This is not the case for the effects of
thermal fluctuations and surface roughness which only have a marginal
influence (< 1%) in the same experiments. As a consequence, the good
agreement (~ 1%) obtained in the theory-experiment comparison can
be considered as a confirmation of the existence and properties of the
Casimir force as well as a test of the corrections associated with imperfect
reflection and plane-sphere geometry.

We want to emphasize that a precise description of the optical re-
sponse of the mirrors is necessary to reach an accurate evaluation of the
effect of imperfect reflection. If an accuracy of the order of 1% is aimed
at, this description should take into account the knowledge of optical
data of the metals on a wide frequency range [16]. In particular, the
plasma model is not sufficient for such an accurate evaluation. As an-
nounced in the Introduction however, we will use this simple model in
the following to get interesting results about the comparison of Casimir
and Casimir-Polder forces.
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3 Reflection on bulk mirrors described by the plasma model

For bulk mirrors, the reflection amplitudes are simply given by the Fres-
nel laws corresponding to the vacuum/metal interface with different ex-
pressions for the two polarizations TE and TM

TE_K/_K:m TTM_K’m_ng/
’ Km + EmK
b

r
K+ Km
52 2
RKm = k2 + 5111072 k= k2 + 072 (11)

em is the dielectric function of the metal given by the plasma model

2
, wp 2me
€m [25] =1+ 572 ; Ap = E (12)
with wp the plasma frequency and Ap the plasma wavelength; x is the
quantity already defined in (2); Ky, is the expression defined analogously
in the metal with the dielectric function ep,.

These expressions are well known but their analyticity properties de-
serve a special attention in the context of the present discussion. Causal-
ity entails that the reflection amplitudes are analytical functions of the
frequency in the ‘physical domain’ defined in the complex plane by a
positive real part for & [17]

w=1i , RE>0 (13)

Analyticity has to be understood with k and p fixed, the branch of the
square roots being taken so that

Riem >0 , R >0 (14)

The sectors of ordinary and evanescent waves lie on the boundary of this
domain : they indeed correspond to real frequencies w, that is also to
purely imaginary values for £&. They are distinguished by the values of s
which are purely imaginary for ordinary waves (w > c|k|), but real for
evanescent waves (w < c|k|). In the latter case, x is just the inverse of
the penetration length in vacuum of waves coming from the refracting
medium.

As already alluded to, analyticity also connects these two sectors
to the sector of imaginary frequencies (£ real). Precisely, expressions
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of the reflection amplitudes or of the loop functions in this sector are
obtained from similar expressions written for real frequencies through
an analytical continuation. This property was in fact used to write the
force (2) and energy (7) as integrals over imaginary frequencies [14].
Note in particular that the exponential factor exp (—2xL) appearing in
the loop function p describes the frustration of total reflection on each
vacuum/metal interface due to the evanescent propagation of the field
through the length L of the cavity. This explains why the radiation
pressure of vacuum modes is not identical on the internal and external
sides of each mirror and, therefore, why the Casimir force has finally a
non null value.

It is also worth discussing in more details the modulus of the reflection
amplitude which is expected to be smaller than unity as a consequence
of unitarity of the scattering on a mirror

rl <1 (15)

This property is certainly true in the sector of ordinary waves where it is
effectively a direct consequence of unitarity, for lossy as well as lossless
mirrors [14]. It is easily seen (11) that it is also true in the sector of
imaginary frequencies where k, Ky, and €, are real and positive. But
the case of evanescent waves requires a closer examination and the result
of this examination depends on the polarization.

For TE waves, it follows from (14) that (15) holds also in the evanes-
cent sector. It is then a consequence of the Phragmén-Lindel6f theorem
[18] that (15) is true on the whole physical domain (13). Then the open
loop function p also has its modulus smaller than unity in this domain
which ensures stability of the closed loop gain ﬁ. This stability means
that neither the mirrors forming the cavity nor the vacuum fields en-
closed in this cavity have the ability to sustain the oscillation which
would be associated with a pole of ﬁ in the physical domain [19]. For
TM waves, this stability property is also true and no self-sustained os-
cillation of the Fabry-Perot cavity occurs. However, (15) does not hold
in the evanescent sector since the reflection amplitudes reach large val-
ues corresponding to the existence of surface plasmon resonances (see
a more precise discussion below). This means that the closed loop am-
plitude is still stable although the open loop amplitude has a modulus
larger than unity. In more mathematical terms, the oscillation condition

p = 1, which corresponds to a pole of the closed loop function lfpp, is
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never met in the physical domain (13) although |p| may exceed unity in
this domain.

This discussion can be made more precise for bulk mirrors described
by the plasma model. To this aim, we first consider reflection of TM
waves on one such mirror. The corresponding reflection amplitude r™
given by (11) is seen to diverge when kp, + ek = 0, which defines the
surface plasmon resonance condition [20]. With the plasma model, this
condition can be solved as an expression for the frequency in terms of
the transverse wavevector 2

5 wi + 2¢°k? — \Jwp + 4ctk? (16)

w =
plasmon 9

The surface plasmon frequency wplasmon is real and lies on the boundary
RE = 0 of the physical domain (13). When dissipation is taken into
account, for example by considering the Drude model instead of the
plasma model, the pole of the closed loop amplitude is pushed from this
boundary R¢ = 0 into the unphysical domain ¢ < 0. It follows that
the divergence encountered with the plasma model is transformed into
a resonance. In the vicinity of this resonance, the modulus ’rTM| of the
reflection amplitude exceeds unity but the closed loop function remains
stable since its pole lies outside the physical domain.

When two mirrors are considered, their surface plasmons are coupled
by evanescent propagation through the cavity so that their frequencies
are displaced. Their displacement can be seen as responsible for the
interaction between the two mirrors [21, 22]. This approach will be dis-
cussed in more detail below since it leads to an interesting interpretation
of the Casimir force at short distances.

4 Power laws in the limits of long and short distances

Using the simple mirror model of the preceding section, we now discuss
the relation between the effect of imperfect reflection and the explored
distance range. The evaluation of the reduction factor (4) for bulk mir-
rors described by the plasma model has been presented in [16, 23]. In
this simple case, the reduced force np is a function of a single parameter,
namely the reduced distance i We draw this function on Figure 1.

2Note that the condition fm, —emk = 0, differing by a mere sign, corresponds to a
vanishing reflection amplitude and defines the Brewster frequency with the following

w%, +2c2 k2+, / wé +4ctk4

3 2
expression wBrewster = )
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Figure 1: The solid curve represents the Variation of the force reduction
factor nr as a function of the reduced dlbtance : mp goes to unity at

large distances whereas it varies linearly with 5= at short distances; the
latter behaviour is represented by the dashed hne

We first note that the factor nr gets close to unity at large distances

N heAm?
T 24014

This corresponds to a well known interpretation : large distances L >
Ap correspond to low frequencies w <« wp for which metallic mirrors
described by the plasma model are nearly perfect reflectors; this is why
the ideal Casimir formula (1) is a very good approximation of the real
force (2) in this limit.

Otherwise, the factor nr is smaller than unity and describes the re-
duction of the force due to the imperfect reflection of the metallic mirror
at high frequencies. In the limiting case of distances small with respect
to the plasma wavelength, the reduction becomes quite significant since
the factor ng varies linearly with the small factor %

L> Al:’ ’ nr = 1 ’ (17)

L heAn?
LA ~q— Fea—— 18
< Ap ) Uiy a)\P ) a240>\pL3 ( )
The dimensionless constant « was evaluated numerically in [16, 23] and
it will be given a more detailed interpretation in the following.

At this point, it is worth comparing the variation with distance of the
Casimir force with that of the Van der Waals force between two atoms
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in vacuum. Casimir and Polder [24] indeed showed that the latter force
obeys power laws in the two limits of short and long distances, with the
exponent being changed by one unit when going from one limit to the
other and the crossover taking place when the interatomic distance L
crosses the typical atomic wavelength Ap. The same behaviours are also
observed for the Casimir force between two metallic mirrors with the
plasma wavelength Ap playing the role of A\a.

Since this comparison allows one to get interesting insight on the
Casimir force, we briefly recall the results known for the Casimir-Polder
force in the next section and then discuss the analogies and differences
between both cases.

5 Reminders : the Casimir-Polder force between two atoms

In the present section we remind a few interesting results about the
Van der Waals force between two atoms. We first rewrite the general
expression obtained by Casimir and Polder [24] as an interaction energy
[25]

he [ 91 4 265 Bk 6k 3\ _oup
Ecpzfm/(; dK/O[A[ZCK/] <I€ +T+ﬁ+ﬁ+ﬁ e

. EnAn
anlien] = > gr a2 19)
n>0 " "

The interaction energy is an integral over imaginary frequencies w = ick,
L is the distance between the two atoms and «a represents the frequency
dependent polarizability of the atoms 3. The polarizability is written
here in the dissipation free approximation and it depends on the energy
E,, of the n—th atomic state measured with respect to the ground state
and on a coefficient A,, proportional to the square modulus of the dipole
matrix element associated with the transition. In the sequel of the paper,
we discuss the profound analogies as well as a few significant differences
appearing in the comparison of expression (19) and (7).

We want first to stress a fundamental analogy related to the very
significance of long-range interactions such as Casimir-Polder or Casimir
effects. Feinberg and Sucher [26] have written a still more general expres-
sion of the Casimir-Polder energy with magnetic polarizabilities taken
into account besides the electric polarizabilities which appear in (19).

3Expression (19) is written for two identical atoms; otherwise, OzQA should be re-
placed by the product of the polarizabilities of the two atoms.
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Since magnetic terms are smaller than electric ones, we ignore them
here but however refer to their paper for a very general discussion of
long-range interactions which decrease as power laws of the distance.
This makes an important difference with molecular interactions which
decrease as exponential laws and, for this reason, dominate at typical
atomic distances. An interesting fact is that long range interactions, in
contrast to molecular interactions, may be deduced from the scattering
amplitudes evaluated for the two scatterers separately. In more formal
words, the two-centers scattering amplitudes may be written in terms of
the one-center scattering amplitudes evaluated on shell for the photons
and of free field propagation factors. For example, the Casimir-Polder
energy (19) between atoms is written in terms of the polarizabilities aa
while the Casimir energy (7) between mirrors is written in terms of the
reflection amplitudes r. In both cases, free field propagation between the
two centers is described by the exponential factor exp (2xL) where 2k
is the momentum transfered on each scattering. In both cases too, the
interaction energy can be written equivalently as an integral over real or
imaginary frequencies, the equivalence being a consequence of causality
properties.

These fundamental analogies should be appreciated in contrast with
some significant differences. In particular, the atoms are point-like scat-
terers well coupled to the spherical waves centered on them whereas mir-
rors are plane scatterers which fit the definition of plane waves. Hence,
the expression (7) of the Casimir force shows explicitly the summation
over transverse wavevectors k and polarizations p while the field propa-
gation directions and polarizations have been traced over in expression
(19) of the Casimir-Polder energy. It also follows from the point-like
character of atoms that their mutual coupling through the field is less
efficient than for mirrors. In other words, the two atoms form a poor-
finesse cavity so that the higher order interferences terms, which play
an important role in the Fabry-Perot cavity, can be disregarded in the
two-atoms problem. This difference is made explicit by expanding the
logarithm in (7) as

2 3

log(lp)<p+p2+p3+...> (20)

The lowest-order term in this expansion varies as e~2* with distance

and thus corresponds to the term present in (19). In contrast, the higher-
order terms appearing in (20) and, therefore, in (7) are not accounted
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for in the perturbative expression (19).

We now go one step further in the discussion of (19) by considering
the large and short distance limits. In the large distance limit where L
is greater than the wavelengths of the various atomic transitions, retar-
dation effect plays a dominant role. This means that the exponential
factor e~ 2~L restricts significant contributions to the integral (19) to low
values of « for which the polarizability remains nearly equal to its static
value ap [0]. Hence, the interaction energy is obtained by evaluating a
universal integral

23 he
Ecp = A L> )\
CP 107 2 0] ; > Aa
23 - 4 3 2 —2u
== du (u* +2u® + 5u® + 6u + 3) e (21)
0

This result bears some similarity with the Casimir energy evaluated at
large distances which depends only on the static value r [0] of reflection
amplitudes. In the Casimir case, this value goes to unity and then com-
pletely disappears from the ideal Casimir formula (6). In the Casimir-
Polder case in contrast, aa [0] determines the global magnitude of the
interaction energy. The difference between the two power laws can be
attributed to dimensional arguments with aa having the dimension of a
volume.

We then consider the short distance limit L < As where the retarda-
tion effect is negligible. This means that the exponential factor may be
discarded and also entails that the last term in the parenthesis appearing
in (19) dominates the other ones. The interaction energy then scales as
%, a result well known for the Van der Waals interaction calculated by
London with retardation effects ignored [27]

Sh o0
Eop = —22¢ / dk o [ick] ,  L<Xa (22)
7TL6 0

Using the expression of the frequency-dependent polarizability (see 19)
and the integral

*  a b 1
—————dz = — , ,0>0 23
/0 212 ra2 ' 2a+b ¢ (23)
one rewrites the London expression as
3 An Ay
Ecp = —— —_— LA 24
CF = L6 En+Ey <AA (24)

n,n’ >0
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At this point we may stress that the change of exponent in the power
laws is effectively similar in the Casimir and Casimir-Polder cases : the
Casimir energy scales as % at large distances and Lz—l)\P at short distances
while the Casimir-Polder energy scales as % at large distances and ﬁ
at short distances. Keeping in mind that the global change of exponents
is explained by dimensional arguments, the change of exponent at the
crossover is effectively the same. In order to stress this point, we could
introduce a 7 factor in the Casimir-Polder case as the ratio of the general
expression (19) to the long-distance expression (21)

4 [ a? lick]

CP A
== [ qg 2alen
Rl T U
K=kL (25)

(K*+2K3 +5K? + 6K +3) e 2K

This factor goes to unity at large distances and varies linearly with L <
Aa at short distances; it thus varies roughly as the n factor defined above
for the Casimir problem.

In the next section, we show that this analogy may be pushed one step
further, allowing one to give an interesting interpretation of the Casimir
force at short distances as resulting from the London (non retarded)
interaction between the elementary excitations in the two scatterers,
that is the surface plasmons which live at the interface between each
bulk mirror and vacuum [28].

6 London interaction between surface plasmons

In this last section, we study the Casimir energy between metallic plates
described by the plasma model at the limit of short distances L < Ap.

To this aim, we first show that its expression (7) can be greatly
simplified at this limit. Indeed, values of s contributing significantly
to the integral correspond to xL of the order of unity : large values
have their contribution suppressed by the exponential factor exp (—2xL)
while small values correspond to a small measure in the integration over
transverse wavevector. Since L < Ap, this condition also means that
kAp > 1. Meanwhile, a non vanishing value of r implies £ < wp, that
is also %)\p < 1. In these conditions, k and ky, are both approximately
equal to |k|, the TE reflection amplitude is negligible whereas the TM
reflection amplitude takes a simple Lorentzian form

2
™ wg

r ~
2 _ 2
w wg

2
, Wi %P (26)



346 C. Genet, F. Intravaia, A. Lambrecht, S. Reynaud

The frequency ws is the constant value of the surface plasmon frequency
Wplasmon Obtained by putting the condition [k|Ap > 1 in (16).

For a cavity made with two identical mirrors, the open loop function
then takes the simple form

w2 2
o™ :( S 2> o—2lkIL (27)

2 _
w wg

The poles of the closed loop function, given by the condition p™ = 1,
therefore correspond to the frequencies

WS4+ = wWsV 1+ e*‘k|L (28)

This expression shows how the surface plasmons corresponding to the
two mirrors are displaced from their original frequencies wg due to their
coupling through the cavity. It also provides an interesting interpretation
of the Casimir interaction energy which can be written from (27) as

d2k hws+ hLL)S_ hws
E=A [ &£ _plws 2
/ i ( 2 T3 2 ) (29)

The Casimir energy is nothing but the result of the shift of zero-point
energies of the surface plasmons due to their coupling through the cav-
ity field [28]. This result has been obtained with retardation effects
neglected : this follows from the assumptions used in the derivation and
is also apparent in the fact that the exponential factors depend on the
transverse wavevectors but not on the frequencies of the field.

We now conclude by giving an analytical form of this London-like
expression of the Casimir energy at short distances. We come back
to equation (7) that we expand with the help of (20). We ignore the
vanishing TE contribution and obtain

d2k e—2n|k\L
= —hAZ / P R

B Oodf ) 2n_w(4n—3)
I"_/O 5e (7 [i€]) T4 (dn 2!

(4n—=3)11  1.3.,5...(4n —3)
(4n —2)!! ~ 2.4.6... (4n — 2)

(30)
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Collecting these results finally leads to the Casimir energy at short dis-
tances
N hcA i 1 (4n —3)!

T 16v2L2Ap = n? (4n — 2)1! (31)

n=1

This result may be equivalently expressed in terms of the Casimir
force or of the force reduction factor (18) with now a formal expression
for the numerical coefficient a

oo

30 1 (4n—3)1
= fon? ; 3 (4n — 2)!!
15 5 7

This reproduces the result of [16, 23]. Note that the integral I cor-
responding to the lowest order term n = 1 has the same form as the
integral (23) used in the calculation of the London expression (22), with
the surface plasmon frequency playing the role of an atomic resonance
frequency. The other contributions n > 1 represent the effect of higher-
order interferences in the Fabry-Perot cavity. It is worth emphasizing
that they have the same scaling law versus distance as the lowest order
term n = 1 and contribute significantly (~ 10%) to the final result.
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