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Classical study of an ensemble of electrons

leading to a statistical interpretation for the electron

radius
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Solutions of the relativistic Hamilton-Jacobi equation with repulsive
Coulomb potential, and of the equation of continuity, lead to a statis-
tical mixture of gamma distributions for an ensemble of electrons. The
study leads to the concept of a characteristic distance in configuration
space, which can be identified with the “electron radius”.

Les solutions de l’ équation de Hamilton-Jacobi relativiste dans un
champ Coulombien, et celles de l’ équation de continuité, nous donnent
pour un ensemble des électrons une mixture des gamma densités. Il en
résulte que il y a une distance charactériste qui peut s’ indentifier avec
le “rayon de l’ électron”.
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1 Introduction

As it is known, the classical radius of the electron is a universal con-
stant that is considered to give the limit of applicability of the classical
field theory, and is defined as

re =
e2

mc2
= 2.818 × 10−13cm.

Theoretically, the “radius”results as follows: If we consider the electron
as possessing a certain radius re, then its self-potential energy would be
of order e2/re � mc2, from which the dimension re = e2/mc2 results.
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But if, as the theory of relativity requires, the electron is a point par-
ticle, then re tends to zero, and consequently the potential self-energy
and the mass of the electron become infinite. According to Landau [1],
the occurence of these physically meaningless results, leads to the con-
clusion that the theory of classical electrodynamics has its limits when
we go to sufficiently small distances, smaller than the “radius”. In the
litterature there have been attempts to resolve this deficiency of the the-
ory; for instance Hautot [2] connects the concept of the “radius”with the
nature and the structure of the electron, while Laserra et al. [3] inter-
pret the “radius”as the minimal distance between particles in the case
of rectilinear motion, and derive it from dynamical properties. In study-
ing the statistical behavior of an ensemble of electrons under their own
repulsive potential, we have seen that this fundamental distance of clas-
sical electrodynamics can be permitted to obtain a statistical physical
significance.

In the present article we submit a method by means of which we
find the probability density in configuration space of an ensemble of
electrons described by the relativistic Hamilton-Jacobi equation with
repulsive Coulomb potential. The method is outlined as follows: We
solve the Hamilton-Jacobi equation and find the momenta as functions
of the position coordinates. Then, by use of the canonical equations,
we form the velocities also as functions of the position. These veloci-
ties are introduced as known functions in the equation of continuity, so
that the equation of continuity can be solved in the unknown function
of the probability density. In studying the statistical properties of the
resulting density, we see that the theory leads to an interesting statistical
interpretation for the radius of the electron.

2 Solutions of the Hamilton-Jacobi equation with repulsive
Coulomb potential

The relativistic Hamilton-Jacobi equation with repulsive Coulomb
potential expressed in polar coordinates, is

(
∂S

∂r
)2 +

1
r2

(
∂S

∂θ
)2 − 1

c2
(
∂S

∂t
+

e2

r
)2 + m2c2 = 0 (1)

where the function S(r, θ, t) is the Hamilton Principal (or characteristic)
function, e is the electron charge, m is the electron mass, and c is the
velocity of light.
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The Hamiltonian associated with Eq.(1) is

H = ±
{
m2c4 + c2P 2

r +
c2

r2
P 2
θ

}1/2

+
e2

r
(2)

where Pr = ∂S/∂r is the orbital momentum, Pθ = ∂S/∂θ is the angular
momentum and H = −∂S/∂t is the energy.

The canonical system of the Hamiltonian Eq. (2) gives the velocities
as

dr

dt
= ± Prc

2

H− (e2/r)
,

dθ

dt
= ± Pθc

2

r2[H− (e2/r)]
(3)

Eq. (1) admits of the following pairs of particular solutions:

S = ±2
√

2me2r ± e2θ

c
+ mc2t, (4)

S = ±2i
√

2me2r ± e2θ

c
−mc2t. (5)

In order to calculate the momenta and velocities as functions of the
variables, we shall consider the real solutions Eq. (4)1. From Eq. (4),
we get the momenta as

Pr =
∂S

∂r
= ±

√
2me2

r
, Pθ =

∂S

∂θ
= ±e2

c
. (6)

These expressions, introduced in Eqs. (3), result the velocities

dr

dt
= vr = ∓c2

√
2me2r

mc2r + e2
,

dθ

dt
= vθ = ∓ ce2

r(mc2r + e2)
. (7)

By introducing now the constant with dimensions of length

r0 =
e2

mc2
, (8)

Eqs. (7) are written in the form

vr = ∓c

√
2r0r

(r + r0)
, vθ = ∓ cr0

r(r + r0)
, (9)

where the sign (±) shows that the orbital and the angular velocities
result in both directions.

1The fact that these solutions result negative energies does not affect the following
theory, as we shall see.
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3 Solutions of the equation of continuity

Now let us assume that we have an ensemble of electrons obeying the
Hamilton-Jacobi equation Eq. (1). The ensemble is meant in the Boltz-
mann sence [4], which is understood as a very large number of electrons
(of the order of 1023), practically non-interacting, and this ensemble is
well described in configuration space by the equation of continuity

�∇(ρ · �v) +
∂ρ

∂t
= 0. (10)

where ρ = ρ(�r, t) is the unknown probability density function and �v =
�v(�r, t) are the known functions of the velocities, as they result from the
solutions of the Hamilton-Jacobi equation. The form of the velocities
Eq. (9) leads us to consider here the equation of continuity in polar
coordinates and time-independent, so that ρ(�r, t) → f(r, θ). Then Eq.
(10) becomes

f

(
∂vr
∂r

+
∂vθ
∂θ

+
vr
r

)
+ vr

∂f

∂r
+ vθ

∂f

∂θ
= 0, (11)

where now f = f(r, θ) is the unknown probability density function and
vr, vθ are the velocities given by Eqs. (9). By means of these functions
and their derivatives, Eq.(11) becomes

r0 − r

r0 + r

√
2r0r
2r

+
√

2r0r
r

+
√

2r0r
∂ log[f ]

∂r
+

r0
r

∂ log[f ]
∂θ

= 0 (12)

Introducing in Eq. (12) the new positive dimensionless variable

s(r) =
√

r0
r
, (13)

so that f(r, θ) → u(s, θ), we obtain the equation of continuity in the
form

s2 − 1
s(s2 + 1)

+
2
s
− ∂ log[u]

∂s
+
√

2
∂ log[u]

∂θ
= 0. (14)

This equation has the general solution

u(s, θ) ∼ (s + s3) exp
{
−g

(
s +

θ√
2

)}
, (15)
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where g is an arbitary function of the argument. The position variables
s and θ are stochastically independent, so that the function u will be of
the form of the particular solutions

u(s, θ; a) = C(s + s3)e−a
(
s+ θ√

2

)
, (16)

where C and a are constant parameters.
This function, with C and a positive real numbers, is nonnegative and
integrable in s ∈ [0,∞) and θ ∈ [0, 2π]. Consequently it is, up to a
normalizing constant, a joint probability density [5] of the form

u(s, θ) = us(s)uθ(θ).

The coefficient C = Ca can be easily calculated from the normalization
condition ∫ ∞

0

∫ 2π

0

u(s, θ)dsdθ = 1

and is

Ca =
a√

2
[
1 − exp{−aπ

√
2}

] a4

a2 + 6
. (17)

Finally, the acceptable particular solutions of the equation of continuity
Eq. (14) are

u(s, θ; a) =
a√

2
[
1 − exp{−aπ

√
2}

] e− a√
2
θ a4

a2 + 6
(s + s3) e−as (18)

and depend on the real positive constant parameter a, which in the
theory of probability is called scale parameter [6].

4 Properties of the marginal density

Of special interest is the marginal probability density

us(s; a) =
a4

a2 + 6
(s + s3) e−as (19)

For a → 0 the above function tends quickly to zero for every value of
s. Small values of a result smaller probabilities, while large values of a
result larger probabilities as s = (r0/r)1/2 increases. Increasing s means
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that we go to smaller distances. Especially s > 1 means that we go to
distances smaller than r0 (Fig. 1).
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Figure 1: The function us(s; a) = a4

6+a2 e
−as(s + s3) for three different

values of the scale parameter a.

The function us(s; a) yields the following statistical results:
The expected (average) value of s is given in terms of a by the relation

<s>=
2(a2 + 12)
a3 + 6a

. (20)

The most probable value of s is the one for which the density Eq. (19)
becomes maximum, and it is given by the real and positive solution of
the equation

as3 − 3s2 + as− 1 = 0 (21)

The root mean square is

RMS[ s ] =
√
<s2> =

√
6
a

√
a2 + 20
a2 + 6

(22)
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and, the variance is

σ2 = | <s2> − <s>2 | =
2(a4 + 30a2 + 72)

a2(a2 + 6)2
. (23)

Finally, the probability of finding the position of an electron at sites equal
or smaller than r0 = e2/mc2, or for s ≥ 1, is given by the distribution

P(s≥1)(a) =
a4

a2 + 6

∫ ∞

1

eas(s + s3 ds =
2e−a(a3 + 2a2 + 3a + 3)

a2 + 6
(24)

This function is plotted in Fig. 4, in which it is shown that there exists
a range of values of the parameter a such that they give considerable
probabilities to r being much smaller than r0.

From the mathematical point of view, all the values of a ∈ [0,∞)
are permissible; but the physics of the problem gives us the possibility
to select an appointed value. In fact, we remark that, in writing the
function Eq. (19) as a sum

us(s; a) = u1(s; a) + u2(s; a) =
a4

a2 + 6
s e−as +

a4

a2 + 6
s3 e−as (25)

we see that it is about a mixture [6] of two gamma densities. We remind
that, in probability theory, by mixture we define a probability density of
the form

w(x) =
k∑

j=1

njfj(x) with
k∑

j=1

nj = 1 (26)

where the functions fj(x) are probability densities. The gamma density,
concentrated on [0,∞) is defined by

γ(x; b + 1, a) =
ab+1

Γ(b + 1)
xb e−ax, (27)

where Γ(b+1) is the well-known gamma function. Consequently we have

γ(s; 2, a) = a2se−as, γ(s; 4, a) =
a4

6
s3e−as. (28)

From Eqs. (26) and (28) we see that the function Eq. (19) is the mixture

u(s; a) = n1 γ(s; 2, a) + n2 γ(s; 4, a) (29)
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with

n1 =
a2

a2 + 6
, n2 =

6
a2 + 6

. (30)

This mixture has the physical meaning that a fraction n1 of the total
number of electrons are distributed according to the probability den-
sity γ(s; 2, a) = a2s e−as, while the rest n2 = 1 − n1 follow the density
γ(s; 4, a) = (a4/6)s3 e−as. This implies that in the ensemble we have two
subensembles of electrons with different statistical behavior2. Since we
have assumed that the particles in the ensemble are identical, we have no
reason to believe that the one or the other gamma density will prevail in
the mixture; therefore we take the subensembles to be “equiprobable",
i.e.

n1 = n2 =
1
2
. (31)

From (30), (31), we see that this happens if

a =
√

6 � 2.44949

We may reasonably consider that this is a realistic value of the scale
parameter a, so that the actual density functions for our ensemble, as
given by Eqs. (18) and (19) for a =

√
6, are

u(s, θ) =
3
√

3
1 − e−2π

√
3

(s + s3) e−
√

6 s−
√

3 θ (32)

us(s) = 3 e−
√

6 s(s + s3) (33)

In Figure 2 we show the function Eq. (32). In Figure 3 we show the func-
tion Eq. (33) as mixture of the two densities γ(s; 2,

√
6) and γ(s; 4,

√
6).

Inserting in Eqs. (20)-(24) the value a =
√

6 and by use of Eq. (13), we
obtain the results
Expected value

<s>=
√

3
2 = 1.22474, corresponding to r<s> = 0.66666 r0

2This might have some connection with the electron spin.
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Figure 2: The function u(s, θ) = 3
√

3

1−e−2π
√

3 (s+s3)e−
√

6s−
√

3θ representing the

joint probability density of electrons in the ensemble.

Most probable value

sm = 0.651549, corresponding to rsm = 1.53457 r0

Root mean square

RMS[ s ] =
√

13
6 = 1.47196, corresponding to r[RMS] = 0.461538 r0

Variance
σ2 =

2
3

= 0.666666

Probability to find the position of an electron at sites equal or smaller
than r0

P(s≥1) =
1
6
(15 + 9

√
6) e−

√
6 = 0, 533069.

5 Statistical interpretation of the electron radius

In our model the constant r0 = e2/mc2 results as a characteristic
distance in configuration space and coincides with the radius of the elec-
tron re. The electron is considered as pointlike, and as representative
of an ensemble of electrons. The probability density characterizing the
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Figure 3: The function us(s) = 3e−
√

6s(s + s3) as a mixture of the
densities γ(s; 2,

√
6) and γ(s; 4,

√
6).

state of the ensemble has been derived in a straightforward way. We can
see from the results given in the previous section that the characteristic
statistical values of the magnitude s = (r0/r)1/2 give distances of the
same order of magnitude and even close to the electron radius.

Furthermore, we note that the radius lies in the mean between the
expected and the most probable distance where an electron is found. In
fact, from the results of the previous section, we see that

re �
r<s> + rsm

2
=

(0.66666 + 1.53457)
2

r0 = 1.10062 r0.

We may say that, by this model, the radius obtains a statistical interpre-
tation, as the average distance between the expected and the most probable
position of an electron in configuration space.

Another interestig remark is, that the expected and the RMS val-
ues of the variable s yield distances smaller than re, and that actually
the probability to find an electron at distances smaller than the radius
equals 0.533069. Thus, although the electrons are still considered as
poinlike particles, the presented theory allows us to move in distances
much smaller than the radius in the frame of classical electrodynamics,
and in this sense we can say that there is no limit in the application of
classical electrodynamics.
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Figure 4: Distribution for s ≥ 1 or the probability of finding an electron
at r ≤ r0 in terms of a. For a =

√
6 � 2.445 , P (

√
6) � 0.53.
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