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It is the dissymmetry, which creates 
the phenomenon. Pierre Curie [1]

ABSTRACT. The study of the quantum state is revisited to emphasize the 
possibility to interpret the wave function in Dirac’s model as the mechanical 
action leading the electron along its trajectory. Indeed it is still very surpris-
ing that Sommerfeld and Dirac models lead to the same expression for the 
energy of the levels of the various quantum states, whereas the interpretation 
of the regular doublets escapes to the corpuscular traditional approach of 
Sommerfeld. In this respect it is first underlined that the symmetry of the 
motion of rotation reveals a corresponding intrinsic axis on the electron. Fur-
thermore the relativity of motion requires that the same causes must be re-
sponsible for it in the space of the electron as well in that of the proton. This 
leads to suppose that the moments are due to exchange of matter between the 
electron and the proton. This approach of the motion implies exchanges of 
matter in a volume and mechanical action acting into three orthogonal direc-
tions. Furthermore the exchanges of matter lead to consider the mass as vari-
able, with absorption and ejection, giving the clue to explain the doublets 
and the moments with half-integer quantum numbers of the angular momen-
tum.
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1 Introduction 

The experimental study of the spectral lines emitted by an atom reveals 
that they are classified in series. Some lines of these series are double, called 
regular doublets. The traditional example is that of the D line of the sodium 
with the respective wavelengths λ1 = 5890Å and λ2 = 5896Å. The set of lines 
thus observed for various atoms forms the experimental base of the quantum 
state. To interpret the spectral lines Sommerfeld was brought to quantize, in 
the study of the motion of the electron around the proton, the angular and 
radial action [2]. Doing so leads to a great number of remarkable results but 
does not provide any answer as to the origin of the regular doublets and the 
existence of the half integer numbers [3]. Up to now only the introduction of 
the wave functions and the theoretical model of Dirac have allowed finding
out the set of the quantum states and the energy levels associated with the 
regular doublets.

However, the study of the quantum states corresponding to the doublets 
shows that they correspond to a small difference of mass, but the connection 
with the intrinsic rotation is still to put in view. On the other hand, there re-
mains a very surprising fact: these two theories lead to the same expression 
of the energy of the levels of the various quantum states whereas the interpre-
tation of the regular doublets escapes the corpuscular traditional approach of 
Sommerfeld.

Now at its advantage one has to keep in mind that Sommerfeld’model with 
the concept of trajectory has a remarkable explanatory force that Dirac’s 
model has not. For example it makes it possible to understand the attraction 
between atoms of which the most external electrons are in a state "s" [4]. The 
trajectory indeed gives an electric dipolar character to the atoms and thus 
allows for the understanding, for example, of attraction between alkaline 
atoms. On the other hand the trajectory of electron has allowed proposing an 
interpretation of the mechanism of conductivity and superconductivity in the 
superconducting oxides [5]. Furthermore the assumption of trajectory is sug-
gested by the magnetic properties of the matter: indeed magnetism is before 
all a consequence of the motion of electric charges. These various remarks 
suggest that the equation of Dirac gives access to particular aspects of the 
trajectory. The purpose of this work is to emphasis these aspects of the quan-
tum state. We have already tackled this purpose [6] and introduced the sym-
metry of the motion in a recent work [7]. 

In Sommerfeld’s model the electron considered as a point cannot exhibit 
an intrinsic rotation axis. However we know that it gravitates around the 
proton in an orbital planar motion and that this rotation is well described by a 
central potential. Yet this symmetry of the potential does not correspond to 
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that of the plane motion of rotation. Take up then the analysis by Pierre Curie 
between the causes and the effects of the symmetry elements [1]. His words 
were as follows: 
When certain causes produce certain effects, the elements of symmetry of 

the causes must be found in the effects produced.
When certain effects reveal certain dissymmetry, this dissymmetry must be 

found in the causes, which have produced them.
In this spirit the orbital motion of the electron is inseparable from its in-

trinsic motion of rotation. Thus to describe the motion of the electron, we 
must in addition to the potential, introduce the symmetry properties of the 
orbital motion into the volume of the electron. Thus we suppose that the 
orbital rotation is the result of the intrinsic rotation1 to which corresponds one 
alone quantum of action. It is important to remark that the expression intrin-
sic rotation is still imperfect. Indeed intrinsic suggests a property which be-
longs to the object itself, but in fact all that we know is defined in comparison 
to another object or property. In particular the intrinsic rotation must be de-
fined in comparison to the orbital rotation. 

On the other hand in the study of the phenomena, the causes of the physi-
cal laws must be independent of the place of observation. Let us consider the 
volume of the electron; the question is: what variables are able to determine 
the quantization of the electron-proton system? When the radial speed of the 
electron varies, in the volume of the electron, only the mass variations can be 
associated with it. As a result it is necessary to assume that in fact the varia-
tions of the electron mass are at the origin of the variations of its radial speed. 
Therefore the mass of the electron is the variable producing the different 
moments. This approach of the interaction leads to consider the proton and 
the electron as fluid matter. It also leads to interpret the wave function as a 
wave of matter that is the amount of matter determining the mechanical ac-
tion guiding the electron along its trajectory upon an element of length and 
time [8, 9]. 

This approach to motion consists in giving to the mechanical action a fun-
damental role. This role is natural since any momentum and any quantity of 
kinetic energy are always related to a space displacement and an interval of 
time. It was in fact the idea of Sommerfeld [2] to extend the assumption of 
Bohr concerning the angular momentum [10] to elliptic orbits. For Louis de 

1 We will use the expression intrinsic rotation preferably to spin or eigenrotation to 
avoid any possible confusion and we will specify the meaning of this expression along 
this study. 
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Broglie the action also plays a fundamental role: it is “guided by the idea of a 
major identity between the principle of less action and that of Fermat” that he 
was led to propose the hypothesis of a wavelength associated with the mo-
mentum of the electron by the quantum of action "h" [11]. It was also the 
idea of Schrödinger who built the differential equation, whose solution is the 
wave function, by introducing a propagation velocity of surfaces of constant 
action [12]. We propose in this work to show how this concept of the action 
by exchange of matter between the proton and the electron makes it possible 
to understand the existence of half-integer angular momentum and to find the 
set of the energy levels in the approach of Sommerfeld.

2 The action and the exchange of matter

In classical mechanics the action is the product of the momentum by the 
element of length dl, or of the energy by the element of time dt. In the theory 
of Dirac the operators act on the wave function by first order derivation with 
respect to the variables of space and time. If these operators act on a function 
representative of the action, they give access to the various components of 
the momentum and energy. 

Then let us take a different point of view from the classical interpretation, 
and suppose that the representative function of the action is precisely the 
wave function. Moreover we suppose that the action generated by the wave 
function takes place by exchanges of absorbed or rejected matter between the 
proton and the electron. The quantization of the wave function is then that of 
the action associated with the different degrees of freedom over one period. 
This assumption leads to suppose that the electron charge and the potential 
are made of elements extremely small as compared with electron dimensions, 
having a mass and that we call grains. Thus we suppose that exchanges of 
matter results from exchanges of grains between the electron and the proton. 

To describe the motion of the electron around the proton we consider an 
atomic reference frame Ra, made of a system of orthogonal axes, the centre 
of gravity P of the proton being at its origin (figure 1). This centre P is also 
the centre of the potential, acting on the electron. The intensity of the poten-
tial at a point A is inversely proportional to the distance PA that separates it 
from P. As a result the density of matter allowing describing the potential is 
itself inversely proportional to this distance. Let then be γ the centre of grav-
ity of the electron. As for the potential we suppose that in the volume of the 
electron, the density of matter allowing describing the electron charge is a 
function inversely proportional to the distance to the centre of gravity γ of the 
electron. The surface, which delimits in the volume of the proton from that of
the electron, is consequently that which corresponds to the minimum of den-
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sity. It is through this surface that the exchange of matter determines the 
action and the trajectory. During these exchanges the grains are suppose to 
move with the speed of the light in vacuum.

2.1 Plane motion and exchanges in volume

In Sommerfeld’s model the motion is plane, there are only two independ-
ent degrees of freedom. On the other hand the exchanges of matter that de-
termines the momentum and generates the orbital rotation are distributed in a 
volume. Therefore the action associated with rotation cannot be correctly 
described by the product of two vectors, the momentum and dl displacement, 
both being contained in the plane of the trajectory. These two vectors must 
necessarily have three components not in the same plane. This approach 
allows describing the motion with a distribution of the mass along the differ-
ent directions changing step by step.

2.2 The mass 

With a fluid model of electron, one has to consider the mass determining 
the mechanical action as a function of the occupied quantum state. This hy-
pothesis is suggested by the emission or the absorption of photon during the 
electronic transitions. Furthermore it seems that several experiments confirm
this approach [13, 14] corresponding to a current thinking of different authors 
[15-20]. 

Considering the equivalence between mass and energy, it is possible to de-
scribe this aspect of the mass by supposing that the constituting grains are in 
a ceaseless motion, continuously exchanged with those of the proton their 
speed being that of the light. The proton being supposed at rest one can con-
sider two parts: one disordered the inert mass, the other the active mass. This 
last corresponds to the kinetic energy of the state and determines the motion. 
The grains of these two masses are exchanged along the trajectory with those 
of the proton. The state will be stable if the exchange takes place during the 
period of the motion, therefore the importance of the mechanical action. The 
mass m0 call the rest mass, is the mass that the electron would have before the 
loss as photon of an amount of energy equal to that of its state. It also repre-
sents the amount of inert mass of the proton, considered at rest, of the occu-
pied volume by the electron. As a result there is a simple relation between the 
mass at rest m0, the inert mass mi and the active mass ma: 

mi + ma = m0 (1)
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Let W be the energy of the motion we have: 

mi = W c-2 with E = W - m0 c-2 thus ma = -E c-2 (2)

The active mass is the kinetic energy. In this approach the mass is a stock of 
disordered energy, and becomes energy insofar a part of the grains leads to a 
motion.

2.3 The intrinsic rotation

Consider the reference frame Px, Py, Pz, where P is the centre of the po-
tential. To introduce the symmetry of the intrinsic rotation we suppose the
corresponding axis parallel to Pz. Let G be the plane of gravitation of the 
electron containing the axis Px. The action associated with the motion has 
two of its components parallel to the equatorial plane E containing the axes 
Px and Py and one parallel to the axis Pz that is normal to E (figure 1). The G 
plane of gravitation cuts the equatorial plane along the axis Px. B is one of 
the two points common to the trajectory and E plane.

The space we are studying the properties is defined with those of the pro-
ton and the electron. In the extent where the electron can be considered as a 
point, the space of the motion is that of the proton. The proton being much 
heavier than the electron, it is the motion of the electron in the proton at rest 
that one has to describe. The motion being generated by the intrinsic rotation, 
there is a cause to choose the z axis parallel to the axis of intrinsic rotation. 
However in the space of the proton, one has to consider the angle between 
the G plane of gravitation and the E equatorial plane perpendicular to the axis 
of intrinsic rotation. For the perpendicular coordinates to this axis they must 
reflect the rotation speed, as a result there is a connection between those two 
variables and thus just one independent variable. This variable is the angle ϕ
of the polar coordinates, the speed of which being that of the intrinsic rota-
tion. Finally the third space coordinate is the radial distance to the centre of 
the potential of the proton which defined its intensity, that is the density of 
grains per unite of volume.

The exchanges of matter take place in all the directions. Therefore the 
symmetry properties of the motion lead to distinguish those producing a 
moment in a direction parallel to the intrinsic rotation axis from those pro-
duc ing a moment in a direction perpendicular to this axis. Moreover one has 
to distinguish the exchanges producing by absorption or reject one or the 
other of these moments. 

Indeed there are through the surface of separation between the proton and 
the electron, two fluxes of grains inverse one of the other, and each one con-
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tributes to the orbital motion whereas keeping in the electron the total energy 
equal to m0c2. In other words into the proton but outside from this surface 
nothing allows to suspect the motion of the electron. 

Figure 1.  The motion of the electron

To describe the two fluxes we suppose that the inert mass of the electron 
absorbs the grains of the incoming into flux characteristic of the orbital rota-
tion in the proton when others are rejected making the outgoing flux charac-
teristic of the intrinsic rotation of the electron. This mechanism allows shar-
ing the motion into two contributions: one for the incoming flux the other for 
the getting out flux. The volume of the electron being small in comparison to 
the proton, if there is rotation, considering the electron like a point, the grains 
which determine this rotation can be divided into two parts defining the two 
fluxes. The same for the parallel motion to the axis of intrinsic rotation, the 
two fluxes contribute to the motion. To keep the symmetry of the intrinsic 
rotation we suppose that upon one period, there is equipartition of the energy 
and therefore of the mass between the variables defining it. This implies, for 
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the intrinsic rotation, that there are as many exchanges contributing to the 
motion of rotation than that contributing to the translation motion. 

We know that the space and the time are linked through the mass and the 
energy. This comes from the fact that at the differential scale, each interval of 
time is links to the space through the energy and the momentum. As a result 
the corresponding quantum can just appears with algebra having four dimen-
sions making sure to introduce the properties linking the space and the time. 
This is done with the algebra introduced by Dirac, specially imposing the 
linearization between the differential operators of space and time. 

2.4 The components of the wave function  

The wave function is supposed to be mechanical action, by exchanges of 
absorbed or rejected matter on a short interval of time and space, whose de-
rivatives give the different moments associated to the different amounts of 
energy. In Dirac’s model the wave function has four components linearly 
independent. The analysis of the properties in connection with the exchanges 
of matter allows shedding light upon this aspect of the quantum state.

The need of independent components to describe the motion is the result 
of the grain which does not act all in the same way. They can produce a rota-
tion in one or the other direction and the same for the motion parallel to the 
axis of intrinsic rotation. Thus there is a cause for each flux, on a short inter-
val of space and time, to separate with different components the amount of 
matter giving rotations and translations of opposite directions. This to avoid 
canceling the contributions of opposite directions. As a result there are, for 
each flux, for the inert and active masses, two components of opposite direc-
tion that means four relations. This analysis implies for each relation an 
amount of matter that is of energy which balances the three components of 
the moments. 

The problem is thus to find, for each flux, a system of four simultaneous 
differential equations where the four unknown are the four components of the 
wave function playing the role of generating function of the moments and 
energy. These equations are those of the equation of Dirac. To find these 
equations the method is to use a relation of the special relativity and to search 
the differential operators acting on the wave function that is the generating 
function of the different components of the motion. 

3 The equation of Dirac 

To find the equation of the quantum mechanics in special relativity the 
way is to start from the expressions of the energy and moment. The rest mass 
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of the electron being m0, its speed being v and c that of the light in vacuum, 
write β = v/c, consider the electron of charge e in a scalar potential V and 
vector potential A

�
. In special relativity the corresponding energy W and the 

potential V obey to the following equation:

1

1
2

0 eVcmW
c

+
−

=
β

(3)

its momentum p�  and the vector potential A
�
 obey to the following relation:

1

v
2

0

c
Aemp
���

+
−

=
β

(4)

The components of the moment p� and the quantity W
c
1  form the com-

ponents of a space time vector. Considering the quantity:

( ) M
1

-1
2

0 =
−

=
β

cmeVW
c

(5)

and the vector of the space genre: 

V
1

v
-

2
0

���
�

=
−

=
β

m
c
Aep (6)

The calculation of M2 - 2V
�

leads to the expression [3]:

( ) 0-A---1 22
0

2
2

2 =









cm

c
epeVW

c

�
�

(7)

For the hydrogen atom the expression (7), without vector potential, be-
comes: 
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( )22 -1 eVW
c

- ( px2 + py2 + pz2 + m0
2c2 ) =  0 (8)

Dirac’s theory uses the equations (7) and (8) to determine the operators 
leading to the wave function having the good energy levels [21]. Then if h is 
Planck’s constant the research of the wave function leads to introduce the 
following operators: 

W =  ih
c
1

t∂
∂  ; Px = -ih x∂

∂ ; Py = -ih y∂
∂ ; Pz = -ih z∂

∂ (9)

Introducing these operators in the equation (8) one obtains the operator:

F = ( )22 -1 eV
c
W -(Px

 2 + Py
 2 + Pz

 2 + m0
2c2) (10)

To determine the equation to which the wave function must satisfy Dirac 
supposes that it must be linear in W leading to suppose the linearity in Px, Py
and Pz according to the operator (10). This supposes that it can be write:

F = P x Q (11)

with P = [ - ( )eV
c

-1 W + α1 Px+ α2  Py+ α3 Pz + α4 m0c ] (12)

and Q = [ ( )eV
c

-1 W +α1 Px+ α2  Py+ α3 Pz + α4 m0c ] (13)

In these expressions the operators αk, with k = 1, 2, 3 or 4, are matrices 
which to find out the form (8) obey to the following relations:

αµ
2 = 1 et αµαν + αναµ = 0 with µ ≠ ν and µ, ν = 1, 2, 3, 4 (14)

The equation :

QΨ = 0 (15)
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is Dirac’s equation, it corresponds to positive energies. 
The equation: 

PΨ = 0 (16)

corresponds to negative energies. As a result it seems to have no physical 
meaning. The hypothesis of exchanges of matter divided into two fluxes of 
opposite directions brings a simple answer. Indeed each flux is characterized 
with a direction of the speed of propagation of the grains, they determine the 
masses active and inert, thus the energy must be considered as positive or 
negative according to the flux. The classical equation corresponds (15) to the 
positive flux and the equation (16) to the negative flux. In these two equa-
tions the direction of the light speed must be considered as positive for the 
equation (15) and negative for the equation (16). 

To the components of V
�
we associate the quantity M that is G = ( V

�
, M).

The four components of G form a space-time vector. The discussion on the 
wave function has led us to distinguish for each flux, four components of the 
energy each one associated to a moment having three components. Then 
consider: 

Me
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e
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e
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s
yi ; P

s
zi

with   i = 1, 2, 3, or 4 (17)

the different components for each flux. 
We can consider the algebra of Dirac for the equation (15) as the search of 

the generating function of the different components of G for the incoming
flux. To the components of V

�
we now associate the quantity –M, that is 

H = ( V
�
, –M). The four components of H form a space-time vector and the 

scalar product H.G, leads equally to the expression (7). We can interpret the 
(16) equation as that of the outgoing flux homologous of the (15) for the 
incoming flux. The two G and H vector are thus in a particular correspon-
dence in the way that they allow to consider the equation (7) as their scalar 
product. Thus the algebra of Dirac plays for the equation (16) the same role 
as for the equation (15) that is the search of the different components of H. 
Thus the equation of Dirac appears as the resolution of the vector moment 
and of the energy of the plane motion in several components in such a way to 
respect the symmetry of the orbital motion. 

Let Ψe and Ψs be the respective wave functions of (15) and (16) for the in-
coming and out fluxes. The equation of Dirac is a group of four simultaneous 
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equations. It is the same for the (16) equation. Identify in each (15) and (16) 
equation, the different space and time components with the different results 
of the application of the operator (9) on the components Ψi of the wave func-
tion for the incoming and out fluxes. It is possible to express each vector G 
and H in sixteen components; they obey to the algebra of Dirac. Then if G
and H are the representative matrixes of G and H, the scalar product G.H is 
equal to the product of the H.G that is: 

H.G = H.G (18)

making sure that ΨeΨs = 1, imposing that the wave function is normalized 
with Ψs  = Ψ∗

e. Taking for Ψs the conjugate complex of Ψe it is important to 
notice that one preserves the same direction of rotation since the fluxes are 
inverse one of the other. In this algebra the expressions (QΨe) and (PΨs) lead 
in a simple way to the components of the vectors G and H. It is just sufficient
to determine the wave function for the (13) equation then the (12) equation is 
also determined. 

3.1 The solutions of the equation of Dirac.

According to (13) the equation of Dirac of the positive flux can be written: 

QΨ= [ ( )eV
c

-1 W +α1 Px+ α2  Py+ α3 Pz + α4 m0c]Ψ (19)

Each one of the four components of the wave function Ψ is the product of 
same function of the time Ψt by a function of the space different for each 
component. Take for the temporal function Ψt = exp(i�W). Introduce the four 
components of ΨtΨi of Ψ with i = 1, 2, 3 or 4, following Darwin [22] and de 
Broglie [3], the equation of the wave function can be writes: 

i�-1[(W + eV)/c  + m0c] Ψ1  =  (Px + iPy)Ψ4 +  PzΨ3 (D1)

i�-1[(W + eV)/c  + m0c] Ψ2  =  (Px - iPy)Ψ3 -  PzΨ4 (D2)

i�-1[(W + eV)/c  -  m0c]Ψ3   =  (Px + iPy)Ψ2 +  PzΨ1 (D3)

i�-1[(W + eV)/c  -  m0c]Ψ4   =  (Px -  iPy)Ψ1 -  PzΨ2 (D4)

These four equations have the dissymmetry of the intrinsic rotation under-
lined with the discussion about the components of the wave function. The 
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solutions of these equations are the product of a radial function with a spheri-
cal harmonic. Indeed as far the electron can be assimilated to a point, the 
proportion between the inert and active masses is determined by the value of 
the potential at the considered point. This proportion determines the intensity 
of the moment. The sharing of the moment between its different components 
is obtained with the spherical harmonics and the radial functions. These func-
tions for the different quantum states are recalled in the appendix. 

The quantum number n � and r have their classical meaning: principal, or-
bital and radial of Sommerfeld and Schrödinger models. There are two types 
of solutions which are better defined with the quantum numbers k and p. One 
has for the solutions of type I: 1−−= �k  and p = r ; for the solutions of type 
II: k = � and p = r + 1. As a result between the quantum numbers it comes:

n = k +p  =  � + r +1 (20)

Thus there is a floating unite resulting from the intrinsic rotation. It is at-
tached to it either through the angular characteristics with the spherical har-
monics or through the mass with the radial functions by the degree of the 
polynomials F and G functions (see appendix). 

3.2 The doublets and the half- integer moments

The doublets correspond to two distinct levels appearing without magnetic 
field. Thus it is the origin of these two levels that one has to understand. This 
property leads Uhlenbeck and Goudsmit to suppose the existence of the in-
trinsic rotation [23, 24] having an angular momentum supposed to be added 
or subtracted to the orbital moment. In the absence of the hypothesis of the 
variation of the mass it was difficult to understand how the doublets are 
formed. 

The existence of the doublets arrive indeed from the two possible direction 
of the orbital rotation in comparison with the intrinsic rotation taken as posi-
tive direction, that is definitely the hypothesis of Uhlenbeck and Goudsmit. 
Furthermore for each direction of the orbital rotation, the direction of the 
intrinsic rotation can be the positive or negative direction of the z axis. As a 
result for any type of solutions, the quantum states are in even number. But 
the most interesting point arrives from the direction of the rotation corre-
sponding to one of the two types of solutions. Indeed we have seen that there 
are two fluxes of grains piloting the electron along its orbit. The outgoing
flux is characteristic of the electron and thus of the intrinsic rotation to the 
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orbital motion; as for the getting on flux is characteristic of the proton. These 
two contributions have to be added or subtracted according they have the 
same or opposite direction. As a result choosing the positive direction for the 
intrinsic direction, the orbital angular momentum has an algebraic sign. Thus 
for the angular momentum, one has to subtract or add the contribution of the 
intrinsic rotation to that of the orbital rotation. 

Consider the succession of the quantum states. 

1°)   When the motion is generated with just one quantum of action, the in-
trinsic rotation determines in only one way the connection between the time 
and the space through the energy and the moment. The total angular momen-
tum cannot be higher to that of the corresponding number of quanta. There-
fore the two fluxes determining the rotation are of opposite direction, the 
orbital angular momentum is negative. We have the two states “1s” which are 
of the type I.  

2°)    When there is a second quantum of action, it can give a radial mo-
ment to the electron, we have the two states “2s”. 

3°)    The second quantum of action can be obtained with the increase of 
the mass, the alone kinetic energy of rotation being that of intrinsic rotation. 
In this way the angular momentum increases of one unite without to modify 
the number of quantum states. The total angular momentum increases of one 
unite, as a result the orbital and intrinsic rotations have the same directions. 
We have the two 2p1/2 quantum states, they correspond to the type II. The 
second quantum of action modifies the radial properties of the wave function. 
The increase of the action comes from that of the period associated to a de-
crease of the kinetic energy therefore of the speed. 

4°)    The orbital and intrinsic rotations having opposite directions, the sec-
ond quantum of action can be obtained with the increase in absolute value of 
the orbital angular momentum which has a negative sign, we have the four 
2p3/2 quantum states, they correspond to the type I. For these states the varia-
tions of the inert mass and of the energy are analogous to that of the 2p1/2 but 
in this case there is augmentation of the maximum of the equatorial angular 
momentum. 

5°)    The others increases of the action lead to the same consequences and 
explain the succession of the different quantum states. 

4 The magnetic states and the factor of Landé

Consider H a magnetic field generated by a solenoid. The modification of 
density of grains which leads are described with just one angular variable, 
that of the orthogonal planes to the H field. The measurements of magnetic 
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moments consist to determine the asymptotic value of these moments when it 
is possible to consider that they are parallel with the magnetic field. In such 
condition the magnetic field modified the equatorial action of rotation acting 
on the electron. Consider the case of small field, we can suppose that the 
angular moment is not modified by the field.

The period of the motion of the electron determines the intensity of the 
electrical current generating the orbital magnetic moment. In classical me-
chanics the period of the motion in a central field is given by the relation: 

2mS = TM M (22)

where m is the mass of the mobile, M its orbital angular moment, S the area 
of the trajectory and TM the period of the motion. To utilise this relation in 
the calculation of the magnetic moment one have to take for M the absolute 
value of the total angular moment MTo. 

Let then � be the number of quanta of the angular momentum to add to the 

intrinsic rotation. For the type II, to the orbital moment MOr = k  = �  gener-

ated by the number k = � of additional quanta one has to add the contribution 
of the intrinsic rotation, it comes:

MTo = (k +½)  = (� +½) (23)

For the type I with k = -� -1, we have MOr = - k  = -(� +1) . To the angular
moment MOr one has to add the contribution of the intrinsic rotation, it 
comes: 

MTo = -(k +½)  = (� +½) (24)

The period TM of the motion is different from TF that which would corre-
spond to the orbital action kh replacing M by MOr in the relation (22). Thus 
the factor g of Landé which is introduced in the calculation of µe the mag-
netic moment of a quantum state is a consequence of the difference between 
TM and TF. Indeed consider an electron with a classical orbit. For an action kh
its angular moment is MOr = k . Let u be the projection of MTo along the di-
rection of magnetic field H. 

The magnetic moment µe is given by the relation:
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µe = uµB with µB = mc
e

2
� (25)

To establish this relation one uses the expression of the angular moment of 
a loop of current:

µe = IS/c (26)

where I is the intensity circulating in the loop, S the area of the loop and c the 
speed of the light. For an electron on its orbit with the period of revolution TF
we have I = e/TF. On the other hand the area law expressed on a period leads 
to replace M par MTo giving the relation 2mS = TM MTo. For MTo=  we find 
the relation (25) if TF = TM. But we have just seen that it is not like this. The 
period TF is in fact fictive and taking into account the sign of k, we have the 
relation: 

±2mS = TF k  = TM MTo = (k +½) (27)

That is: TM = gTF with g = 

2
1+k

k
(28) 

As a result the magnetic moment corresponding to u is: 

µe = guµB (29)

One can find the relation (28) in the second part of the original work of 
Dirac “The quantum Theory of the Electron” [25], that we already have found 
[6, 9] in a different context. 

All the magnetic properties: g factor and the number of magnetic states 
can be found by the calculation [3] and are experimentally verified with the 
interpretation of the measurements of the magnetic moments [26] and Curie 
constants [27]. All the previous attempts to explain the doublets ignoring the 
role of the mass and its repercussions on the magnetic states could be just 
partial and therefore partially correct. It is the case of that of Uhlenbeck and
Goudsmit which has the merit to consider the intrinsic rotation even before 
the hypothesis of the wave function [23, 24]. It is also the case of our previ-
ous attempts [6, 7] already based on the exchanges of matter with variations
of the mass; they were useful steps leading to this explanation introducing the
symme try of the problem. For the study of the magnetism it was important to 
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understand this origin of the doublets for the different levels connected to 
them pre-exist to the application of the magnetic field [26].

5 Conclusion

In this study of the quantification, the orbital motion is supposed the result 
of the intrinsic rotation of the electron and of exchanges of matter between 
the electron and the proton. These exchanges take place in all the directions 
of the space. From this fact the orbital rotation must be regarded as the result 
of a mechanical action taking place into three orthogonal directions: one is 
the intrinsic axis of rotation of the electron the two others are perpendicular 
to it. The electron being supposed small in comparison of the proton, to keep 
the symmetry of the intrinsic rotation, the half integer values observed in 
measurement of magnetic moments are attributed to the equipartition of the 
energy. 

In this approach Dirac’s equation corresponds to exchanges of matter giv-
ing the incoming flux in the volume of the electron, the other aspect of the 
exchanges the outgoing flux allows to interpret the equation with negative 
energies. The components of the wave function determine the proportions of 
the mass generating the different components of the moment. With this con-
ception two very close masses can generate distinct quantum states. It is this 
possibility associated to the two directions of the orbital rotation compared to 
that of the intrinsic rotation which originate the doublets. With this concep-
tion of the mass the model of Sommerfeld keeps it value. On the other hand 
the understanding of all the observed states relies on that of the approach of 
Dirac. 

This conception of the interactions answered for the electromagnetism to 
an important difficulty of the physique where the notion of force allows un-
derstanding a great number of observed phenomena but leaves a manifest 
vacuum on the way by which the forces take place. One can hopes that simi-
lar essays will do progress the understanding of the gravitation.  

Appendix
The two types of solutions of the equation of Dirac according to  [3], n �

and r are the quantum numbers: principal,  orbital and radial.

Type  I k = -�-1;    p= r; n = � + r + 1; -� ≤ m ≤ � +1

ψ1 = i F+ Y m 1+� ; ψ2 = -i F+ Y 1
1
−
+
m
�
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ψ3 = (� -m + 1)G+Y m� ; ψ4 = (� +m)G+ Y 1−m
�

Type II k = �;  p = r + 1; n = � + r + 1; -(�-1) ≤ m ≤ �

ψ1 = - i(� -m) F− Y m 1−� ; ψ2 = i( � +m -1) F− Y 1
1
−
−
m
�

ψ3 = G− Y m� ; ψ4 = - G− Y 1−m
�

With k = -�-1, F = F+ et G = G+ for the type I, k = �, F = F− and G = G−

for the type II. The radial functions are solutions of the equations: 

 �-1[(W + eV)/c  + m0c]F  + dr
dG  + 

r
k 1+ G = 0

-�-1[(W + eV)/c  - m0c]G  + dr
dF -

r
k 1− F = 0

F = exp-ABr[a0rγ + a1rγ+1 …. aprγ+p]

G = exp-ABr[b0rγ + b1rγ+1 …. bprγ+p]

with A2 = �-1 (m0c + Wc-1) and B2 = �-1 (m0c - Wc-1) 

and γ = 221 α−+− k where α is the fine structure constant: α = 
c
e
�

2

The energy of the level is given by the relation:

2/1

2
22

2

, 1

−























 −+

+=
α

α

kp
E kn (21)

Recall that the functions ψ1 and ψ2 are the fine components and he func-
tions ψ3 ψ4 the gross components. 

Acknowledgements: During the elaboration of this work in the sphere of 
influence of the Fondation Louis de Broglie, I discussed with the Professors 
Claude Daviau, Daniel Fargue, Yves Pierseaux and Georges Lochak some 
important points. They gave me a lot of advises which was very precious, I 
am glad to have the opportunity to thank them. 



The symmetry of the motion, the mass and the quantum state 511

References

[1] Curie P., J. de Phys., 3-ième série, 3, 393-415, 1894. 
[2] Sommerfeld  A., Ann. Phys. 51, 1, (1916). 
[3] de Broglie L., L'électron Magnétique (théorie de Dirac) Hermann, Paris (1934). 

See in particular the discussion page 36. 
[4] Oudet X., Ann. Fondation Louis de Broglie, 17, 315-345, 1992; English version 

available from the author on request.
[5] Oudet X., Ann. Fondation Louis de Brolgie, 22, 409-421, (1997).
[6] Oudet X., Ann. Fondation Louis de Brolgie, 25, 1-25, (2000).
[7] Oudet X., in “What is the electron?” Apeiron books, Monréal Canada, Editor V. 

Simulik, on press (2003).
[8] Oudet X., Ann. Fond. Louis Broglie, 20, 473 (1995).
[9] Oudet X, J. Appl. Phys, 79, 5416 (1996).
[10] Bohr N., Phil. Mag., 26, 1-25, (1913).
[11] de Broglie L., Thèse, 1924, chapitre II.
[12] Schrödinger E., Phys. Rev., 28, 1049-70, (1926).
[13] Mikhailov V.F., Ann. Fond. Louis Broglie, 24, 161-169, (1999). 
[14] Mikhailov V.F., Ann. Fond. Louis Broglie, 28, 231-236, (2003). 
[15] Costa de Beauregard O. and Lochak G., Ann. Fond. Louis Broglie, 24, 159-160, 

(1999). 
[16] de Broglie L., Comp. Rend. Acad. Sci. 275B, 899, (1972).
[17] Lucas R., Comp. Rend. Acad. Sci. 282B, 43, (1975).
[18] Assis A.K.T., J. Phys. Soc. Jpn, 62, 1418-1422, (1993).
[19] Costa de Beauregard O., in Advenceed Electromagnetism, (ads. T.W. Barrett, 

D.M. Grimes),Word Scientific, Singapore, pages 77-104, (1995). 
[20] Galeriu C., Ann. Fondation Louis de Brolgie, 28, 49-54, (2003).
[21] Dirac P.A.M.,Proc. Roy. Soc. A117, 610-624, (1928).
[22] Darwin C.G., Proc. Roy. Soc. A117, 654-680, (1928).
[23] Uhlenbeck G.E. and Goudsmit S., Naturwissenschaften 13, 953, (1925).
[24] Uhlenbeck G.E. and Goudsmit S., Nature 117, 264, (1926).
[25] Dirac P.A.M.,Proc. Roy. Soc. A117, 351-361, (1928).
[26] Oudet X. et G. Lochak, J. Magn. Magn Mater. 65, 99-122 (1987).
[27] Oudet X., J. Magn. Magn Mater. 98, 298-331(1991).

Reçieved the 15 february2003, modified the 12 may 2004.


