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ABSTRACT. Within a corresponding quantum field theoretic formal-
ism composite fermion states are defined as solutions of generalized de
Broglie-Bargmann-Wigner (BBW) equations. These equations are rel-
ativistically invariant quantum mechanical many body equations with
nontrivial interaction, selfregularization and probability interpretation.
Owing to these properties they are a suitable means for describing rela-
tivistic bound states of fermions. In accordance with de Broglie’s fusion
theory and modern assumptions about the partonic substructure of el-
ementary fermions, i.e., leptons and quarks, or the quark structure of
nucleons, the three-body generalized BBW-equations are investigated.
In particular it is shown that the group theoretical constraints to be
imposed on the wave functions and an integral equation for the mass
eigenvalue are compatible with the antisymmetry of the wave function
which is crucial for the consistency of the solution procedure of the gen-
eralized BBW-equations. This solution procedure is analyzed in detail
and dual states are constructed which are required for the derivation
of effective theories.

1 Introduction

Since the midst of the past century nucleons have been assumed to be
composed of quarks, and in the last decades even quarks and leptons
were assumed to possess a fermionic substructure, i.e., these particles
are considered as bound states of various fermionic constituents.

For a quantitative description of these bound states their wave func-
tions are required and although much nonrelativistic model building was
applied, it is acknowledged that in principle such bound states are rel-
ativistic ones. However, in spite of numerous attempts to solve the
relativistic bound state problem, the results which were obtained by
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conventional methods, e.g., Bethe-Salpeter equations, are considered as
unsatisfactory. Without substantiating this assertion we refer to com-
ments in literature,[1],[2],[3]. Hence the construction of relativistic two
body and many body equations are active areas of current research,[4].

Recently, to solve the relativistic bound state problem, a new ap-
proach was developed which is radically different from the previous ones.
It is based on the idea that de Broglie’s spin fusion should be caused by
direct interactions of fermions without the assistance of bosons. The
corresponding theory which exclusively deals with spinorial interactions
is based on a nonperturbatively regularized nonlinear spinor field with
canonical quantization, relativistic invariance and probability interpre-
tation. It can be considered as the quantum field theoretic generalization
of de Broglie’s fusion theory,[5] and as a mathematical realization and
physical modification of Heisenberg’s approach,[6] and is expounded in
[7],[8].

Originally this model was intended to describe composite gauge
bosons, quarks and leptons. But in a similar manner bound states of
quarks can be treated by the same method, as the effective quark theory
starts from a nonlinear spinor field model too,[9].

Then within such a spinor theory the bound state problem is for-
mulated by generalized de Broglie-Bargmann-Wigner (BBW)-equations.
And in this picture composite quarks, composite leptons or composite
nucleons, respectively, are described as bound state solutions of BBW-
equations for three fermions. Among other authors, the three fermion
substructure of quarks and leptons was postulated by Harari,[10] and
Shupe,[11]. But apart from this assumption our model has nothing in
common with the Harari-Shupe model.

In the original theory of de Broglie,[5], and Bargmann and Wigner,[12],
the three body problem was investigated in detail by Rarita and
Schwinger,[13] who concentrated on spin 3/2 solutions owing to a sym-
metry postulate on the spin part of the wave functions. Such a symmetry
postulate on the spin part narrows down the manifold of solutions and
is neither necessary in the original version of de Broglie,, nor for the
generalized BBW-equations, i.e., these equations also admit spin 1/2
solutions.

But in contrast to the exact solutions given by Rarita and Schwinger
the generalized BBW-equations for the three-body case lead to integral
equations of the Fredholm type. The latter equations are soluble in
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principle but hardly in practice. So for getting an information about
the structure of the eigenvalue spectrum, the group theoretical analysis
is the only means which allows to derive exact results concerning the
corresponding spectrum. Such an investigation was started in a previous
paper,[14], but owing to the rather complicated matter further analysis
is needed which is given in this paper in order to complete the group
theoretical discussion of the three-body problem and to provide the basis
for quantitative calculations.

The fieldtheoretic background of our model was extensively discussed
in [7],[8], so we refer for further information about the generalized BBW-
equations and the corresponding model to these references.. The physi-
cal interpretation of the corresponding solutions was already given in a
preliminary way in preceding papers,[8],[15],[16],[17]. But it is the inten-
tion to improve these statements by a more detailed group theoretical
analysis as was initiated in the preceding paper,[14].

In particular in [14] the group theoretical constraints on the three-
body solutions were derived, while it is the aim of this paper to show
the compatibility of these constraints and the above mentioned integral
equation with the antisymmetrization of the wave function. The latter
requirement is crucial for any solution procedure as the antisymmetriza-
tion of the wave function stems from its field theoretic background and is
responsible for the consistency of the definition of the generalized BBW-
equations, i.e., without this consistency the treatment of such equations
is impossible. In the following the common term “parton” is used either
for the fermionic substructure of leptons and quarks or for the quarks
themselves as the fermionic constituents of nucleons.

2 Relativistic three-parton equations

By means of the fieldtheoretic formalism wave equations for three-parton
states can be derived,[7],[8]. For provisional guidance we assume that
such equations and their states allow an appropriate description of lep-
tons and quarks with partonic substructure or of nucleons with quark
substructure, respectively. In this case the quantum numbers of those
states must fit into the scheme of quantum numbers of the Standard
model which was the topic of previous work, and will be the topic of
forthcoming papers, while in this paper the general group theoretical
constraints will be discussed.

It is a pecularity of the field theoretic formalism that from the be-
ginning this formalism is not specialized to any definite parton number
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n. And although we will exclusively deal with the parton number n =
3 in the following, the general field theoretic formulation is needed in
order to be aware of the antisymmetry properties of the wave functions.
Hence we start with the field theoretic version of the theory for hard
core states which can be expressed by a single ( covariant ) functional
equation. At this basic level of the theory it is convenient to use only
symbolic general coordinate variables I which stand for the four dimen-
sional space-time coordinate x and the algebraic indices Z. Then in this
symbolic notation this hard core functional equation reads ( using the
summation convention ), see [7],[8]:

KI1I∂I |F〉 = UI1I2I3I4 [FI2IjI∂I4∂I3 + FI3IjI∂I2∂I4 + FI4IjI∂I3∂I2 ]|F〉
(1)

Definitions of the various quantities which are contained in this sym-
bolic equation will be given below. At first we explain the states |F〉 .
These states are defined by

|F(j)〉 = ϕn(I1...In)jI1 ...jIn |0〉 (2)

where ϕn is a formally normal ordered matrix element of the parton
dynamics for hard core states, while the set of base vectors {jI1 ...jIn |0〉}
is defined to be a fermionic Fock space with creation operators jI and
their duals ∂K , which have not to be confused with ordinary particle
creation and annihilation operators of quantum field theory as the former
are elements of the generating functional space.

With regard to the application of equation (1) to the case n = 3 ,
we choose in (2) the corresponding states and project (1) from the left
hand side with 〈0|∂N1∂N2 . This yields∑

N

KN3NAN1N2NϕN1N2N = (3)∑
I2I3I4

UN3I2I3I4 [−3FI2N2AN1I3I4ϕN1I3I4 + 3FI2N1AN2I3I4ϕN2I3I4 ]

where the symbols A mean antisymmetrization in the corresponding in-
dices. In all following calculations we omit the A symbols for brevity,
but keep in mind that they are always present in the course of calcula-
tions. In order to perform such calculations one needs a more detailed
representation of equations (3). In particular we define the following
quantities: r ∈ R3, x ∈M4, and Z = (i, κ, α) where κ means superspin-
isospin index, α = Dirac spinor index, i = auxiliary field index. The
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latter index characterizes the subfermion fields which are needed for the
regulatization procedure.

Let ϕZ1Z2Z3(x1, x2, x3) be the covariant, antisymmetric state ampli-
tude for the case n = 3. Then from (3) the following equation can be
derived for this state:

[Dµ
Z3X3

∂µ(x3)−mZ3X3 ]ϕZ1Z2X3(x1, x2, x3) (4)
=3UZ3X2X3X4 [−FX2Z2(x3 − x2)ϕZ1X3X4(x1, x3, x3)

+FX2Z1(x3 − x1)ϕZ2X3X4(x2, x3, x3)]

Furthermore owing to the antisymmetrization in (3) one obtains two
additional equations if the Dirac operator on the left hand side of (4)
is applied to the coordinates x1 and x2. For brevity these two equa-
tions are not explicitly given, because apart from one exception, namely
the derivation of the energy representation, these two equations are not
needed if in every calculational step antisymmetrization is secured.

With respect to equation (4) the following definitions hold:

Dµ
Z1Z2

:= iγµα1α2
δκ1κ2δi1i2 (5)

and
mZ1Z2 := mi1δα1α2δκ1κ2δi1i2 (6)

and

FZ1Z2(x1−x2) := −iλi1δi1i2γ5
κ1κ2

[(iγµ∂µ(x1)+mi1)C]α1α2∆(x1−x2,mi1)
(7)

where ∆(x1 − x2,mi1) is the scalar Feynman propagator. The meaning
of the index κ can be explained by decomposing it into two parts κ :=
(Λ, A) with Λ = 1, 2 superspin index of spinors and charge conjugated
spinors and A = 1, 2 isospin index which can be equivalently expressed
by κ = 1, 2, 3, 4.

The vertex term in equation (4) is fixed by the following definitions:

UZ1Z2Z3Z4 := λi1Bi2i3i4V
κ1κ2κ3κ4
α1α2α3α4

(8)

where Bi2i3i4 indicates the summation over the auxiliary field indices
and where the vertex is given by a scalar and a pseudoscalar coupling of
the subfermion fields

V κ1κ2κ3κ4
α1α2α3α4

:=
g

2
{[δα1α2Cα3α4−γ5

α1α2
(γ5C)α3α4 ]δκ1κ2 [γ5(1−γ0)]κ3κ4}as[2,3,4]

(9)
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For vanishing coupling constant g = 0 de Broglie’s original fusion
equations for local three fermion states are obtained, and for a solution
of the whole set of equations only equation (4) has to be used, as for an-
tisymmetric wave functions the remaining equations can be derived from
(4) by interchange of indices. In this context it should be emphasized
that the antisymmetry of wave functions is not an additional postulate.
Rather it is an outcome of the general functional formalism which is used
to derive such equations, see equation (3).

Concerning the physical interpretation of the wave functions it is
closely related to the role of the auxiliary fields ( indices ) which appear
in the corresponding equations and their solutions.

The task of the auxiliary fields is twofold: on the one hand they
are used for regularization, on the other hand due to their properties
probability conservation can be deduced. As this topic was extensively
treated for the two-parton case in [18] and the discussion of the three-
parton case runs along the same lines we suppress the explicit deduction
of these properties and describe only the corresponding results.

First we refer to the role of auxiliary fields in regularization, lead-
ing to the definition of the physical wave functions. We consider the
wave functions of equation (4) with the full dependence on the auxiliary
fields as unobservable, i.e., unphysical. In order to obtain the physical,
singularity free wave functions in the case of three-parton states we de-
compose the index Z := (α, κ, i) into Z := (z, i) and sum over i1, i2, i3 .
This gives

ϕ̂z1z2z3(x1, x2, x3) :=
∑
i1i2i3

ϕZ1Z2Z3(x1, x2, x3). (10)

These functions are by definition the physical states. One immedi-
ately realizes that the physical wave function ϕ̂ has the same transfor-
mation properties as the original wave function ϕ .

In order to derive a probability interpretation for the physical parton
wave functions the single time formulation of (10) has to be used, see
[7],[8] and in addition the single time energy equation has to be derived
from (4), see [18],[19]. Then with the single time density

ϕ̂†ϕ̂ :=
∑
z1z2z3

ϕ̂z1z2z3(r1, r2, r3, t)∗ϕ̂z1z2z3(r1, r2, r3, t) (11)
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for a general time dependent solution of the energy equation one obtains
from this equation with mi = m+δmi, in the limit δmi → 0 current con-
servation,[18],[19]. This limit can be performed in the regularized wave
functions without any difficulty after all calculations were done. Owing
to current conservation the densities (11) are conserved positive quanti-
ties ,i.e., the physical state amplitudes ϕ̂ are elements of a corresponding
Hilbert space with the norm expression

〈ϕ̂|ϕ̂〉 =
∫
d3r1d

3r2d
3r3ϕ̂z1z2z3(r1, r2, r3, t)∗ϕ̂z1z2z3(r1, r2, r3, t) (12)

and they describe the states of the system with interaction. Hence one is
able to extract all quantum mechanically meaningful information about
this system from its given state space.

Finally it should be noted that in the latter limit the coupling con-
stants λig in the vertex (8),(9) of the three-parton equation diverge. But
the essential point is that the regularized solutions of these equations re-
main finite in the whole range (0,∞) of λig. Hence as the auxiliary
fields are unobservable and the whole physics depends on the regular-
ized solutions this behavior of the coupling constants has no obsevable
consequences. In addition if the effective field equations for the three
parton states are derived, the quantities λig drop out.

3 Symmetry constraints

The transformation properties of the three parton wave functions are
correlated to and determined by the transformation properties of the
spinor field theory being the theoretical background for the derivation
of the generalized BBW-equations.

The latter theory is formulated in terms of spinor fields ψαAi(x) and
formally charge conjugated spinor fields ψcαAi(x). For the definition of
the indices see section 2. In particular A is the index of a SU(2) spinor
basis. We first treat the symmetry constraints resulting from the trans-
formation properties of the three parton wave functions under these
SU(2) transformations and an additional U(1) transformation. If one
combines spinors and charge conjugated spinors into a superspinor field
by introducing the index κ, see section 2, then this superspinor field
ψακi(x) transforms under SU(2) transformations in the following way:

ψ′ακi(x) = Uκκ′ψακ′i(x) (13)
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with

U = exp[−i
3∑
k=1

εkG
k] (14)

where the superspin-isospin generators are given by

GkZ1Z2
=

1
2

(
σk 0
0 (−)kσk

)
κ1κ2

δα1α2 (15)

In addition the superspinors admit a U(1) global gauge group with

U = exp[−iεF ] (16)

and

FZ1Z2 =
1
3

(
1 0
0−1

)
κ1κ2

δα1α2 (17)

Concerning the transformation properties of the three parton wave
functions we consider for simplicity the physical wave functions ϕ̂ in or-
der to avoid the explicit dependence of the index set on the auxiliary field
index i. The corresponding transformation properties are not changed
by the transition from ϕ to ϕ̂.

The transformation properties of the wave functions ϕ or ϕ̂, respec-
tively, must be compatible with the transformation properties of the
spinor field theory in the background. For the global gauge groups this
is the case if ϕ̂ is transformed by

ϕ̂κ1κ2κ3
α1α2α3

(x1, x2, x3)′ = Uκ1κ′1
Uκ2κ′2

Uκ3κ′3
ϕ̂
κ′1κ
′
2κ
′
3

α1α2α3(x1, x2, x3) (18)

On the other hand if owing to (18) the three- body wave functions
are elements of a representation space of this group, then these wave
functions must satisfy the group theoretical constraints

9
4
ϕI1I2I3+2[GkI1K1

GkI2K2
ϕK1K2I3 +GkI1K1

GkI3K2
ϕK1I2K2 (19)

+GkI2K1
GkI3K2

ϕI1K1K2 ] = t(t+ 1)ϕI1I2I3

G3
I1KϕKI2I3 +G3

I2KϕI1KI3 +G3
I3KϕI1I2K = t3ϕI1I2I3 (20)

if for brevity we introduce the general index I = Z, x. The relation of the
quantum numbers t and t3 to the phenomenological quantum numbers
is given in [8],[14 ].
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Concerning the compatibility of these transformations with the gen-
eralized BBW-equations, it is convenient to treat this problem by replac-
ing equation (4) by the corresponding homogenous integral equation for
bound states which reads:

ϕZ1Z2Z3(x1, x2, x3)=
∫
d4xGZ3X1(x3 − x)UX1X2X3X4 × (21)

3[−FX2Z2(x− x2)ϕZ1X3X4(x1, x, x)
+FX2Z1(x− x1)ϕZ2X3X4(x2, x, x)]

Furthermore to simplify matters we sum in this equation over i1, i2, i3
, as the summation over auxiliary fields does not change the transforma-
tion properties of the wave function. Then one obtains with notation at
full length

ϕ̂κ1κ2κ3
α1α2α3

(x1, x2, x3) =
g

2

∫
d4x

∑
i

λiGα3α′1
(x3 − x,mi)δκ3κ′1

× (22)∑
h

{vhα′1βδκ′1ρ[(v
hC)β′β′′ [γ5(1− γ0)]ρ′ρ′′ − (vhC)β′′β′ [γ5(1− γ0)]ρ′′ρ′ ]

−vhα′1β′δκ′1ρ′ [(v
hC)ββ′′ [γ5(1− γ0)]ρρ′′ − (vhC)β′′β [γ5(1− γ0)]ρ′′ρ]

−vhα′1β′′δκ′1ρ′′ [(v
hC)β′β [γ5(1− γ0)]ρ′ρ − (vhC)ββ′ [γ5(1− γ0)]ρρ′ ]} ×

3[−
∑
j

λj(−i)γ5
ρκ2

Fβα2(x− x2,mj)ϕ̂
κ1ρ
′ρ′′

α1β′β′′
(x1, x, x)

+
∑
j

λj(−i)γ5
ρκ1

Fβα1(x− x1,mj)ϕ̂
κ2ρ
′ρ′′

α2β′β′′
(x2, x, x)]

The investigation of the invariance properties of the generalized
BBW-equations with respect to these transformations was performed
in the preceding paper,[14], and the result can be summarized by

Proposition1: The three parton generalized BBW-equations (22)
are invariant under the global gauge group transformations (14), (16),
i.e., with ϕ̂ also U ⊗ U ⊗ Uϕ̂ for any group element U are solutions of
(22).

Owing to this invariance the constraints (19) and (20) are compati-
ble with the generalized BBW-equations (22) and any solution of these
equations must satisfy these constraints. The most simple ansatz is given
by

ϕ̂κ1κ2κ3
α1α2α3

(x1, x2, x3) = Θl
κ1κ2κ3

ϕ̂α1α2α3(x1, x2, x3) (23)
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and the requirement of Θl being symmetric in all indices under permu-
tations. This ansatz only then leads to a simplified calculation if Θl can
be eliminated from (22) and such a separation is only possible if Θl has
no γ5 contribution. Hence on Θl the additional condition

γ5
κ1κ2

Θl
κ1κ2κ3

= 0 (24)

must be imposed. Owing to this condition only sixteen of the twenty
symmetric states Θl are admitted. These states are explicitly tabulated
in [16] and a table with the physical interpretation of the quantum num-
bers is contained in [8]. But from this table it follows that the ansatz
(23) is too simple to obtain a complete agreement with phenomenology.
Such an agreement can be only achieved without the separation (23) and
if (24) is replaced by the weaker condition

γ5
κ1κ2

ϕ̂κ1κ2κ3
α1α2α3

(x1, x2, x3) = 0 (25)

The effect of this modification was discussed and tabulated in [17] by
solving the corresponding energy equation in the strong coupling limit.
The following investigations do not depend on the choice of assumption
(24) or (25), respectively. Hence for the sake of brevity we eliminate
the superspin-isospin indices from the further calculations by using the
assumption (23) and (24).

Next we turn to the space-time transformations which lead to addi-
tional constraints represented by the Casimir oprerators of the Poincare
group. We directly discuss this problem by means of the covariant equa-
tion (21), because this equation is the basis for the whole formalism. As
in the discussion of space-time transformations the gauge group indices
κ are only spectator indices the ansatz (23) implies no loss of generality.
After some rearrangements this leads to the following covariant equation

ϕ̂α1α2α3(x1, x2, x3) = 6g
∫
d4x

∑
i

λiGα3α′1
(x3 − x,mi)× (26)∑

h

[vhα′1β′ ϕ̂α1β′β′′(x1, x, x)(vhC)β′′β
∑
j

λj(i)Fβα2(x− x2,mj)

−vhα′1β′ ϕ̂α2β′β′′(x2, x, x)(vhC)β′′β
∑
j

λj(i)Fβα1(x− x1,mj)]

The behavior of the solutions of equation (26) under space-time trans-
formations can be characterized by means of the Pauli-Lubanski spin
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vector Wµ. Owing to the relativistic invariance of (26) its solutions can
be classified by the values of WµW

µ and PµP
µ as representations of

the Poincare group. It is this property which constitutes the link to the
quantum numbers of the energy equation. Owing to their transforma-
tion properties these solutions can be treated in the rest frame without
loss of generality. In this case the Pauli-Lubanski spin vector reads

Wµ =
1

2p0
εµνρ0M

νµP 0 (27)

and in this expression the representation of the generators Pµ and Mµν

depends on the dimension of the coordinate space. In the rest system
W0 vanishes and one obtains from (27)

Wi =
1
2
εijkM

jk = −J i (28)

where the J i are the angular momentum operators of the little group.
Thus in the rest frame the quantum numbers of the solutions of equa-
tion (26) should be given by the eigenvalues of the Casimir operators
of the little group J2 and J3 . In the following it will be demonstrated
that equation (26) indeed is compatible with these group theoretic con-
straints, i.e., that the solutions can be classified as representations of
this group.

Proposition2: In the rest system of an eigenstate of equations (26)
the eigenvalues of J2 and J3 are good quantum numbers and their values
are determined by those of the reduced solution ϕ̂(x1, x, x).

The proof of this assertion depends crucially upon the transformation
properties of the wavefunctions and was given in [14]. In the spinor-
charge conjugated spinor representation the wave functions transform as
the direct product of Dirac spinors. This was shown in [20] and without
further explanation we refer to [20]. Therefore in accordance with this
transformation property in the three-fermion space the generators J i are
to be defined by

J i=Li + Si =
∑

α=1,2,3

(Liα + Siα) =
∑

α=1,2,3

iεijk[xαj ∂
α
k − xαk∂αj ] (29)

+
1
2

[Σiα1α′1
δα2α′2

δα3α
′
3 + δα1α′1

Σiα2α′2
δα3α′3

+ δα1α′1
δα2α′2

Σiα3α′3
]

with ∂αk := ∂/∂xα,k. For brevity we apply only the J3 constraint because
already by means of this condition the representations can be classified.
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In accordance with proposition 2 we then have to satisfy the following
two constraints

[S3
%hϕϕ′,αhβ′β′′ + δ%hαhδϕβ′δϕ′β′′(L

3
h + L3

x)]ϕ̂αhβ′β′′(xh, x, x) (30)
= j3ϕ̂%hϕϕ′(xh, x, x)

and

J3
%1%2%3,α1α2α3

ϕ̂α1α2α3(x1, x2, x3)as = j3ϕ̂%1%2%3(x1, x2, x3)as (31)

which are compatible with the generalized BBW-equations (26).
We assume that an analogous result holds for the J2 condition with-

out doing the rather complicated calculations explicitly. Then the exis-
tence of these constraints in addition to the energy eigenvalue equation
means: The state space can be decomposed into a set of irreducible
representation spaces of the little group. In analogy to the two-parton
case we assume that only the lowest dimensional representations lead to
stable bound states.

The most simple lowest dimensional representation is a spin 1/2 rep-
resentation with orbital angular momentum zero. This representation
describes a composite spin 1/2 fermion which in combination with the
superspin-isospin quantum numbers we identify with the members of the
lepton generations. The next higher dimensional representation contains
an orbital angular momentum 1 and a spin angular momentum 1/2. The
former leads to a triplett which is energetically degenerate. This triplett
forms a representation of the little group rotations, i.e., an O(3) repre-
sentation and, in combination with the other quantum numbers, should
be identified with the quark generations. With respect to the corre-
sponding quantum numbers of three-quark states which constitute the
nucleons, we refer to the literature.

4 Eigenstates of energy and angular momentum

Owing to the translational invariance of the three-parton equation their
solutions admit a representation where the total four momentum is di-
agonalized. This leads to the ansatz

ϕ̂α1α2α3(x1, x2, x3) = exp[−ik(x1 + x2 + x3)
1
3

]χ̂α1α2α3(x2 − x1, x3 − x2)

(32)
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In the rest system k = (k0, 0, 0, 0) the total angular momentum com-
mutes with the translational part of (32), i.e.

[exp[−ik(x1 + x2 + x3)]/k=k0 , J3]− = 0 (33)

and therefore in this system the energy eigenvalue and the angular mo-
mentum eigenvalue can be simultaneously calculated.

First we discuss the energy (mass) eigenvalue equation. As in any
solution procedure of equation (26) the antisymmetry of the wave func-
tion has to be secured,( and is required by the general formalism ), we
antisymmetrize equation (26) explicitly and in addition substitute the
corresponding vertex matrices in the resulting equation. In order to
obtain a compact formulation we introduce the following definitions

F1(x)αβ =
∑
i

λi

∫
d4p1

(2π)4
fi(γµp1

µ +mi)αβexp[−ip1
κx

κ] (34)

and

F2(x)αβ =
∑
j

λj(i)
∫
d4p2

2π)4
fj(−γνp2

ν +mj)αβexp[−ip2
χx

χ] (35)

and
Vαβγδ = [−δαβδγδ + γ5

αβγ
5
γδ] (36)

Using these definitions equation (26) can be rewritten in the following
form:

ϕ̂α1α2α3(x1, x2, x3)as = (37)

2g{
∫
d4xF̂1(x1 − x)α1νVνβν′β′ ϕ̂α2ββ′(x2, x, x)F̂2(x− x3)α3ν′

−
∫
d4xF̂1(x2 − x)α2νVνβν′β′ ϕ̂α1ββ′(x1, x, x)F̂2(x− x3)α3ν′

+
∫
d4xF̂1(x2 − x)α2νVνβν′β′ ϕ̂α3ββ′(x3, x, x)F̂2(x− x1)α1ν′

−
∫
d4xF̂1(x3 − x)α3νVνβν′β′ ϕ̂α2ββ′(x2, x, x)F̂2(x− x1)α1ν′

+
∫
d4xF̂1(x3 − x)α3νVνβν′β′ ϕ̂α1ββ′(x2, x, x)F̂2(x− x2)α2ν′

−
∫
d4xF̂1(x1 − x)α1νVνβν′β′ ϕ̂α3ββ′(x3, x, x)F̂2(x− x2)α2ν′}
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Substitution of (32) into (37) and transformation to the center of
mass coordinates

z =
1
3

(x1 + x2 + x3); u = (x2 − x1); v = (x3 − x2) (38)

then leads to the following equation

exp(−ikz)χ̂α1α2α3(u, v) = (39)

2g
∫
d4xVνβν′β′{F̂1(z − 1

3
(2u+ v)− x)α1νexp[−ik(z +

1
3

(u− v) + 2x)
1
3

]×

χ̂α2ββ′(x− z −
1
3

(u− v), 0)F̂2(x− z − 1
3

(u+ 2v))α3ν′

−F̂1(z +
1
3

(u− v)− x)α2νexp[−ik(z − 2
3

(2u+ v) + 2x)
1
3

]×

χ̂α1ββ′(x− z +
1
3

(2u+ v), 0)F̂2(x− z − 1
3

(u+ 2v))α3ν′

+F̂1(z +
1
3

(u− v)− x)α2νexp[−ik(z +
1
3

(u+ 2v) + 2x)
1
3

]×

χ̂α3ββ′(x− z −
1
3

(u+ 2v), 0)F̂2(x− z +
1
3

(2u+ v))α1ν′

−F̂1(z +
1
3

(u+ 2v)− x)α3νexp[−ik(z +
1
3

(u− v) + 2x)
1
3

]×

χ̂α2ββ′(x− z −
1
3

(u− v), 0)F̂2(x− z +
1
3

(2u+ v))α1ν′

+F̂1(z +
1
3

(u+ 2v)− x)α3νexp[−ik(z − 1
3

(2u+ v) + 2x)
1
3

]×

χ̂α1ββ′(x− z +
1
3

(2u+ v), 0)F̂2(x− z − 1
3

(u− v))α2ν′

−F̂1(z − 1
3

(2u+ v)− x)α1νexp[−ik(z +
1
3

(u+ 2v) + 2x)
1
3

]×

χ̂α3ββ′(x− z −
1
3

(u+ 2v), 0)F̂2(x− z − 1
3

(u− v))α2ν′}

With the transition to the new variable x′ = x − z − 1
3 (u − v), or

x′ = x − z + 1
3 (2u + v), or x′ = x − z + 1

3 (u + 2v), respectively, one
can eliminate the center of mass part exp(−ikz) as well as the center of
mass coordinate z from equation (39) and obtains the final form of the
equation for the energy or mass eigenvalue, respectively.
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χ̂α1α2α3(u, v) = (40)

2g

∫
d4x′Vνβν′β′{F̂1(−u− x′)α1νexp[−ik(u− v + 2x′)

1

3
]F̂2(x′ − v)α3ν′ χ̂α2ββ′(x

′, 0)

−F̂1(u− x′)α2νexp[−ik(−2u− v + 2x′)
1

3
]F̂2(x′ − u− v)α3ν′ χ̂α1ββ′(x

′, 0)

+F̂1(−x′ − v)α2νexp[−ik(u+ 2v + 2x′)
1

3
]F̂2(x′ + u+ v)α3ν′ χ̂α3ββ′(x

′, 0)

−F̂1(−x′ + v)α3νexp[−ik(u− v + 2x′)
1

3
]F̂2(x′ + u)α1ν′ χ̂α2ββ′(x

′, 0)

+F̂1(u+ v − x′)α3νexp[−ik(−2u− v + 2x′)
1

3
]F̂2(x′ − u)α2ν′ χ̂α1ββ′(x

′, 0)

−F̂1(−u− v − x′)α1νexp[−ik(u+ 2v + 2x′)
1

3
F̂2(x′ + v)α2ν′ χ̂α3ββ′(x

′, 0)}

Putting v = 0 in equation (40), the resulting equation is obviously a
selfconsistent integral equation for the reduced function χ̂(u, 0).

Suppose now that χ̂(u, 0) is a solution of this resulting equation.
Then using this solution one can calculate ϕ̂(xl, x, x), l = 1, 2, 3 by
means of equation (32). In particular one obtains from (32)

ϕ̂α1α2α3(xl, x, x) = exp[−ik(xl + 2x)
1
3

]χ̂α1α2α3(x− xl, 0) (41)

and substituting these functions into (37) only by integrations the full
solutions can be generated.

The equation resulting from (40) by putting v = 0 is a rather compli-
cated integral equation. Thus one cannot expect to derive exact solutions
although in principle such solutions must exist according to the Fred-
holm theory. On the other hand we know that the full equation (37)
is compatible with the angular momentum constraint (31). Hence any
solution of (37) must fulfil (31). This in its turn is guaranteed if the
angular momentum condition (30) is satisfied. Hence for a first classi-
fication of the energy spectrum of equation (37) we analyze condition
(30) in the rest system. Substitution of (32) into (30) then gives after
elimination of the center of mass term

[S3
ρϕϕ′,αββ′ + δραδϕβδϕ′β′(L3

l + L3
x)]χ̂αββ′(x− xl, 0) = j3χ̂ρϕϕ′(x− xl, 0)

(42)
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We now apply the transformation z = (xl+2x) 1
3 , ul = (x−xl) and

this transformation leads to L3
l + L3

x = L3
z + L3

ul
which yields for (42)

the final formula

[S3
ρϕϕ′,αββ′ + δραδϕβδϕ′β′L

3
ul

]χ̂αββ′(ul, 0) = j3χ̂ρϕϕ′(ul, 0) (43)

Of course the argument ul can be replaced by u as for all ul equation
(43) is referred to the same function χ̂ and the same angular quantum
number j3.

5 Consistency of the antisymmetry condition

On the one hand the three parton wave functions are assumed to be
solutions of the corresponding generalized BBW-equations, on the other
hand these wave functions must fit into the field theoretic formalism.
The latter requirement includes that the wave functions are to be inter-
preted as formally normal ordered matrix elements stemming from time
ordered matrix elements. And this means that these wave functions must
possess the transformation properties which characterize such matrix el-
ements. In the preceding papers [20],[21] the transformation properties
with respect to the global gauge groups and the Lorentz group were an-
alyzed and shown to be compatible with the required interpretation. So
we concentrate now on the question whether the antisymmetry of the
wave functions - which is required by their field theoretic interpretation
- is compatible with the solution procedure of the generalized BBW-
equations. The treatment of this question is nontrivial and crucial for
the selfconsistency of the generalized BBW-equations themselves as the
whole formalism depends on this assumption.

In any case antisymmetry of the full physical wave function (23) can
be enforced by direct antisymmetrization, namely

ϕ̂Z1Z2Z3(x1, x2, x3)as ≡
1
6

∑
h1h2h3

(−1)P ϕ̂Zh1Zh2Zh3
(xh1 , xh2 , xh3) (44)

leading to the representation of the internal part of the wave function

χ̂Z1Z2Z3(x2−x1, x3−x2)as ≡
1
6

∑
h1h2h3

(−1)P χ̂Z1Z2Z3(xh2−xh1 , xh3−xh2)

(45)
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The six permutations in the fermion coordinates x1, x2, x3 can be
expressed by the internal coordinates u, v in the following way

x2 − x1, x3 − x2=:u, v =: ū1, v̄1 (46)
x1 − x2, x3 − x1=:−u, u+ v =: ū2, v̄2

x3 − x2, x1 − x3=:v,−u− v =: ū3, v̄3

x2 − x3, x1 − x2=:−v,−u =: ū4, v̄4

x1 − x3, x2 − x1=:−u− v, u =: ū5, v̄5

x3 − x1, x2 − x3=:u+ v,−v =: ū6, v̄6

Using these definitions one obtains with the permutations P{1, 2, 3} ≡∑6
l=1(hl1, h

l
2, h

l
3)

χ̂Z1Z2Z3(x2 − x1, x3 − x2)as ≡
1
6

6∑
l=1

(−1)P χ̂Z
hl

1
Z
hl

2
Z
hl

3
(ūl, v̄l) (47)

We now consider the action of orbital angular momentum on the
antisymmetrized wave function. In the rest system the application of
the orbital angular momentum operators yields

(L3
1+L3

2+L3
3)ϕ̂Z1Z2Z3(x1, x2, x3)as = exp(−ik0z0)(L3

u+L3
v)χ̂Z1Z2Z3(u, v)as

(48)
or explicitly with the symbolic notation: Zln := Zhln

(L3
u + L3

v)χ̂Z1Z2Z3(u, v)as =
1
6

∑
l

(L3
u + L3

v)χ̂Zl1Zl2Zl3(ūl, v̄l) (49)

By transformation of the orbital angular momentum operators from
the variables u,v to the variables ūl, v̄l the following relation results

(L3
u + L3

v)χ̂Zl1Zl2Zl3(ūl, v̄l) = (L3
ūl

+ L3
v̄l

)χ̂Zl1Zl2Zl3(ūl, v̄l) (50)

and as χ̂(ūl, v̄l) is for all l = 1,..,6 the same function, the eigenvalue
of the orbital part of the angular momentum does not depend on the
permutations. The spin operator in (30) is invariant under permutations
of the spin indices. Hence one obtains

(S3
Z1Z2Z3,Z

′
1Z
′
2Z
′
3

+ L3
u + L3

v)χ̂Z1Z2Z3(u, v)as = j3χ̂Z1Z2Z3(u, v)as (51)

≡ 1

6

∑
l

(S3
Zl1Z

l
2Z

l
3,Z

l′
1 Z

l′
2 Z

l′
3

+ L3
ūl + L3

v̄l)χ̂Zl′1 Z
l′
2 Z

l′
3

(ūl, v̄l) = j3
∑
l

χ̂Zl1Z
l
2Z

l
3
(ūl, v̄l)
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Furthermore from equation (46) one can conclude: Each permutation
with respect to the general coordinates (x1Z1), (x2Z2), (x3Z3) induces a
corresponding permutation in the general coordinates ūl, v̄l, Zl1, Z

l
2, Z

l
3, l

= 1,..,6 . Then, if a permutation operation is applied to the second line
of equation (51) it follows that in the rest frame the angular momentum
operator J3 is mapped onto itself, i.e., it is invariant under permutations.

Therefore suppose that one has an unsymmetrical wave function with
good quantum number j3, then antisymmetrization conserves this quan-
tum number as the permutation operator and the angular momentum
operator commute. And this means, that if one is forced to apply ap-
proximations one can start the calculations with unsymmetrical eigen-
functions of the angular momentum operator.

Similar considerations hold for the other components of the angular
momentum operator. This can be summarized by

Proposition3: In the rest system of an eigenstate of equation (37)
the angular momentum operators J2 and J3 are invariant under permu-
tations, i.e., these operators commute with the permutation operator.

Finally we consider the behavior of the mass eigenvalue equation (40)
under operations of the permutation group. With the symbolic notation
αln := αhln we represent equation (40) in terms of the variables ūl, v̄l.
This gives the equivalent expression for equation (40) in the following
form:

χ̂α1α2α3(u, v)as =
2
3

∑
l

(−1)P
∫
d4x′Vνβν′β′ × (52)

{F̂1(−x′ − ūl)αl1νexp[−ik(
2
3
x′ +

1
3

(ūl − v̄l)]F̂2(x′ − v̄l)αl3ν′ χ̂αl2ββ′(x
′, 0)}

In combination with the remarks made above from this equation it
directly follows

Proposition4: In an arbitrary frame of reference the mass eigen-
value equation for an associated eigenstate is invariant under operations
of the permutation group.

The assertion that in a general frame of reference the eigenvalue is
defined by the invariant mass value is justified by the invariance of the
generalized BBW-equations under Poincare transformations.
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6 Construction of eigenstates and dual states

In section 4 an integral equation (40) for the reduced eigenstate χ(u, 0)
was derived. The solution of this equation is a necessary but not suffi-
cient condition for the construction of the full eigenstates (32). As the
latter are required for physical applications their derivation has to be
discussed in detail, in particular with respect to regularization and the
construction of dual states.

In the following the decomposition of the index Z = (z, i) of section
1 is used. In this notation equations (21) read

ϕz1z2z3i1i2i3
(x1, x2, x3) =

∫
d4xGz3a1

i3l1
(x3 − x)λl1Va1a2a3a4 × (53)

3
∑
l2

[−F a2z2
l2i2

(x− x2)Ωz1a3a4
i1

(x1, x, x) + F a2z1
l2i1

(x− x1)Ωz2a3a4
i2

(x2, x, x)]

with ∑
i2i3

ϕz1z2z3i1i2i3
(x1, x2, x3) =: Ωz1z2z3i1

(x1, x2, x3) (54)

and by summation over i2, i3 the equations

Ωz1z2z3i1
(x1, x2, x3) =

∫
d4xĜz3a1(x3 − x)Va1a2a3a4 × (55)

3[−F̂ a2z2(x− x2)Ωz1a3a4
i1

(x1, x, x) +
∑
l2

F a2z1
l2i1

(x− x1)ϕ̂z2a3a4(x2, x, x)]

result with ∑
i3

λl1G
z3a1
i3l1

(x) =: Ĝz3a1(x) (56)

Defining the inhomogenous term

Iz1z2z3i1
(x1, x):=

∫
d4x′Ĝz3a1(x− x′)Va1a2a3a4 × (57)∑

l2

F a2z1
l2i1

(x′ − x1)ϕ̂z2a3a4(x, x′, x′)

from (55) one obtains the selfconsistent equations

Ωz1z2z3i1
(x1, x, x)=−

∫
d4x′Ĝz3a1(x− x′)Va1a2a3a4 × (58)

3F̂ a2z2(x′ − x)Ωz1a3a4(x1, x
′, x′) + Iz1z2z3i1

(x1, x)
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If one assumes now that the eigenvalue problem (40) has been solved,
then (41) is a well known function and an explicit solution of equation
(58) can be obtained by applying a corresponding resolvent Γ which leads
to

Ωz1z2z3i1
(x1, x, x) =

∫
d4x′Γz2z3b2b3

(x, x′)Iz1b2b3i1
(x1, x

′) (59)

Thus having explicitly calculated ϕ̂ as well as Ω, the full eigenstate
ϕ can be generated by substitution of Ω into (53) leading to ϕ solely by
integration.

The crucial point in this construction is the closely associated regu-
larization of vertex functions which is an automatic consequence of the
solution procedure itself. In this way the integral kernel of equation (40)
exclusively contains only regularized functions which allows the applica-
tion of Fredholm’s theory to its solution.

Although the classical Fredholm theory does not explicitly comprise
Feynman integrals, in any case due to the regularization all Feynman
integrals of the kernel and their iteration give finite results and thus the
Fredholm series can be calculated without producing infinities.

The same argument applies to the kernel of equation (58). Hence its
resolvent can be constructed by means of the Fredholm theory too.

The systematic effect of this automatic regularization can be illus-
trated by counting the remaining factors λi. Each single regulariza-
tion of a function eliminates one λi. And, referring to the definitions
(7),(34),(35),(36) and (56), one easily realizes that the kernel of equa-
tion (40) contains no more λi at all. The same holds for the kernel
of equation (58) and its kernel Γ, whereas the inhomogenous term (57)
exactly contains one λi.

From the final integral representation (53) of ϕ one therefore deduces
the general formula

ϕz1z2z3i1i2i3
(x1, x2, x3) = λi1λi2λi3ϕ

z1z2z3(x1, x2, x3,mi1 ,mi2 ,mi3) (60)

of the dependence of ϕ on the λi.
This formula is a suitable starting point for the construction of dual

states which are required in physical applications, e.g., derivation of
effective theories by weak mapping.

For the case under consideration, i.e., the three body states, the set
of duals {Rk} is defined by the orthogonality relation

RkI1I2I3ϕ
I1I2I3
k′ = δkk′ (61)
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for single time wave functions where I := {r, t = 0, Z} and k and k′ run
through all state quantum numbers of the three parton problem.

Provided the state functions ϕk are explicitly given, the construction
of duals is a purely mathematical problem. Hence there exist no rigorous
physical arguments for the derivation of duals. Physical considerations
in this respect are thus only of heuristic value to support a mathematical
deduction.

Based on such heuristic arguments the construction of dual states
has been treated at full length in [7] and [8]. But we will show that by
means of such considerations one really arrives at a rigorous solution of
(61).

From [7] and [8] one obtains for the duals

RkI′1I′2I′3
= g−1

kk (ϕI1I2I3k )†G−1
I1I2I3,I′1I

′
2I
′
3

(62)

where gkk is the norm of ϕk in Krein space and G is the metric tensor
of the auxiliary spinor fields in Krein space. The latter tensor describes
the properties of the auxiliary spinor field vacuum.

Concerning this vacuum, in the eigenvalue equations (4) its represen-
tation is fixed by the propagator F. According to (7) this propagator is
assumed to be the free auxiliary field propagator. However, after regu-
larization, for physical states a modified field propagator results which
describes a nontrivial vacuum. Hence the choice of a trivial vacuum in
Krein space induces by regularization a nontrivial vacuum in physical
state space. In order to be compatible with these preconditions G must
be referred to free auxiliary fields too.

The corresponding proof has been given in [7] and leads to

G−1
3,3 = G−1

1,1 ⊗G−1
1,1 ⊗G−1

1,1 = λ−1
i1
λ−1
i2
λ−1
i3
δI1I′1δI2I′2δI3I′3 (63)

where G1,1 is defined by

G1,1 =: 〈0|ψ+
I |ψI′ |0〉 (64)

for free auxiliary fields ψI without Dirac vacuum.
As already mentioned this construction is only heuristic and must

be justified by the fulfillment of (61). Substitution of (62) and (60) into
(61) leads to

〈R|ϕ〉 =
∑
i1i2i3

∑
z1z2z3

∫
d3r1d

3r2d
3r3 (65)

λ−1
i1
λ−1
i2
λ−1
i3
ϕz1z2z3i1i2i3

(r1, r2, r3)†ϕz1z2z3i1i2i3
(r1, r2, r3)
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whereas the physical scalarproduct is given by (12).
In spite of the difference between (65) and (12) the following propo-

sition holds for the scalar products (65) and (12) of two different states
ϕk and ϕk′ : Proposition5 : Let Rk or Rk

′
, respectively, be the duals of

ϕk or ϕk′ constructed by (62). Then the corresponding scalar products
defined by (65) and (12) fulfill identical orthogonality relations, provided
that the set of quantum numbers given by k and k ’ are referred to the
same mass eigenvalue.

Proof : The orthogonality relations can be deduced by means of the
maximal set of commuting observables. For BBW-equations this set was
defined in [14]. Owing to the Lorentz invariance this set can be consid-
ered in the rest frame. It consists of angular momentum operators and
operators of the algebraic groups. The former operators are selfadjoint,
while the latter operators are symmetric. In both types of operators
no reference to the auxiliary field numbers i1, i2, i3 is made. Hence the
general form of the eigenvalue equation for an infinitesimal generator G
reads

Gϕi1i2i3 = gϕi1i2i3 (66)

From this equation for the states with numbers k and k′ either the
relation

(gk − gk′)〈ϕ̂k|ϕ̂k′〉 = 0 (67)

or the relation

(gk − gk′)
∑
i1i2i3

〈(ϕki1i2i3)†λ−1
i1
λ−1
i2
λ−1
i3
ϕk
′

i1i2i3〉 = 0 (68)

can be deduced which show that (65) and (12) satisfy identical orthog-
onality relations. ♦

With respect to the scalar produkt for k ≡ k′ (12) is positiv definite
while (65) is indefinite, i.e. it cannot be excluded that this scalar product
vanishes for nonvanishing ϕ. Leaving aside this extraordinary case, from
(65) for k ≡ k′ it follows that the sum over i1, i2, i3 regularizes |ϕ|2
which defines the metric in Krein space of the auxiliary fields owing to
the varying signs of λi1 , λi2 , λi3 . But independently of the sign of this
scalar product, the dual can be defined in such a way that the definition
(61) can be satisfied.

Finally it remains the problem of the scalar products for different
masses of the states k and k′. This problem concerns (65) as well as
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(12), because no selfadjoint operator for the mass eigenvalues can be
derived from the BBW-equations. Thus the conventional arguments for
showing orthogonality cannot be applied. Without speculating about
the physical meaning of this exception of the usual treatment one can
solve this problem by forming linear combinations of states with equal
quantum numbers but different masses and apply Schmidt’s orthogonal-
ization procedure [22].
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