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Dynamics of Spatially localized Fields
Obeying Complex Hamiltonian Evolution Equations
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ABSTRACT. Several families of nonlinear field equations are known
to possess spatially localized solutions which can serve as represen-
tations, on a very general level, of elementary particles. This paper
presents a derivation of the equations describing the motion of a lo-
calized field when it interacts with given electromagnetic potentials
Aµ which enter the field’s equations through the covariant deriva-
tive forms ∂/∂xµ − igAµ . The main result is: the motion of a
spatially localized field, as a whole entity, is essentially identical to
that of a point charge moving in the same electromagnetic poten-
tials, if this field is a solution of any equation which is member of
the above family and is gauge invariant. In the process of obtaining
this result several unexpected links to quantum mechanics become
apparent.

1. Introduction

Spatially localized fields (under various names) and their possible
role in particle and field theories have been studied by many physicists.
Among the most prominent are: L. de Broglie [1], W. Heisenberg [2],
T. D. Lee [3, 4], N. Rosen [5,6]. . . The results in the present paper
are new evidences that localized fields can be viable representations, on
a very general level, of elementary particles. In earlier papers [12, 13] I
have already shown that certain localized fields are naturally associated
with waves which are characterized by de Broglie-type relations. These
relations are derived rather than assumed.

Here we investigate the dynamics of spatially localized complex
multi-component fields ψσ = ψσ(x, t) which are solutions to com-
plex Hamiltonian evolution (CHE) equations of order 2 or less, i.e., with
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the form

∂ψσ

∂t
= −i

δH

δψ∗
σ

, H =
∫
IR3

H(x, t, ψ∗, ψ, ∂ψ∗, ∂ψ) d3x (1.1)

where H is the Hamiltonian functional which must be real-valued , ∂ψ
denotes all space-derivatives ∂ψσ/∂xi , ψ∗

σ is the complex conjugate
of ψσ and

δH

δψ∗
σ

=
∂H
∂ψ∗

σ

− d

dxi

∂H
∂(∂iψ∗

σ)
(1.2)

is the variational derivative of H with respect to ψ∗
σ . ψσ may be a

spinor, vector, scalar, or sets of coupled scalar fields defined on the en-
tire Euclidian space IR3 whose coordinates are x = (x1, x2, x3) and
t is the time. The present paper is closely related to an earlier paper
[7] by the same author which discusses the complex Hamiltonian evolu-
tion equations, some of their properties and associated implications for
physics.

It should be observed that the field equations must be nonlinear in
order to possess spatially localized solutions. On the other hand, when
the Hamiltonian functional is bi-linear

H =
∫
ψ∗
σĤσρψρ d

3x

where Ĥσρ is a self-adjoint matrix-differential operator, we obtain
the family of linear CHE equations i ∂ψσ/∂t = Ĥσρψρ to which
Schrödinger’s and Dirac’s equations are members.

All the results in this paper depend critically on the fact that cer-
tain nonlinear CHE field equations possess spatially localized (also called
soliton-like) solutions. The existence of such solutions to a large family
of scalar nonlinear field equations, including the nonlinear Schrödinger
(NLS) equations, is proved and existence conditions are derived in
Berestycki and Lions [8]. The existence of such solutions to spinor non-
linear field equations, including the nonlinear Dirac (NLD) equation is
proved in Cazenave and Vazquez [9]. Also, there are many publications
which demonstrate the existence and certain properties of localized solu-
tions by numerical methods. Some additional references are: Bialynicki-
Birula and Mycielski [10], Enz [11], Bodurov [12, 13]. It should be also
pointed out that large number of works in Soliton theory investigate the
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solitons as one-dimensional models of elementary particles. A collection
edited by Rebbi and Soliani [14] contains several such works.

This paper poses and answers the question: What is the motion of
a spatially localized field, as a whole entity, if its interaction with given
scalar potential Φ and vector potential A = (A1, A2, A3) is defined
by the substitutions

∂

∂t
→ ∂

∂t
+ igΦ ,

∂

∂xi
→ ∂

∂xi
− igAi

in its field equation (1.1). In answering the above question, this paper
shows that there are a number of unexpected links between nonlinear
field theory and quantum mechanics.

Notation and conventions: Here, all complex-valued fields will
be denoted with the Greek letter ψ , all densities (the integrands of
functionals) with script capital letters, all 3-vectors with bold letters.
The complex conjugate of any field ψ will be written as ψ∗ . The rest
of the symbols will be defined at their first appearance. The summation
convention of repeated indexes is assumed as usual. The domain of all
space integrals is the entire 3-dimensional Euclidian space IR3 . The
units are selected so that c = 1 .

2. The position, velocity and momentum of a localized field

If we are to study the motion of a spatially localized field ψ(x, t) , as
a whole entity, we should be able to calculate the position and velocity
of the field’s localization region and the field’s total momentum from
ψ(x, t) alone. For this purpose we define the position of a spatially
localized field, i.e., the coordinates of its center of localization, with the
functionals

Xi =
1
N

∫
IR3

ψ∗
σψσxi d

3x , i = 1, 2, 3 (2.1)

where

N =
∫
IR3

ψ∗
σψσ d

3x (2.2)

is the field’s norm (squared). The field is not normalized since it is a
solution of a nonlinear equation, hence, the appearance of the factor
1/N in (2.1).
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Before we ask how the values of the functionals Xi depend on time,
we need to address the simpler question: under what conditions is N
constant in time? For this, we differentiate ψ∗

σψσ with respect to time
and use the field equations (1.1), accounting for (1.2), to obtain

d

dt
(ψ∗

σψσ) + i
d

dxi

(
ψσ

∂H
∂(∂iψσ)

− ψ∗
σ

∂H
∂(∂iψ∗

σ)

)

= i

(
ψσ

∂H
∂ψσ

− ψ∗
σ

∂H
∂ψ∗

σ

+
∂ψσ

∂xi

∂H
∂(∂iψσ)

− ∂ψ∗
σ

∂xi

∂H
∂(∂iψ∗

σ)

)
. (2.3)

It follows from the above that if the Hamiltonian density H satisfies the
condition

ψσ
∂H
∂ψσ

− ψ∗
σ

∂H
∂ψ∗

σ

+
∂ψσ

∂xi

∂H
∂(∂iψσ)

− ∂ψ∗
σ

∂xi

∂H
∂(∂iψ∗

σ)
= 0 (2.4)

the density ψ∗
σψσ obeys a conservation law and, consequently, the norm

N is constant in time. Furthermore, any function H of ψ, ψ∗, ∂ψ, ∂ψ∗

which is invariant under the gauge type I transformations [15]

ψ′
σ = ψσ e

iε , ψ′∗
σ = ψ∗

σ e
iε (2.5)

where ε is the transformation parameter (independent of x and t ),
satisfies equation (2.4). One can verify this by inserting ψ′

σ and ψ′∗
σ

into H . Then, the condition for invariance

d

dε
H(x, t, ψ′∗, ψ′, ∂ψ′∗, ∂ψ′)

∣∣∣
ε=0

= 0

immediately produces equation (2.4). Thus we have: The norm N of a
spatially localized solution to a CHE equation is constant in time if the
Hamiltonian density H is gauge type I invariant.

To obtain the velocity of the region of localization V = (V1, V2, V3) ,
one differentiates the position functionals (2.1) with respect to time and
then uses the field equations (1.1)

Vi =
1
N

∫ (
ψ∗
σ

∂ψσ

∂t
+

∂ψ∗
σ

∂t
ψσ

)
xi d

3x

=
i

N

∫ (
ψσ

∂H
∂(∂iψσ)

− ψ∗
σ

∂H
∂(∂iψ∗

σ)

)
d3x

+
i

N

∫ (
ψσ

∂H
∂ψσ

− ψ∗
σ

∂H
∂ψ∗

σ

+
∂ψσ

∂xj

∂H
∂(∂jψσ)

− ∂ψ∗
σ

∂xj

∂H
∂(∂jψ∗

σ)

)
xi d

3x .
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Recognizing that the second integrant is zero, according to (2.4), we find
that the velocity components of the localization region are given by the
functionals

Vi =
i

N

∫
IR3

(
ψσ

∂H
∂(∂iψσ)

− ψ∗
σ

∂H
∂(∂iψ∗

σ)

)
d3x . (2.6)

In passing, we note that the integrant of the above functional is equal
to the flux density associated with ψ∗

σψσ as seen in equation (2.3).
Accordingly, one can regard ψ∗

σψσ as the density of some substance
whose velocity at a point x is the integrant in (2.6) multiplied by i/N .

Next, following the common practice, we identify the densities of
the field’s linear momentum components Pi with the entries −T i0 of
the energy-momentum 4-tensor for the complex field ψ

Pi = −T i0 = − ∂ψσ

∂xi

∂L
∂(∂tψσ)

− ∂ψ∗
σ

∂xi

∂L
∂(∂tψ∗

σ)
(2.7)

where ∂tψσ stands for ∂ψσ/∂t and

L =
i

2

(
ψ∗
σ

∂ψσ

∂t
− ∂ψ∗

σ

∂t
ψσ

)
−H (2.8)

is the Lagrangian density for the field equations (1.1). Inserting (2.8)
into (2.7) produces for the linear momentum densities

Pi =
1
2i

(
ψ∗
σ

∂ψσ

∂xi
− ∂ψ∗

σ

∂xi
ψσ

)
(2.9)

Consequently, the components of the field’s linear momentum are given
by the functionals

Pi =
1
2i

∫ (
ψ∗
σ

∂ψσ

∂xi
− ∂ψ∗

σ

∂xi
ψσ

)
d3x = − i

∫
ψ∗
σ

∂ψσ

∂xi
d3x (2.10)

It is remarkable that the last functional, obtained from purely classical
arguments, differs from the expectation value of the linear momentum in
quantum mechanics only by the multiplicative constant h̄/N .

With the momentum and velocity functionals well defined one can
define the mass m of a spatially localized field as the ratio

m =
Pi

Vi
(no summation) (2.11)
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which definition is, clearly, independent of any relativistic arguments
(i.e. m = energy/c2 ). In general, m will be a function of V since the
functionals Pi and Vi are not proportional. However, when the field
equations are of the form

i
∂ψσ

∂t
= −µ∇2ψσ + G(ψ∗

τψτ )ψσ (2.12)

where µ is a positive constant, the functionals Pi and Vi are propor-
tional. Indeed, (2.12) is the family of scalar and multi-component nonlin-
ear Schrödinger equations. One verifies this by inserting the Hamiltonian
density for equations (2.12)

H = µ∇ψ∗
σ
.∇ψσ + G(ψ∗

σψσ)

where G(ρ) = dG(ρ)/dρ , into the velocity functional (2.6) to obtain
Pi = (N/2µ)Vi . Hence the mass of a spatially localized field, obeying
a NLS equation, is m = N/2µ .

A fundamental property of the total linear momentum of any system
is that it is constant if the Hamiltonian does not explicitely depend on
the coordinates. To show that this is true for the linear momentum
functional (2.10) when ψ is a spatially localized solution of any CHE
equation of the form (1.1) we can either directly calculate the total time-
derivative of (2.9) or we can use the following property of the energy-
momentum tensor Tµν :

d Ti0
dt

+
d Tij
dxj

= − ∂L
∂xi

, i, j = 1, 2, 3

where the tensor’s entries Ti0 are given by (2.7) and Tij by

Tij =
∂L

∂(∂jψσ)
∂ψσ

∂xi
+

∂L
∂(∂jψ∗

σ)
∂ψ∗

σ

∂xi
− Lδij .

In either case the result is

dPi

dt
+

d

dxj

(
∂H

∂(∂jψσ)
∂ψσ

∂xi
+

∂H
∂(∂jψ∗

σ)
∂ψ∗

σ

∂xi
+ Lδij

)
= − ∂H

∂xi
. (2.13)

This becomes a conservation law if ∂H/∂xi = 0 , that is, when the
Hamiltonian density H is translation invariant along the xi-coordinate.
A consequence of the continuity law (2.13) is the equation

dPi

dt
= −

∫
IR3

∂H
∂xi

d3x (2.14)
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which is obtained by integrating (2.13) over all space. From it follows
that, indeed, the linear momentum component Pi of a localized field
is constant if ∂H/∂xi = 0 . Relation (2.14) is very general since it
holds on any spatially localized solution of any CHE equation (1.1). Its
counterpart in quantum mechanics is Ehrenfest theorem (second part)

dP̄i

dt
= −

∫
ψ∗
σ

∂Ĥ

∂xi
ψσ d

3x

written in our notation, where P̄i is the linear momentum expectation
value and Ĥ is the Hamiltonian operator of the quantum system (see
Messiah [16]).

Relation (2.14) will play a key role in the next section.

3. Complex spatially localized fields interacting with given elec-
tromagnetic fields

As it is well known, quantum mechanics accounts for the interaction
of a point-like particle with given electric and magnetic fields by replacing
the space and time derivatives, in the wave-function equations, with
covariant derivatives according to

∂

∂t
→ ∂

∂t
+ igΦ ,

∂

∂xi
→ ∂

∂xi
− igAi (3.1)

where Φ and A = (A1, A2, A3) are the scalar and vector potentials
of the electromagnetic field, g = q/h̄ and q is the particle’s charge.

Here, we define the interaction of a spatially localized field, obeying
a CHE equation of the form (1.1), by making the same substitutions (3.1)
in its equation except for the value of the constant g which, initially, is
left unspecified. In this section we will show that the main consequence of
this definition is: If the Hamiltonian density H is gauge type I invariant
and the electromagnetic field intensities do not exceed certain limits, then
the center of the localization region moves as a classical point charge
(with mass m ) would move in the same electromagnetic field.

First, we need to discuss the existence of localized solutions of CHE
equations which have been modified by the substitutions (3.1). If a
CHE equation possesses localized solutions, after the substitution (3.1)
it may not have such solutions. However, if the potentials Φ and Ai

are constant in time and space, at least within the localization region,
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then the localized solutions will certainly exist. This can be shown as
follows: The modified CHE equation is

i
∂ψσ

∂t
− gΦψσ =

δ

δψ∗
σ

∫
H(ψ∗, ψ, ∂ψ∗+ igAψ∗, ∂ψ − igAψ) d3x (3.2)

where H(ψ∗, ψ, ∂ψ∗, ∂ψ) is the Hamiltonian density for the original
equation, which is assumed to be gauge type I invariant (see (2.5)). If
we transform ψ according to

ψ′
σ = ψσ exp

(
− ig(Φt + Aixi)

)
(3.3)

(not a gauge I transformation) we see that ψ′ satisfies the original equa-
tion. Then, according to (3.3) we have ψ′∗

σ ψ′
σ = ψ∗

σψσ from which
follows that the modified equation (3.2) has localized solutions if the
original equation has such. Next, continuity arguments tell us that lo-
calized solutions will exist even when the potentials Φ and Ai are not
constant provided the latter vary sufficiently slow within the region of
localization.

Now, we are ready to derive the main result of this paper. If
the original equation is CHE with Hamiltonian functional H =∫
H(ψ∗, ψ, ∂ψ∗, ∂ψ) d3x then the field equation (3.2) is also CHE whose

Hamiltonian functional is

H ′ =
∫
H ′d3x =

∫ (
H(ψ∗, ψ, ∂ψ∗+igAψ∗, ∂ψ−igAψ)+gΦψ∗

σψσ

)
d3x .

(3.4)
When the substitution (3.1) is applied to the momentum functional
(2.10) we have

Πi =
1
i

∫
ψ∗
σ

(
∂ψσ

∂xi
− igAi ψσ

)
d3x = Pi − g

∫
Ai ψ

∗
σψσ d

3x (3.5)

where Pi , given by (2.10), is the total linear momentum. The functional
Πi will be called the “mechanical” linear momentum, i-component. The
relation (3.5) is in complete correspondence with a similar relation in the
classical mechanics of a point mass/charge (see Goldstein [17]). To find
the total time-derivative of Πi we use the relation (2.14)

dPi

dt
= −

∫
∂H ′

∂xi
d3x



Dynamics of Spatially localized Fields . . . 545

with the Hamiltonian density H ′ defined by (3.4) and the definition
(3.5) as follows:

dΠi

dt
= −

∫
∂H
∂xi

d3x− g

∫
∂Φ
∂xi

ψ∗
σψσ d

3x− g
d

dt

∫
Ai ψ

∗
σψσ d

3x . (3.6)

Taking in account the form of H , as shown in (3.4), the first term in
(3.6) becomes∫

∂H
∂xi

d3x = − ig

∫
∂Aj

∂xi

(
ψσ

∂H
∂(∂jψσ)

− ψ∗
σ

∂H
∂(∂jψ∗

σ)

)
d3x

= − gN

∫
∂Aj

∂xi
Vj d3x

(3.7)

where

Vj =
i

N

(
ψσ

∂H
∂(∂jψσ)

− ψ∗
σ

∂H
∂(∂jψ∗

σ)

)
(3.8)

is the integrant of the velocity functional according to (2.6). The third
term in (3.6) is calculated using the CHE equations for ψ

d

dt

∫
Ai ψ

∗
σψσ d

3x =
∫

∂Ai

∂t
ψ∗
σψσ d

3x

+ i

∫
Ai

(( ∂H
∂ψσ

− d

dxj

∂H
∂(∂jψσ)

)
ψσ − ψ∗

σ

( ∂H
∂ψ∗

σ

− d

dxj

∂H
∂(∂jψ∗

σ)

))
d3x .

After integration by parts and regrouping terms the above becomes

d

dt

∫
Ai ψ

∗
σψσ d

3x

=
∫

∂Ai

∂t
ψ∗
σψσ d

3x + i

∫
∂Ai

∂xj

(
ψσ

∂H
∂(∂jψσ)

− ψ∗
σ

∂H
∂(∂jψ∗

σ)

)
d3x

+ i

∫
Ai

(
ψσ

∂H
∂ψσ

− ψ∗
σ

∂H
∂ψ∗

σ

+ ∂jψσ
∂H

∂(∂jψσ)
− ∂jψ

∗
σ

∂H
∂(∂jψ∗

σ)

)
d3x

=
∫

∂Ai

∂t
ψ∗
σψσ d

3x + N

∫
∂Ai

∂xj
Vj d3x (3.9)

where the integrant proportional to Ai vanishes because H is gauge
type I invariant and hence (2.4) holds. Inserting (3.7) and (3.9) into
(3.6) produces the desired result

dΠi

dt
= − g

∫ (
∂Φ
∂xi

+
∂Ai

∂t

)
ψ∗
σψσ d

3x + gN

∫ (
∂Aj

∂xi
− ∂Ai

∂xj

)
Vj d3x .

(3.10)
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The second integrant can be written, using vector notation, as

(
∂Aj

∂xi
− ∂Ai

∂xj

)
Vj =

(
V× (∇×A)

)
i

where A = (A1, A2, A3) , V = (V1,V2,V3) denote vectors and (V×
(∇ × A))i stands for the i-component of V × (∇ × A) . Finally,
recognizing that the electric field E and the magnetic field B are given
in terms of the potentials as

E = −∇Φ − ∂A
∂t

, B = ∇×A (3.11)

equation (3.10), written as a vector equation, becomes

dΠ
dt

= g

∫ (
Eψ∗

σψσ + NV×B
)
d3x . (3.12)

where Π = (Π1,Π2,Π3) is the vector-valued functional of the “me-
chanical” momentum. It should be observed that the above equation
is very general since it holds for all spatially localized fields obeying all
CHE equations of the form (3.2). This equation becomes particularly
simple, when the electromagnetic fields change sufficiently slow, so that
they can be assumed to be constant within the region of localization.
Then we obtain from (3.12) the equation which describes the motion of
a spatially localized field as a whole entity

dΠ
dt

= gE
∫
ψ∗
σψσ d

3x− gNB×
∫
V d3x = gN

(
E + V×B

)
. (3.13)

where V =
∫
V d3x is the velocity vector of the localization region.

Equation (3.13) is exactly the same as the equation which describes
either the classical or the relativistic motion of a point mass with charge
q = gN in the electromagnetic field E,B and with Π being the
corresponding “mechanical” momentum of this charge (see Goldstein
[17] or Jackson [18]).

The above requirement that E and B change sufficiently slow may
be superfluous, since the potentials Φ and Ai were already assumed to
change sufficiently slow in order to assure the existence of localized fields
(see Section 3).
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4. Concluding discussion

While deriving the main results, i.e., that relations (2.14) and (3.12)
hold for spatially localized fields which are solutions of a large family of
CHE equations, we obtained another result which has not been discussed
so far. This will be done now.

In Section 2 the mass m of a localized field was defined as the ratio
of the value of the linear momentum functional to that of the velocity
functional, i.e. by (2.11). Then, for all NLS equations with the form
(2.12) we get that the mass is m = N/2µ from which we find

µ =
N

2m
. (4.1)

Comparing this with the value µ = h̄/2m of the same constant in
Schrödinger’s equation we see that the field’s norm N appears in place
of Planck’s constant h̄ .

The same correspondence is found by comparing equation (3.13)
with the equation for the motion of a point-charge in an electromagnetic
field. Accordingly, we have to set q = gN , where q is the charge of
the localized field and hence

g =
q

N
. (4.2)

However, when the substitutions (3.1) are used in quantum mechanics
g = q/h̄ . Thus, again we find the norm N in place of h̄ . It is not likely
that this correspondence is a result of some peculiar coincidence because
the arguments leading to (4.1) and to (4.2) are not related. Furthermore,
the same correspondence is obtained in Bodurov [12, 13] from entirely
different arguments.
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(Manuscrit reçu le 28 avril 2003)


