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Remarks on momentum and energy flux of 
a non-radiating electromagnetic field

ALEXANDER L. KHOLMETSKII

Belarusian State University, 4, F. Skorina Avenue, Minsk 220080, Belarus

ABSTRACT. This paper inspects more closely the prob-
lem of the momentum of a non-radiating electromagnetic 
(EM) field. It has been shown for a number of particular 
physical problems that the customarily defined momentum 

( )∫ ×=
V

EM dVBEP 0
��

ε  for a non-radiating EM field does 

not, in general, represent the total momentum of such a 
field ( BE

��
, are the electric and magnetic fields, respec-

tively, and V denotes all space). Namely, for the non-
radiating EM field, always attached to a system of parti-
cles with the charges qi (sources of field), the momentum 

∑=
i

iiA AqP
��
 ( A
�
 is the vector potential) should be also 

added. Then a transformation of mechanical to EM mo-
mentum and vice versa for a closed non-radiating system 
occurs in accordance with the requirement GP

�
=const, 

where ∑+=
i

iiMG AqPP
���
 is the generalized (canonical) 

momentum of the system ( MP
�
 is the mechanical momen-

tum). Some physical inferences from the obtained results 
are discussed.
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1 Introduction

It is well known that local validity of the energy conservation law requires 
the equality of the partial time derivative of electromagnetic (EM) energy in 

some spatial volume V, ∫∂
∂

V

udV
t

, to the energy flux across the boundary of 

that volume and a transmission of energy to matter. Here

22

2
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0
BcEu
��

εε += (1)

is the energy density of the EM field. One sees from Eq. (1) that
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Considering Eq. (2), Poynting proposed to use the Maxwell equations to 
evaluate the field partial time derivatives [1]:

E
t
B ��

×−∇=
∂
∂ , (3)

( )
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2

ε
jBc

t
E

���
−×∇=

∂
∂ , (4)

Then the substitution of Eqs. (3), (4) into Eq. (2) leads to the familiar equa-
tion

0=+∇+
∂
∂ jES
t
u ���

(5)

( j
�
 is the current density), where

( )BEcS
���

×= 2
0ε (6)
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is the Poynting vector, which defines the energy flux density of EM field.
Applying Eqs. (5), (6) to an EM radiation, one can see that the di-

rection of S
�
 coincides with that of EM wave propagation, and the term Ej

��

corresponds to an absorption of EM radiation by charged particles. The same 
Eqs. (5) and (6) are also applied to a non-radiating EM field, and according 
to a general theorem of classical mechanics, a momentum density p�  for 
both EM radiation and non-radiating EM field is defined as

( )BEcSpEM
����

×== 0
2 ε . (7)

Then the total momentum of a non-radiating EM field is computed by inte-
gration of (7) over all space V:

( )∫ ×=
V

EM dVBEP 0
���

ε . (8)

We should mention that Bessonov in a number of his papers (see, 
e.g. [2]) showed that the energy balance equation (5) meets a number of 
physical difficulties, when the point-like charged particles are involved. The 
problem becomes worse when the self-forces of electromagnetic fields of 
particles are also taken into account. However, an analysis of these problems 
and their resolution in [2] fall outside the scope of the present paper, because 
further we focus our attention on mutual transformation of an electromag-
netic and mechanical momentum, but not on derivation of global law of 
conservation of energy.

It is customarily assumed that transformation of the momentum (8) 
into mechanical momentum of charged particles leads to a violation of New-
ton’s third law in EM interactions. In the present paper we will show that 
such a physical interpretation of the momentum (8) is erroneous. Section 2 
validates this assertion with a number of particular physical problems, deal-
ing with transformation of EM momentum into mechanical momentum of a 
closed system of non-radiating charged particles. Section 3 shows that a 
transformation of mechanical to EM momentum and vice versa for a closed 
non-radiating system occurs in accordance with the requirement GP

�
=const, 

where ∑+=
i

iiMG AqPP
���
. This result fully explains the seeming paradoxes 

found in section 2. In this connection Section 4 analyses a possible physical 
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meaning of the momentum ( )∫ ×=
V

EM dVBEP 0
���

ε  for a non-radiating EM 

field and a related problem of energy flux in such fields. Finally, Section 5 
presents some conclusions.

2 The momentum of the non-radiating electromagnetic field: physical 
examples

It is well-known that the momentum of EM field is responsible for violation 
of Newton’s third law in electromagnetic interaction. In this section we will 
consider the examples, which show that the customarily defined momentum 
(8), in general, does not define the total momentum of a non-radiating EM 
field. The opposite (and widespread) assertion leads to a number of para-
doxes, to be considered below.

2.1. Current loop + charged particle

Consider the experiment depicted in Fig. 1. There is a conducting loop and a 

Fig. 1. Charged particle Q and the loop with the current i(t).

particle with the charge Q, lying in the plane xy. Both the loop and particle 
rest in a laboratory. The axis of loop passes across the point x, y=0, and at 
the initial instant the charge has coordinates {0, R}. The radius of the loop is 
r0<<R. Let initially the current in the loop be equal to zero. Then loop is 
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connected to a battery, which produces a circulatory current i(t), slowly 
increasing to its maximum stationary value I, so that the EM radiation is 
negligible. During the increase of current, the magnetic field also increases 
with time. It induces an azimuthal electric field along the circumference R, 
which can be found from the Maxwell equation and the Stokes theorem 
applied to the circumference with the radius R and area ξ=πR²:

t
BE
∂
∂

−=×∇
��
, or

( ) ∫∫ −=×∇
ξξ

ξξ
����

dB
dt
ddE , or

∫∫∫ −=−=
Γ ξξ

ξξ dB
dt
ddB

dt
dldE z

����
.

Further, writing an explicit dependence of the electric and magnetic fields on 
space and time coordinates, we forbid an "action-at-a-distance"1 and take 
into account a retardation effect, according to which the changing with time 
current i(t) of loop produces the EM field at the instant (t’=t-r/c), where r is 
the distance between the designated point of loop and point of observation 
[6]. In the limit R>>r0 we can simply write for the modulus of electric field:

( ) ( )∫=−
ξ

ξ
π

drtB
dt
d

R
RcRtE z

�,'
2
1, . (9)

The resultant force acting on the charged particle is

1 However we have to note that many authors lately believe that "action-at-a-
distance" is not forbidden by classical electrodynamics  (see e.g. [3-5],  and papers in 
the book mentioned in [3]).
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( ) ( ) ( )∫=−=−
ξ

ξ
π

drtB
dt
d

R
QRcRtQERcRtF zx ,'
2

,, � . (10)

This force drives the particle along the axis x, and its momentum at the in-
stant t-R/c is 

( ) ( ) ( ) ( )RcRtQAdrtB
dt
d

R
QdtRtFcRtP z

t

xxM ,,'
2

','
'

0

−===− ∫∫
ξ

ξ
π

� ,(11)

where

( ) ( )∫=−
ξ

ξ
π

drtB
R

RcRtA z ,'
2
1, � (12)

is the value of the vector potential, directed counter-clockwise along the 
circumference R. Eq. (11) means that the mechanical momentum of particle 
begins to change after the time R/c since appearance of the current in loop, 
which is in full agreement with relativistic conceptions.

Further, we notice that an implementation of the law of conserva-
tion of total momentum for a closed system

const)()( =+ tPtP EMM

��
(13)

implies an identical time dependence of the mechanical MP
�
 and electromag-

netic EMP
�

 momenta. (It means that in the absence of an action-at-a-distance, 
the momentum conservation law (13) should act locally). The expression for 
EM momentum is defined by the relationship

( ) ( )( )∫ ×=
V

EM dVrtBrEP ,'0
�����

ε (14)

in accordance with Eq. (8). It is essential that the electric field ( )rE �
�

 of rest-
ing (for t<R/c) charged particle is stationary and does not depend on time. In 
addition, in the limit R>>r0 the retardation of spread of magnetic field near 
the loop (r≈r0) is negligible. Hence, the EM momentum (14), or at least its 
appreciable part, appears practically immediately after the appearance of 
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current in loop, while the mechanical momentum of particle is equal to zero 
till the moment t=R/c (see, Eq. (11)). Therefore, for the time t<R/c we get a 
violation of the momentum conservation law (13), if we adopt the integral in 
Eq. (14) as the definition of total momentum of EM field.

2.2. Elongated solenoid and two oppositely charged particles

Next consider the experiment depicted in Fig. 2. There is a tall solenoid (S)

Fig. 2. Two charged particles +Q and -Q near the elongated solenoid S.

and two charged particles with opposite charges +Q and -Q, fixed upon a 
circumference co-axial with solenoid, as shown. The radius of cross-section 
of the solenoid is r, the distance of the particles from the axis of solenoid is 
R. The length of solenoid is sufficient to allow neglect of the magnetic field 
outside it. The solenoid and both particles are mechanically fixed upon a 
platform P, which is free to move in the xy plane without friction. Let ini-
tially the current in solenoid be equal to zero. Then the solenoid is connected 
to a battery, which produces a current i(t). We assume that the current in-
creases from 0 to its maximum value I, and it changes slowly enough to 
allow neglect of any radiative processes. (In fact, this problem represents a 
modification of the Shockley-James paradox [7]). During this process the 
magnetic field inside the solenoid also increases from zero to some maxi-
mum stationary value zB . Therefore, increase of magnetic field in solenoid 
induces an azimuthal electric field

i
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and the total force acting on the charged particles is

R
r

dt
tdBQtQEtF z

x

2)()(2)( −== . (15)

Designating the total time of increase of current in solenoid as T, we obtain a 
total mechanical momentum, acquired by the platform P along the axis x
during this time:

)(2)(
2

0

RQA
R
rQBdttFP z

T

xMx −=−== ∫ , (16)

where A(R)=Bzr2/2R is the value of vector potential of solenoid acting at the 
circumference of radius R.

If we now decrease the current I to zero in the reverse order, the 
force in Eq. (15) changes its sign, and the mechanical momentum of the 
platform decreases its value from MxP  to 0. So, when we return an electric 
system (solenoid + charged particles) to its initial state, the platform P also 
returns to the state MP

�
=0. This result reflects the law of conservation of total 

momentum, where the sum of mechanical momentum of P and the momen-
tum of the electromagnetic field maintains a constant value.

However, the momentum of EM field, in its conventional definition 
(8), is close to zero for the problem considered. Indeed, for a long enough 
solenoid, the magnetic field in its rest frame exists only in the inner volume 
of the solenoid. The electric field of the two charged particles penetrates 
inside the conducting solenoid only in its face regions, and a penetrating 
depth is comparable with the diameter of solenoid. For a very long solenoid, 
when its faces are very far from the charges, the electric field of these 
charges is negligible, because it falls as r-2. The electric field exists outside 
the solenoid, where the magnetic field goes to zero with increase of the 
length of solenoid. Hence, we find that the EM momentum given by Eq. (8) 
tends to zero for the system of solenoid + charged particles with increase of 
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the length of solenoid. On the other hand, the mechanical momentum is 
defined by Eq. (16), which does not depend on the length of a tall solenoid. 
As a result, we again get a contradiction with the momentum conservation 
law.

The problems considered in sub-sections 2.1 and 2.2 demonstrate 
incorrectness of a widespread opinion that the EM momentum of a non-
radiating EM field, when defined via the Poynting vector, is transformed 
into mechanical momentum of charged particles. Instead, as we will show in 
the next section, a mutual transformation of mechanical and EM momenta 
occurs in accordance with the requirement of constancy of generalized (ca-
nonical) momentum for a closed system of charged particles.

3 About a mutual transformation of the electromagnetic and me-
chanical momenta

Let us consider the interaction of two non-radiating charged particles q1 and 
q2, moving at the velocities 1v

�
 and 2v

�
 at t=0. One wants to determine the 

change with time of the total mechanical momentum of this closed system.
It is known that the Lagrangian for a particle q1 with the proper 

mass m1 in the EM field of particle q2 is

( )1211121
22

1
2

11 1 AvqqcvcmL
��

+−−−= ϕ , (17)

where 1212,A
�

ϕ  are the scalar and vector potentials of the particle q2 at the 
location of particle q1. Then the motional equation of the particle q1 is

1

1

1

1

r
L

v
L

dt
d

��
∂
∂

=
∂
∂ , or

( )121
1

1
1

12
1

12
1

1 Av
r

q
r

q
dt
Adq

dt
pd M

��
��

��

∂
∂

+
∂
∂

−=+
ϕ , (18)

where 1r
�
 is the spatial co-ordinate of particle q1, and 

22
1111 1 cvvmpM −=

��
 is its mechanical momentum. In a similar way we 
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write the Lagrangian for the particle q2 with the mass m2 in the field of the 
first particle:

( )2122212
22

2
2

22 1 AvqqcvcmL
��

+−−−= ϕ , (19)

where 2121,A
�

ϕ  are the scalar and vector potentials of particle q1 at the loca-
tion of particle q2. The motional equation is

( )212
2

2
2

21
2

21
2

2 Av
r

q
r

q
dt
Adq

dt
pd M

��
��

��

∂
∂

+
∂
∂

−=+
ϕ . (20)

Summing up Eqs. (18) and (20), we obtain

( ) ( ) ( ) ( )212
2

2121
1

1
2

21
2

1

12
1
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21 Av
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qAv
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∂

−=
+

+
+ ϕϕ . (21)

The scalar and vector potentials produced by the particle q2 at the location of 
particle q1, and vice versa, are (to the accuracy of the order c-2, [8]):

120
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12 4 r
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ϕ = , ( )[ ]
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12 8 rc

nnvvqA
πε

����� +
= ,

210

1
21 4 r

q
πε

ϕ = , ( )[ ]
21

2
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11111
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nnvvqA
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����� +
= ,(22)

where 1212 rrr ���
−= , 2121 rrr ���

−= , 2n
�
 is the unit vector at the direction from q2

to q1, and 1n
�
 is the unit vector from q1 to q2 ( 12 nn ��

−= ). Substituting the 
values of scalar and vector potentials from Eqs. (22) into Eq. (21), one gets:
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Taking into account the equalities:

2112 rr = , 2112 rr ��
−= , 12 nn ��

−= , (24)

we get the equations
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( )( ) ( )( )1211
2
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1
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����
�

∂
∂

−=
∂
∂ . (25)

The obtained Eqs. (25) allow to derive that rhs of Eq.(23) is equal to zero, 
and

( ) ( ) 02112
1

21 =
+

+
+

dt
AAdq

dt
ppd MM

����
.

We can rewrite this equation as

0=+=
dt
Pd

dt
Pd

dt
Pd AMG

���
, (26)

where AMG PPP
���

+=  is the generalized momentum, MMM ppP 11
���

+=  is the 
total mechanical momentum for the closed system of two particles, and 

212121 AqAqPA
���

+= . In the adopted approximation Eq. (26) is extended to the 
case of arbitrary number i of charged particles due to the principle of super-
position:
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0=








+∑∑

i
ii

i
Mi AqP

dt
d ��

, or

∑∑ −=
i

ii
i

Mi Aq
dt
dP

dt
d ��

. (27)

Eq. (27) shows that the total time derivative of resultant mechanical momen-
tum (total mechanical force, acting on the closed non-radiating system of 
charged particles due to violation of Newton’s third law for EM interaction) 
is equal with the opposite sign to the total time derivative of "momentum" 

∑=
i

iiA AqP
��
. Hence, under change of non-radiating EM fields in the points 

of location of moving non-radiating particles, just the momentum AP
�
 trans-

forms to the mechanical momentum of the non-radiating system, but not the 
momentum EMP

�
, defined by Eq. (8). Here we mention that the present proof 

of theorem (27) is not unique. Another way to prove the theorem is de-
scribed in [9]. In addition, we notice that the Lagrangian (17), being used in 
our theorem, describes an interaction of charged particle with the external 
electromagnetic field, and does not include inertial reaction (the equivalent 
mass of the field) and the radiation reaction. The latter effect is taken negli-
gible by supposition (the accelerations of particle are small). The remarks 
about the mass of field are given below in section 4.

Eq. (27) naturally resolves the paradoxes in subsections 2.1-2.2. For 
the problem in Fig. 1 (sub-section 2.1) the change of mechanical momentum 
of particle (Eq. (11)) is defined by the change of vector potential A

�
 at the 

point of charge location. Such a local character of the momentum conserva-
tion law excludes any "action-at-a-distance" and provides an identical de-
pendence of )(tPM

�
 and )(tPEM

�
on time in Eq. (13).

For the problem in Fig. 2 (sub-section 2.2) the mechanical momen-
tum MxP  is equal with the reverse sign to the sum of "momenta" QAx of both 
particles (Eq. (16)). The results just obtained allow us to deduce a number of 
physical consequences:
1. We notice that the momentum AP

�
 of a considered system is not associated 

with an energy flux across the boundary of that system. This is explained by 
the fact that energy flux in empty space is a property of the EM field solely, 
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whereas the momentum AP
�
 belongs to the whole system "EM field + its 

sources". At the same time this means a qualitative difference between the 
conventional momentum of a particle and the momentum AP

�
. It is known 

that the mechanical momentum represents the components of the energy 
four-vector { E , P

�
}. One can easily see that AP

�
 forms a four-vector with 

the potential electric energy of charged particles {Ue, AP
�
}, where 

∑=
i

iie qU ϕ , ϕ  being the electric potential. For this reason we propose to 

name AP
�
 as "potential" momentum. The term of “potential momentum” was 

also introduced in [10].
2. Eq. (27) loses its physical meaning in the case of EM radiation, when the 
sources of the EM field, in general, may be absent in an arbitrary space vol-
ume. Hence, for that (source-free) kind of EM fields, the momentum density 
is defined by the conventional expression through the Poynting vector 
( )BE
��

×0ε . This shows that non-radiating EM field and EM radiation repre-
sent two different physical entities. It simultaneously means that there 
should be a physical mechanism, allowing to distinguish the non-radiating 
EM field and EM radiation in their mixture. In the author’s opinion, such a 
physical mechanism is based on the fact that EM radiation is absorbed, at 
least in principle, by a charged particle, while a non-radiating field is not 
(the change of kinetic energy of particle is equal to change of its electric 
potential energy with the reverse sign).

Further, it is necessary to stress that for the system of N charged 
particles, the momentum of a single particle iiiA Aqp

��
=  cannot be attributed 

to its proper total momentum; rather it represents a contribution of the parti-
cle i to the total potential momentum of the whole system; it is only 

∑=
i

iiA AqP
��
, which has a physical meaning. Even in case, where occasion-

ally the total potential momentum of a system under consideration coincides 
with the value iiiA Aqp

��
=  for a single charged particle i, the total time deriva-

tive 
dt
pd iA
�

−  is not equal to the force, acting on the particle i, but it defines 

the force, acting on the whole system (the charged particle i+ the sources of 
the field iA

�
). Consider, for example, a motion of charged particle inside a 

mechanically free elongated solenoid. Let at the initial time moment the 
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velocity of the particle v�  lie in the plane xy, while the magnetic field of 
solenoid B

�
 lies in the negative z-direction. The Lorentz force, acting on the 

particle, is

( ) ( ) ( ) ( )AvqAvqAvqBvq
dt
pd M

���������
∇−∇=×∇×=×= .

For stationary current in the solenoid, 0=
∂
∂
t
A
�

, and ( )Av
dt
Ad ��
�

∇= . Then, 

taking AqpA
��

= , we get

( )Avq
dt
pd

dt
pd AM

����
∇+−= . (28)

We see that the mechanical force (the total time derivative of the momentum 

of particle Mp
�
) is not equal to 

dt
pd A
�

− , but includes the term ( )Avq
��

∇ . How-

ever, it still does not contradict Eq. (27), because we did not include the 
mechanical momentum of solenoid MSp

�
 and did not consider the force, 

acting on the solenoid on behalf of particle. One can show that this force is 
equal to ( )Avq

��
∇−  (see, Appendix A), and

( )Avq
dt
pd MS

���
∇−= . (29)

Summing up Eqs. (28), (29), we obtain

dt
pd

dt
pd

dt
pd AMSM

���
−=+ ,

in accordance with Eq. (27).
Let us consider another example: a charged particle q orbits around 

a tall solenoid S at the constant angular frequency ω  (Appendix B, Fig. 4). 
In this problem the net force, acting on the particle, is equal to zero, while its 
“momentum” AqpA

��
=  changes with time. Moreover, this value defines the 
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potential momentum of the whole system “charged particle + solenoid”. 

Then one follows from Eq. (27) that the total time derivative 
dt
pd A
�

−  should 

be equal to the force, acting on the solenoid on behalf of particle. This result 
is confirmed by the particular calculations, presented in Appendix B. Simul-
taneously one can see that this exercise creates a problem with respect to the 
energy conservation law: the particle can rotate around the solenoid infi-
nitely long (it we negate by its radiation), while the solenoid receives a force 
which can make work. It seems that the problems of such a kind are not 
related to Eq. (27); they are common for classical EM theory. In particular, 
ref. [11] also reveals the problem with formulation of the energy conserva-
tion law, considering a system of three charged particles on the basis of 
Darwin Lagrangian [12].

We also have to stress that Eq. (27) is valid for inertial reference 
frames only, although a motion of particles under observation can be arbi-
trary (with small accelerations, allowing neglect of the EM radiation). It 
means, in particular, that a consideration of interaction between two particles 
from a non-inertial reference frame, attached to one of them, does not give 
Eq. (27) and leads to a seeming paradox with the momentum conservation 
law [13].

The revealed physical meaning of the “potential” momentum was 
masked in familiar textbooks, which began a consideration of electrodynam-
ics from a motion of charged particle in some abstract external EM field. By 
such a way it is impossible to find that the total time derivative of the mo-
mentum AqpA

��
=  for a given particle contains a part of force, acting on the 

sources of this external field.
At the same time, we cannot omit a question about the possible 

physical meaning of the momentum ( )BE
��

×0ε  for the non-radiating EM 
field, which is considered in next section.

4 About an energy flux in a non-radiating EM field and the momen-
tum density ( )BEpEM

���
×= 0ε .

We already mentioned above that the Poynting expression for energy flux 
density ( )BEcS

���
×= 2

0ε  is traditionally applied to both EM radiation and 
non-radiative EM fields, although for the latter case such energy fluxes were 
never detected experimentally. There is another problem with the definition 

( )BEcS
���

×= 2
0ε  for a non-radiating EM field, which is revealed through its 
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application to a single charged particle, moving at the constant velocity v�  in 
a laboratory frame.

In such a case the term Ej
��
 in Eq. (5) describes a self-action of the 

non-radiating inertially moving particle with its own electromagnetic field. 
Standard renormalization procedure implies that this term should be 
dropped. However, a simple cancellation of the term Ej

��
 leads to another 

physical difficulty. Namely, in the rest frame of a charged particle we can 
write (du/dt)=0. In the laboratory frame this equality transforms to

( ) 0=∇+
∂
∂ uv
t
u �

, or

( ) 0=∇+
∂
∂ uv
t
u �

. (30)

Now let us show that Eqs. (5) and (30) are mathematically equivalent to each 
other, if we take into account that for the EM field of a charged particle

2c
EvB
��� ×

= . (31)

Indeed,

( ) ( ) ( )[ ]
( )( )

( ) ( ) ( )

( ) ( )EvEjEtEvB

c
EvE

c
EvE

c
tEvBc

c
EvE

t
BBc

BEEBcBEcS

��������

���������

�����

�������

∇+−∂∂×=

=










 ∇
−

∇
+

∂∂×
−=

=










 ××∇
+

∂
∂

−=

=×∇−×∇=×∇=∇

00

222
2

0

2
2

0

2
0

2
0

εε

ε

ε

εε

. (32)

Here we used the vector identity ( ) ( ) ( )baccabcba
���������

−=×× , as well as the 
equality



Remarks on momentum and energy flux of a non-radiating electromagnetic field 565

( )
00 εε

ρ jvEv
�

���
==∇ ,

where  is the charge density. Further, using Eq. (4), we can write

( ) ( ) ( )BvBcjBcvBtEvB
���

�������
∇−=




















−×∇×=∂∂× 2

0

2

ε
(33)

(under the transformation of Eq. (33) we again use the identity 
( ) ( ) ( )baccabcba

���������
−=×× , and take into account that the vectors v�  and B

�

are orthogonal to each other, so that 0=Bv
��

. From Eqs. (33) and (32) we 
derive

( ) ( ) jEBvBcEvES
��������

−∇+∇=∇ 2
00 εε . (34)

Substituting S
�

∇  from Eq. (34) into Eq. (5), we obtain:

( ) ( ) 02
00 =∇+∇+

∂
∂ BvBcEvE
t
u ������

εε . (35)

In turn, one can see that

( ) ( ) ( )uvBcEvBvBcEvE
��������

∇=



















+∇=∇+∇

22

22
0

2
02

00
εε

εε ,

and Eq. (35) transforms to Eq. (30). We can rewrite Eq. (30) as

0=∇+
∂
∂

USt
u �

, (36)

where

uvSU
��

= (37)

is known as Umov’s vector [14].
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Thus, for a charged particle, moving at a constant velocity v� , we 
derived two mathematically equivalent forms of the energy balance equa-
tions:

0=+∇+
∂
∂ EjS
t
u ���

,

0=∇+
∂
∂

USt
u �

.

One sees from there that we cannot omit the term Ej
��
 in Eq. (5), because by 

such a way we destroy an equivalence of Eqs. (5) and (30). From this point 
of view Eq. (30) seems more attractive, because it does not contain this term 
of self-action. Physically this means that the electromagnetic field moves 
uniformly in space together with its charged particle source at the velocity 
v� . On the other hand, the EM field "knows" only two velocities: 0 and c. 
Hence, a representation of the EM field, moving at v≠c cannot describe a 
real physical situation. As a result, we reveal that Eqs. (5) and (30), being 
equivalent mathematically, are both physically unsatisfactory in description 
of the energy flux of a single charged particle. In these conditions, one can 
propose the following method of overcoming this difficulty: both expres-
sions for the energy flux density, S

�
 and US

�
 are relevant, but the first of 

them describes "differential energy fluxes" S
�
, propagating at the velocity c, 

which compose an "integral energy flux" US
�
, propagating with an effective 

velocity equal to the velocity of the source particle v� . The idea to distin-
guish the "differential" and "integral" energy fluxes in a non-radiative EM 
field was already discussed in scientific literature [15], and an equivalence of 
Eqs. (5), (30) makes it more attractive. In addition, there is another attractive 
feature of this idea, if we assume that the experimental observations in the 
non-radiating EM fields deal with the integral energy fluxes. Then the mo-
mentum density of the EM field, produced by a single charged particle mov-
ing at the constant velocity v� , is

vm
c
uv

c
Sp EM
u

EM
��

�
�

=== 22 (38)
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where EMm  is the density of EM mass. One sees that the definition (38), 
expressed via the Umov vector, provides the equality

2cmu EM= (39)

for the energy and mass densities in accordance with the familiar Einstein's 
expression. Integrating Eq. (39) over the while space, we get

2cMU EM=

(U is the total EM energy, MEM is the total EM mass). Thus, the expression 
of energy flux density through the vector of Umov formally eliminates the 
familiar problem "4/3" [16] for a moving electron.

Now consider a closed system of charged particles with the momen-
tary velocities lv

�
 at the considered instant (l=1...N, N being the number of 

particles). We assume that there are no external mechanical forces, and the 
accelerations of particles are small enough to neglect their EM radiation. 
Generalizing the calculations (31)-(35) to this system, we again obtain Eq. 
(36), where

( ) ( )∑∑ ΣΣ +=
l

l
l

l

l
lU

BBvcEEvS
22

2
00

��
�

��
��

εε . (40)

Here ∑=Σ
l

lEE
��
, ∑=Σ

l
lBB
��
 are the resultant electric and magnetic fields 

created by the charged particles. Thus, the "integral" energy flux density of a 
system of charged particles is described by the obtained Eq. (40). If all parti-
cles move uniformly at the constant velocity v�  at the considered instant, Eq. 
(40) transforms to











+= ΣΣ

22

22

0
BEvSU

��
��
ε .

Here the resultant fields again move uniformly with the system of charged 
source particles.
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At the same time, we always have to remember that a real EM field 
cannot move at the velocity 0<v<c, such a motion is relevant for an "inte-
gral" energy flux, which is composed from "differential" fluxes, propagating 
at the speed of light.

Next we analyze the tensor for EM energy for the EM radiation and 
the non-radiative EM field. It is known that the motional equation for an EM 

field with the Lagrangian density ik
ikFF4

0ε−  ( ikF  is the tensor of EM field) 

gives [8]

lm
lm

ikk
ll

l
ik FFgF

x
AT

4
0

0
εε +

∂
∂

−= . (41)

where lA  is the four-potential, and g is the metric tensor. A physically 
meaningful tensor of EM energy should be symmetrical. Using the gauge 
arbitrariness in its choice,

l

ikl
ikik

x
TT

∂
∂

+→
ψ  (where ilkikl ψψ −= ), (42)

the tensor (41) can be transformed to the symmetric form







 +−= lm

lm
ikk

l
ilik FFgFFT

4
1

0ε . (43)

Eq. (43) represents the conventional expression for the tensor of EM field. 
However, one should stress that the transformation of Eq. (41) into Eq. (43) 
uses the equality [8]

0=
∂
∂

i

k
i

x
F , (44)

which represents the Maxwell equation for a source-free EM field, i.e., EM 
radiation. Therefore, the tensor (43) is applicable for the EM radiation. Thus, 
for a non-radiating EM field we have to apply another transformation of Eq. 
(41) to symmetric form than was made for EM radiation. One of methods to 
solve this problem is to test different functions iklψ  in (42) to obtain a physi-
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cally meaningful result. We can avoid such a complex way, proceeding from 
Eq. (40) for the integral energy flux density in a non-radiative EM field, 
which gives the components 00 αα

nn TT =  ( =1...3, the subscript n signifies a 
non-radiating EM field). To simplify our analysis, we further consider free 
of charge space volume, where

0=
∂
∂

i

ik

x
T . (45)

Then, one can find that a form of the tensor of EM energy, satisfying both 
conditions (40) and (45), is

( ) ( )∑











+= ΣΣ

l

lll
k

l
i

ik
n

BBcEE
dt
dx

dt
dxT

2
,

2
, 2

00)()(
����

εε , (46)

if we assume that the velocities of all charged particles have constant values.
At the same time, it is clear that Eq. (46) cannot determine the ten-

sor of EM energy of a non-radiating EM field in the general case, where the 
particles move at velocities variable with time. Indeed, in this case a fraction 
of EM energy is dissipated as EM radiation, and the equality (45) is violated. 
Simple addition of the tensor of EM radiation (43) to lhs of Eq. (46) does not 
recover the equality (45) under variable velocities. This difficulty reflects a 
known fact that Umov’s vector can be defined only for constant velocities of 
sources of EM field. In these conditions, perhaps, we have to recognize that 
a physically valid expression for the tensor of EM energy is given by Eq. 
(43), which describes the EM radiation and "differential" fluxes in the non-
radiative EM field. Then a conception about an "integral" energy flux loses 
its physical meaning, remaining convenient for mathematics. In such a case 
the above-mentioned problem "4/3" is resolved by the conventional way (via 
introducing the “Poincaré stresses”). Perhaps, a tensor of EM energy for a 
mixture of EM radiation and non-radiating EM field, involving the "integral" 
energy fluxes, can be found at least in principle. Maybe, one of possible 
ways to solve this problem is to analyse the global energy tensor, including 
EM field and a matter, and to apply the Bessonov’s method to derive the 
energy conservation law [2]. In case of success, it would allow consideration 
of the "integral" fluxes as physically real. Another way is the re-definition of 
energy density, proposed by Chubykalo [17] in the discussion about zero-
energy solutions of Maxwell’s equations [18]. However, as was mentioned 
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in [19], in this case the energy of EM field, integrated over the whole space, 
should be infinite. Further, recent experimental observations by Chubykalo 
et al. [20] allow to express some doubts in the validity of conventionally 
accepted expression for the energy density: the Umov vector, being con-
structed with such an energy density, does not describe an electromagnetic 
energy flux. Another hypothesis, which could be related with conceptions of 
“integral” and “differential” energy fluxes, is about a massive photon [21]. 
Recent derivation of the generalized Maxwell equations by Dvoeglazov [22] 
in his comment on the paper of Gersten [23] allows to generalize the equa-
tions for such the photons. Experimental aspects to test this hypothesis were 
analyzed in [24]. One can mention that the most recent developments of 
technique of nuclear resonant radiation experiments (in particular, the pro-
posed back-scattering mirrors for X-ray and Mössbauer radiation [25], which 
can be used in Michelson-Morley type experiments with gamma-resonant 
radiation) open a way for experimental test of the hypothesis on massive 
photon.

However, even without resolution of this complex problems, we 
can conclude that both "differential" and "integral" energy fluxes in a non-
radiating EM field are attached to their sources, and the momentum of such a 
field, defined via the energy flux, represents an intrinsic attribute of the 
charged particles, like their EM mass. This result allows one to make two 
conclusions:
-the momentum ( )BEpEM

���
×= 0ε , associated with "differential" energy 

fluxes in a non-radiating EM field, can be transformed to a mechanical mo-
mentum only under direct interactions of charged particles, and such a trans-
formation is not responsible for the violation of Newton’s third law in EM 
interaction. The violation occurs under variation of EM fields alone in the 
points of location of particles, when we apply Eq. (27)). Remember, that Eq. 
(27), obtained via the Lagrangian (17), includes a mechanical mass of the 
particles. Hence, it is naturally to propose that the momentum 

( )BEpEM
���

×= 0ε  describes the electromagnetic momentum of charged parti-
cles, associated with their EM masses;
-the vector product of E

�
 and B

�
, when the electric and magnetic fields are 

taken from different non-radiating sources, has no physical meaning, and it 
does not define the energy flux and momentum density of the non-radiating 
EM field.

Looking at Figs. 1-2, we see that in the problems of subsections 
2.1-2.2 we tried to calculate the momentum of the EM field from the mag-
netic field of one source (conductive loop (2.1) and tall solenoid (2.2)) and 
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the electric field from another source (charged particles). That is why it is 
not surprising that we obtained a seeming violation of the momentum con-
servation law. The second conclusion, above, also resolves a number of 
paradoxes, dealing with strange pictures of the energy fluxes in non-
radiating EM fields [1], and explains the failure to experimentally detect 
energy fluxes of such a kind.

5 Conclusions

1. A transformation of the momentum of a non-radiating EM field into me-
chanical momentum, which is responsible for violation of Newton’s third 
law in electromagnetic interactions, occurs in accordance with Eq. (27), 
where ∑= iiA AqP

��
 is termed "potential" momentum of a system of 

charged particles.
2. The momentum density ( )BEpEM

���
×= 0ε , associated with the "differen-

tial" energy flux in a non-radiating EM field (here the vectors E
�
 and B

�
 are 

taken from the same source of EM field), represents an intrinsic attribute of 
the source charged particle, like its EM mass. It can be transformed into 
mechanical momentum only under direct interaction (e.g., collisions) of the 
charged particles.

3. The "momentum density" ( )BEpEM
���

×= 0ε , where the fields E
�
 and B

�

are taken from different sources of EM field, has no physical meaning, and it 
does not define the momentum of the non-radiating EM field.
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Appendix A. Calculation of the force, acting on a solenoid due to a 
charged particle, moving inside the solenoid

Let at the initial instant t=0 the charged particle q moves inside a 
tall solenoid at the velocity v� , lying in the xy-plane (Fig. 3). The radius of 
the solenoid is equal to r, the distance between the particle and the axis of 
solenoid is R<r at t=0. The axis of solenoid is collinear to the axis z. One 
requires to determine the force, experienced by the solenoid, carrying the 
current i.

In the non-relativistic limit a moving charged particle creates the 
magnetic field
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Fig. 3. The charged particle +q moves inside the solenoid
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( )dlBiFd
���

×= . (A2)

Without a lose of generality, we can choose the axis x to be orthogonal to v�

at t=0. Then the component By=0 in Eq. (A1). Also taking into account, that 
iz=0 in solenoid, we obtain the components of force for a single loop of the 
solenoid as

ϕϕdriBdlBidF zzylx cos−== , (A3)

ϕϕdriBdlBidF zzxly sin−=−= , (A4)

ϕϕdriBdlBidF xxylz cos=−= . (A5)

where ϕ is the circumferential angle (Fig. 3, a). Firstly, let us calculate the 
component of total force along the axis x. Eq. (A1) gives:

22
0 '4 Rc
qvnB x

z πε
−= . (A6)

Substituting Eq. (A6) into Eq. (A3), we obtain

22
0 '4
cos
Rc
dirqvndF x

lx πε
ϕϕ

= . (A7)

One can see from Fig. 3, that

222' zRR xy += , 222 cos2 rRrRRxy ++= ϕ , 
'

cos
R
Rxy=α , 

xyR
rR ϕ

γ
coscos +

= , 
222 cos2

coscoscos
zrRrR

rRnx
+++

+
==

ϕ

ϕ
γα . (A8)

Substituting the values of (A8) into (A7), one gets:
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( )
( ) 2/32222

0 cos24
coscos

zrRrRc
drRqvirdFx
+++

+
=

ϕπε
ϕϕϕ . (A9)

From there the force, acting on a single loop of solenoid along the axis x, is

( )
( ) ∫∫
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 +

=
+++

+
=

ππ
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ϕϕϕ

πεϕ
ϕϕϕ
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2/32222
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r
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d
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c
qvirdFlx

.

The fragment of solenoid with the length dz contains ndz loops. Hence, the 
force, acting on this fragment is

∫








+++







 +

=
π

ϕ

ϕϕϕ

πε

2

0
2/3

2

2

2

22
0

cos21

coscos

4

r
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r
R

r
R

d
r
R

c
qvindzdFlx .

From there the total force along the axis x, acting on the solenoid due to the 
moving particle, is

∫ ∫
∞

∞−
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 +
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π

ϕ

ϕϕϕ

πε

2
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2

2

22
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R
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R
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qvinFx .

Taking into account that B
c
in

=2
0ε

, we obtain
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Integration over z gives:

=









+++







 += ∫ ∫
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The remaining integral over ϕ is equal to

πϕϕ
ϕ

ϕ
=

++







 +

∫
∞

∞−

d

R
r

R
r
R
r

cos
cos21

cos1

2

2 . (A11)

Substituting Eq. (A11) into Eq. (A10), we obtain

2
qvBFx = . (A12)

Taking into account that inside the solenoid the vector potential is equal 
to 2BRA =  and circulated in the clock-wise direction, one sees that Eq. 
(A12) gives the same force, as

( )[ ] xx AvqF
��

∇−=

(see, Eq. (29)). In a similar way one can show that the components Fy and Fz, 
computed from Eqs. (A4) and (A5), coincide with corresponding compo-
nents of the force

( )AvqF
���

∇−= . (A13)
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Thus, the moving charged particle creates the force (A13), exerted on the 
solenoid.

Appendix B. Calculation of the force, acting on a solenoid due to a 
charged particle, rotating around the solenoid

Let a charged particle q rotates in the xy-plane around a tall solenoid S at the 
constant angular frequency ω  (Fig. 4). The radius of solenoid is equal to r, 
the distance between the particle and axis of solenoid is R>r. The axis of 
solenoid is collinear to the axis z. Under calculation of the force, acting on 
the solenoid due to the charged particle, we assume that at t=0 the axis x is 
orthogonal to orbital velocity of particle. Then, using designations of Fig. 3, 
we again obtain Eq. (A9). However, now R>r, and we derive for a single 
loop
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( ) ∫∫
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.

The fragment of solenoid with the length dz contains ndz loops. Hence, the 
force, acting on the fragment with the length dz is
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From there the total force acting on the solenoid along the axis x is

∫ ∫
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∞−








+++







 +

=
π

ϕ

ϕϕϕ

πε

2

0
2/3

2

2

2

22
0

cos21

coscos1

4

R
z

R
r

R
r

dzd
R
r

Rc
qvirnFx .

Taking into account that B
c
in

=2
0ε

, we obtain
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Fig. 4. The charged particle +q orbits around the solenoid
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∫ ∫
∞
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This equation can also be expressed via the value of vector potential of sole-
noid A, using the equality RBrA 2=  (outside the solenoid):

∫ ∫
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Integration over z gives:
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The remaining integral over ϕ is equal to

R
rd

R
r

R
r
R
r

πϕϕ
ϕ

ϕ
−=

++







 +

∫
∞

∞−

cos
cos21

cos1

2

2 . (B3)

Substituting Eq. (B3) into Eq. (B2), we obtain

R
qvAFx −= . (B4)
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This expression describes the momentary force from the rotating particle 
with the negative x-coordinate, when the axis x be orthogonal to its orbital 
velocity. It shows that the force is directed along the line, joining the axis of 
solenoid and momentary position of the rotating particle. One follows from 
there that the direction of the force, exerted by the particle on solenoid, ro-
tates together with the particle at the same angular frequency ω. Hence, the 
projections of this force change with time as

tAq
R
qvAFx ωω cos== . (B5)

tAq
R
qvAFy ωω sin== , (B6)

and 0=zF .
One can see that Eqs. (B5) and (B6), taken together, can be written in the 
vector form as

( )AqF
���

×−= ω . (B7)
On the other hand, for the vector field of solenoid, circulated in the 

clock-wise direction,

( )A
dt
Ad ��
�

×= ω . (B8)

Comparison of Eqs. (B7) and (B8) shows that

dt
pd

dt
AdqF A

���
−=−= . (B9)

Thus, we have shown that the force, acting on the solenoid due to a rotating 
particle, is equal with the opposite sign to the total time derivative of the 
potential momentum Aq

�
 for the system “solenoid +particle”.



580 A.L. Kholmetskii

References
[1] See for example, R.P. Feynman, R.B. Leighton and M. Sands, The Feynman 

Lectures in Physics. Vol. 2 (Addison-Wesley, Reading, Mass., 1964).
[2] E.G. Bessonov, “The energy conservation law in classical electrodynamics”, 

arXive:physis/0311107.
[3] O.D. Jefimenko, "Does special relativity prohibit superluminal velocities?" In: 

"Instantaneous Action at a Distance in modern physics: PRO and CONTRA" 
(Nova Science Publishers, Inc. New York, 1999).

[4] A.E. Chubykalo and R. Smirnov-Rueda, "Action at a distance as a full-value 
solution of Maxwell equations: basis and application of separated potential's 
method", Phys.  Rev. E, 53, 5373 (1996).

[5] A.E.Chubykalo and S.J.Vlaev,  "Necessity of simultaneous co-existence of 
instantaneous and retarded interactions in classic electrodynamics", Int. J. Mod. 
Phys. A, 14, 3789 (1999).

[6] E.G. Cullwick, Electromagnetism and Relativity (Longmans, Green & Co., 
London, 1957).

[7] W. Shockley and R. James, Phys. Rev. Lett. 18, 876 (1967).
[8] L.D. Landau and E.M. Lifshits, Teorya Polya (Nauka, Moscow, 1988) (in 

Russian).
[9] C.A. Brau, Modern Problems in Classical Electrodynamics (Oxford University 

Press, New York, 2004).
[10] E.J. Konopinski, "What the electromagnetic potential describes", Am. J. Phys. 

46, 499 (1978).
[11] E.G. Bessonov,  "On the Darwin Lagrangian", arXiv:physics/9902065.
[12] C.G. Darwin, Phil. Mag. 39, 537 (1920).
[13] O.D. Jefimenko, "A relativistic paradox seemingly violating conservation of 

momentum law in electromagnetic systems," Eur. J. Phys. 20, 39-44 (1999)].
[14] N.A. Umov, Izbrannye Sochineniya (selected works), (Gostechizdat, Moscow, 

1950) (in Russian).
[15] O.B. Born, Electromagnitnoe Pole Kak Vid Materii (Gosenergoizdat, Moscow, 

1962) (in Russian).
[16] H. Poincaré, “On the dynamics of the electron”, Rendiconti del Circolo 

Matematico di Palermo 21, 129 (1906).
[17] A.E. Chubykalo, "On the physical origin of the Oppenheimer-Ahluwalia zero-

energy solutions of Maxwell equations", Mod. Phys. Lett. A13, 2139 (1998).
[18] J.R. Oppenheimer, Phys. Rev. 38, 725 (1931).
[19] V.V. Dvoeglazov, "Do zero-energy solutions of Maxwell equations have the 

physical origin suggested by A.E. Chubykalo? (Comment on the paper in Mod. 
Phys. Lett. A13 (1998) 2139-2146), Proceedings of the International Workshop 



Remarks on momentum and energy flux of a non-radiating electromagnetic field 581

Lorentz Group, CPT and Neutrinos Zacatecas, Mexico, June, 23-26, 1999 
World Scientific, 2000, (Eds. A. E. Chubykalo, V. V. Dvoeglazov, D. J. Ernst, 
V. G. Kadyshevsky and Y. S. Kim, pp. 335-341.

[20] A.E. Chubykalo, private communication.
[21] L. de Broglie and G.P. Vigier, Phys. Rev. Lett. 28, 1001 (1972).
[22] V.V. Dvoeglazov, "Comment on the “Maxwell equations as the one-photon 

quantum equation” by A. Gersten", J. Phys. A: Math. Gen. 33, 5011 (2000).
[23]  A. Gersten, "Maxwell equations as the one-photon quantum equation", Found. 

Phys. Lett. 12, 291 (1998).
[24] J.P. Vigier, "Relativistic interpretation (with non-zero photon mass) of the small 

energy drift velocity detected by Michelson, Morley and Miller, Apeiron 4, 71 
(1997).

[25] Yu.V. Shvyd’ko and E. Gerdau, "Backscattering mirrors for X-ray and 
Mössbauer radiation", Hyperfine Interactions 123/124, 741 (1999).

Manuscrit reçu le 22 janvier 2004, révisé le 4 Mars 2004.


