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ABSTRACT. It is shown that the hydrodynamic interpretation of a charged 
quantum particle leads to a different theoretical prediction for low energy 
bremsstrahlung than does quantum electrodynamics (QED).   In the calcula-
tions, the electromagnetic fields are treated classically in the hydrodynamic 
case, but are quantized in QED.   Calculations show the hydrodynamic 
model to have a different and more sensitive dependence on the size and 
shape of the radiating particle’s wave packet then does QED.  In particular it 
is shown that bremsstrahlung is sometimes greatly reduced when the force 
acting on the particle is localized to a volume small compared to the parti-
cle’s wave packet.  QED exhibits no such reduction.  Therefore it is possible 
to test this effect experimentally.   
 
An experiment is proposed.  It involves an electron microscope with a Wien 
filter for producing monochromatic beam electrons and an accurate energy 
measurement of the particle after passing through a local force field.   
 

 
Résumé. Cet article démontre que l'interprétation hydrodynamique d'une 
particule quantique chargée mène à une différent prédiction théorique pour 
un Bremsstrahlung à faible énergie que l'électrodynamique quantique 
(QED). Dans les calculs, les champs électromagnétiques sont traités de fa-
çon classique dans le cadre hydrodynamique, mais sont soumis à une quanti-
fication en QED. Les calculs montrent que le modèle hydrodynamique 
présente une dépendance différente et plus sensible à l'égard de la taille et de 
la forme du paquet d'ondes de la particule rayonnante que le modèle QED. 
En particulier, l'auteur démontre que le Bremsstrahlung est parfois grande-
ment réduit lorsque la force qui agit sur la particule est localisée dans un 
petit volume par rapport au paquet d'ondes de la particule. La QED ne 
présente pas ce type de réduction. Il est donc possible de tester cet effet ex-
périmentalement.  
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L'auteur propose une expérience. Elle implique un microscope électronique 
équipé d'un filtre de Wien permettant de produire des faisceaux d'électrons 
monochromatiques et une mesure d'énergie précise de la particule après son 
passage à travers un champ de force local.  
 

1 INTRODUCTION 

In the hydrodynamic interpretation of quantum mechanics[1-15] and the 
related self-field electromagnetic model[16] the probability density or current 
for a charged particle is interpreted as a real classical fluid density or current.  
The fluid’s motion is described by Schrödinger’s equation and it has been 
believed that the hydrodynamic model is equivalent to more standard inter-
pretations.  But if the charge is really interpreted as a fluid, then in the limit 
of soft photon emission it must couple to the classical electromagnetic field 
as a classical charged current.  This leads to the radiation theory presented 
here.  It is in opposition to conventional radiation theory because one conclu-
sion that can be drawn from it is that bremsstrahlung will be suppressed in 
situations where the force field acts only on part of the wave packet at a 
given instant in time as shown for example in Figure 1. When the same prob-
lem is tackled using conventional radiation theory, it is found that no sup-
pression occurs.   

 
Bremsstrahlung and synchrotron radiation have been studied extensively 

in the physics literature[17-27].  This paper deals only with non-relativistic 
particles.  The relativistic case is more difficult to study experimentally be-
cause it is harder to prepare very long wave packets.  The particle beam will 
be assumed to have a low enough flux that only one particle at a time is scat-
tering off of the force so that the particles in the beam may be considered 
isolated. 

 
First an analysis of a hydrodynamic model is presented.  Then a detailed 

radiation calculation based on conventional non-relativistic radiation theory 
is given.   Finally an experiment is proposed to test which theory is correct.   

 

2 Radiation from a charged fluid in the hydrodynamic model 

 
In this analysis the charged current density for the Schrödinger equation is 

treated as a classical current.  This is a very plausible assumption in the soft 
photon limit of a weak force field if one accepts a hydrodynamic picture.  It 
is hard to imagine what else could be an alternative.  Assume a purely elec-
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trostatic force causing the acceleration.  Start with Schrödinger’s equation for 
a charged particle ignoring spin 
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The charge and current densities are 
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Now consider the electromagnetic field generated by these sources. 
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(the metric is timelike, ie.  0 0

1=g ).  The fields are determined up to addition 
of an arbitrary free field, but this free field will not contribute to any radia-
tion, and so it can be chosen for convenience.  Working in the Lorentz gauge 
( 0

µ

µ
! =A ) one then has the classical result 
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To be partly cognizant of relativity limits we might impose the constraint 

on the momentum distribution 
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With this constraint, the phase velocities of the waves making up the wave 

function would then have a maximum absolute value of 
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It is still possible to localize the Schrödinger particle with this constraint 

on the phase velocity, and all the higher moments calculated below may be 
finite provided the wave function is infinitely differentiable as a function of 
p.  The magnetic field is derived from the vector potential by 
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Define a unit vector 
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The curl can now be evaluated as follows 
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In evaluating the radiation emitted, the limit where ! "x  is taken, and 

therefore the leading behavior of B is all that need be kept. 
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And so to leading order in R0  
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And so to leading order in R0 
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Now expand in a Taylor series.  It is assumed that J is infinitely differenti-

able as a function of time and that the Taylor series converges 
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Now insert the Schrödinger current (2) into this equation, and assume that 

the order of summation and integration can be interchanged. One must evalu-
ate the following integrals 
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In terms of which B may be written to leading order in R0 
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Im takes the form 
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this may be written as 
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where 
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Now we transform (22) by transforming to the Heisenberg representation.   
 
 



Predictions of the hydrodynamic interpretation of quantum mechanics … 667 

( ) ( ){ }

0

1 1* 3

0 0 0 0

( )
2

ˆ ˆ( , 0) ( ) ( ) ( ) ( ) ( , 0)
! !

=

" # + # "

$

%

m

m m

q
t

M

t t t t d x

I

x P n X n X P x

 (24) 

 
For a free particle it follows that  the radiation from all the terms vanishes 

[28].  The term that generates Larmor radiation corresponds to m=1 when 
there are forces acting.    
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Substitute this into (20) to obtain 
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Where ! !a  denotes the expectation value of the acceleration calcu-

lated at the retarded time t0.   
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The electric field in a region which is far from any charges or 
currents can then be calculated by 
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The Poynting vector then is 
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where θ is the angle between ! !a and n̂ .    And the total power ra-

diated is 
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Which simplifies to 
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And the total energy radiated will be an integral over time.   If the scatter-

ing in Figure 1 occurs between times 0 and T then the total energy will be 
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This is similar to Larmor's formula, familiar from classical electromagnet-

ism.  The expectation value of the acceleration ! !a  in (31) involves an 
integral over the force acting on the particle.  If the particle has an extended 
wave packet, then the results can differ substantially from the classical result 
for a point particle.  For example, consider the situation in Figure 1, where 
the Schrödinger wave packet is moving in the x direction and is elongated in 
the x direction, ie. the x momentum uncertainty is very small.  Let the force 
field which this particle is moving through be localized in a volume whose x 
dimension δ is much smaller than the wave packet length L.   
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Figure 1 Localized force acting on an extended wave packet 

 
Imagine that the wave packet in figure 1 is essentially invariant in shape 

along its length.  We see that the instantaneous mean acceleration gets 
smaller inversely proportional to the wave packet’s length while the impulse 
to the particle remains constant.  The force is active on the wave packet for a 
time equal to the transit time, and so the total energy is the power integrated 
over this time.  The total energy radiated, using the larmor formula, will then 
be, for values of L which are large compared with δ 
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This expression goes to zero as 1/L in the limit of large L.  Even though 

the total impulse imparted to the particle by the force is held constant, the 
total radiated energy goes to zero for very long wave packets.  This is the 
effect that is being predicted here if the hydrodynamic picture is correct.  It 
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says that by preparing very long wave packets, bremsstrahlung can be sup-
pressed and a particle can be accelerated with greatly reduced radiation if the 
hydrodynamic interpretation of quantum mechanics correctly describes na-
ture. 

 

3 A treatment of the same problem using the conventional non-
relativistic quantum theory of radiation 

 
Again we assume that the beam current is low enough that only a single 

particle at a time is interacting with the external potential field.  We must 
analyze the bremsstrahlung while paying careful attention to the wave packet 
dependence.  Goldberger and Watson give a rather rigorous treatment of 
wave packets in scattering theory[29].  The more common textbook discus-
sions of quantum scattering theory ignore the localized wave packet nature of 
the initial state and formulate the scattering in terms of energy eigenstates for 
the initial and final state.  It is simpler to do this because the energy eigen-
states can then taken to be ortho-normal and complete, and therefore any 
physical wave packet can be built up from them so there is no loss of general-
ity.  However, ignoring the wave packet obscures certain effects, such as the 
one we are discussing here.   

 
We work from the treatment in[18], where the radiative transition matrix 

for the emission of a single photon of is calculated to be (ibid 57.27): 
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We have digressed slightly from  the notation (ibid) in that α and β denote 

the initial and final states of the charged particle alone as well as denoting the 
complete initial and final states including photons.  Here Eα is the initial 
charged particle energy and Eβ it’s final energy, and where 
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In this formula, only the creation operator part of  the perturbing Hamilto-

nian (ibid 57.21) is included, and this results in the operator being non-
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Hermitian in (35).  Note that because k and ε  are orthogonal, the order of the 
exponential term and the gradient does not matter.  In this expression uβ is the 
unperturbed, normalized, and time-independent final state energy eigenfunc-
tion for the charged particle, and uα is the unperturbed initial state energy 
eigenfunction,  and nkλ is the number of photons present of the type being 
radiated in the initial state.  We shall set nkλ to zero for the remainder of this 
treatment.  Here we mean unperturbed in the sense that the effect of the ra-
diative process has not been included, but the effect of the external potential 
in the single particle Schrödinger equation has been fully included.   Periodic 
box boundary conditions have been imposed in a box of side L on all the 
fields.   

 
The eigenfunctions satisfy the stationary equation where it is assumed that 

the external potential does not depend on time. 
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We may rewrite (34) as 
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In the situation of interest here, the initial state is not an energy eigenstate, 

but rather is initially a wave packet – a plane wave modulated by an envelope 
function.   This wave packet ψ can be written as a superposition of energy 
eigenstates 
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Therefore, the transition amplitude for the emission of a single photon 

with the charged particle ending in a particular state is given by 
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Physically, this transition matrix element will start off being zero before 

the wave packet overlaps the force field, then the scattering will occur, and 
finally it will end up zero again after the wave packet has entirely passed 
through the force field as is described for example in[30] chapter 10-d.   

 
Assuming that the particle is released at time t = 0, and is initially far away 

from the force field, the total transition amplitude for scattering into final 
state β  by time T is 
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If  T is large enough so that the wave packet has already passed through 

the scattering region by this time, then further increasing T should make no 
difference in the result as all of the scattering that is going to occur has al-
ready occurred.  The probability of photon emission and the energy radiated 
in the time interval 0 to T are  
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The total energy radiated is 
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Now owing to the completeness of the energy eigenstates, this becomes 
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Following[18] we introduce the density of photon states and replace the 

summation by an integral 
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We now use the result: 
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If the k dependence of  the exponential term is ignored the ω integral then 

has the form 
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This is valid if the wavelength of the emitted radiation is much larger than 

the dimensions over which the force field is nonzero, ie. the soft photon limit.  
And therefore 
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Compare this result with (32).  The expression a2 appears inside the expec-

tation here.  Consider Figure 1 again.   The total radiated energy will be inde-
pendent of L because the transit time is proportional to L/v but the radiated 
power goes as 1/L and so the L dependence cancels out.  Erad will be inde-
pendent of L in the conventional radiation theory. 

 

4 Experimental apparatus 

 
In order to determine which theory is correct, an experiment must be ca-

pable of preparing a large wave packet beam and then measuring a small 
energy loss due to Bremsstrahlung.  An electron microscope seems well 
suited for this task.  Figure 2 illustrates a possible system.   The most suitable 
electron gun would be a cold field emitter [31-33] as these have a lower en-
ergy spread than either thermal emitters, Schottky field emitters, or thermal 
field emitters.  After the electron gun, it is desirable to have a well-collimated 
beam, and this is achieved by means of a collimating lens shown as a mag-
netic lens in Figure 2.  Following the collimating lens is a so-called Wien 
filter which consists of crossed electric and magnetic fields “tuned” to a par-
ticular velocity at which the electric force on the charge exactly cancels the 
magnetic force and the desired velocity goes straight through the Wien filter 
with no deflection.  If the velocity is greater/less than the selected velocity, 
then the magnetic force will be stronger/weaker than the electric force and 
the particle will be deflected.   All but the desired velocity are eliminated 
from the beam by means of a pinhole aperture.  The purpose of the collimat-
ing lens is to make the beam entering the Wien filter as parallel as possible so 
as to make the filter more effective.  The wave packet length L is related to 
the energy spread by the Heisenberg uncertainty principle 
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After the beam has passed through the Wien filter it passes through an ob-

jective lens that focuses the beam.  If α is the half-angle of the cone of rays 
coming from the objective lens, then the diffraction limited Rayleigh resolu-
tion (R) and depth of focus (DOF) are 
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It is necessary to focus the beam so that it is well localized in the trans-

verse direction.  The cone half-angle α must be chosen so that the Rayleigh 
resolution is less than the dimension of the force field perpendicular to the 
optical axis, while at the same time the depth of focus is still large compared 
to the dimension of the force field along the optical axis.   Usually in electron 
microscopy α is much less than 1 and a depth of focus of 10’s of microns is 
easily achievable with a resolution of 10 nanometers.  Therefore if the force 
field extends over a region about a micron in dimension there should be no 
problem is finding a suitable value for α. 

 
When the particle beam passes through the focus plane of the objective 

lens it passes between two electrodes with sharp tips.  These electrodes could 
be sharp Tungsten needles as are used in field emitter guns or in scanning 
tunneling microscopy.  Such needles have tips several nanometers in width.  
Depending on how close the tips are to one another, the spatial extent of the 
force field can be controlled.  As the beam passes through this region it is 
deflected and it also radiates bremsstrahlung radiation.  As a result of this the 
energy of the electron is reduced. 

 
Finally the electron enters a precision energy detector.  Such detectors are 

used in electron energy loss spectroscopy or EELS[34-36].   It must have 
sufficient precision to measure the energy lost to radiation. 

 
It would also be desirable to allow conventional scanning electron micro-

scope imaging to take place in the microscope of figure 2 so as to allow the 
positioning of the electron beam precisely between the two electrodes.  This 
would be achieved by adding a conventional beam scanning yoke or electro-
static deflector to the optical system of figure 2 along with a secondary elec-
tron detector and raster scan electronics.  It might also be desirable to add a 
photon detector to be placed near to the region of the electrodes to detect 
emitted radiation directly. 
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If the hydrodynamic model is correct the energy loss should be propor-

tional to 1/L for large L.   If the conventional quantum theory of radiation is 
correct then the energy loss should be independent of L for large L. 

 
Figure 2.  Apparatus for measuring Bremsstrahlung energy loss 
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5 Conclusion 

 
It is rare that fundamental interpretations of quantum mechanics can be 

tested experimentally.  The hydrodynamic interpretation of the Schrödinger 
wave asserts that a particle’s charge and current densities are proportional to 
the Schrödinger probability current densities.  Once this is granted and classi-
cal electromagnetism is used to calculate the soft photon limit of 
bremsstrahlung, the results here seem to follow quite clearly.  If the hydrody-
namic view is correct then bremsstrahlung will be suppressed when the wave 
packets are large compared with the region of the applied force.  This is in-
compatible with the conventional quantum theory of radiation and QED as 
shown here.  Table I summarizes the two cases.  The end results are quite 
simple considering the work needed to obtain them.  In the hydrodynamic 
model one takes the mean of the acceleration first and then squares this mean 
to get the instantaneous power.  In QED we must calculate instead the mean 
of the acceleration vector squared.  This subtle difference leads to experimen-
tally testable differences. 
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rad
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Table I.  Summary of results 

 
An experiment to differentiate which formula is realized in nature has 

been proposed.  It involves and electron microscope with a cold field emitter 
electron gun, a collimating lens, a very strong Wien filter for producing a 
narrow energy beam, an objective lens, a deflection force causing the 
bremsstrahlung, and finally a precision energy detector. 
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If the hydrodynamic interpretation is correct then the radiated energy per 

particle will fall off as 1/L for large L.   If the conventional radiation theory is 
correct then this energy will not decrease for increasing L.   

 
If the hydrodynamic interpretation is confirmed by this experiment, then a 

rethinking of the conventional radiation theory will be required and a possi-
bly useful means of monitoring the wave packet length will have been dis-
covered.  If, as is more likely, the conventional radiation theory is confirmed, 
then the hydrodynamic interpretation of quantum mechanics can be ruled out 
as a possible description of nature, or at least it must invoke a non-classical 
interaction with the electromagnetic field even in the soft photon limit to 
remain viable. 

 
The results presented here can obviously be extended to magnetic forces 

and to force fields which act in an arbitrary direction relative to the incident 
beam. 
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