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First we argue in an informal, qualitative way that it is natural to
enlarge space-time to five dimensions to be able to solve the problem of
elementary particle masses. Several criteria are developed for the success
of this program. Extending the Poincaré group to the group C of all
angle-preserving transformations of space-time is one such scheme which
satisfies these criteria. Then we show that the field equation for spin 1/2
fermions coupled to a self-force gauge field predicts mass spectra of the
desired type: for a certain range of a key parameter (Casimir invariant)
a three-point mass spectrum which fits the “down” quarks d, s, and b to
within their experimental bounds is obtained. Reasonable values of the
coupling constant (of QCD magnitude) and the range of the spatial wave
function (a few fermis) also result. Compatibility with the electroweak
theory is also discussed.

1. INTRODUCTION

A theory of elementary particle masses which predicts the masses that
we see in nature is lacking in present day particle physics. The Standard
Model appeals to the Higgs mechanism. But even granting that the
Higgs particle exists, successful fits must wait on the measurement of
various unknown parameters [1]. String theories claim to be able to
predict these masses in principle, but they are still far from delivering
quantitative numbers at their present stage [2,3].

First, some informal, qualitative remarks may be helpful to motivate
the main idea of this paper. The idea that predicting particle masses
should involve enlarging 4-D (“four-dimensional”) space-time (coordi-
nates x

µ

= {x, y, z, xo ≡ ct} by a single new dimension, call it λ, seems
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very natural. The equal status of momentum p, energy E, and mass m
in the free particle relation

p2 − E2 +m2 = 0 (1)

suggests that in 5-D position space λ should be conjugate to m, just as
r is conjugate to p and t is conjugate to E. (We shall use units c = 1 in
this paper.) And further, that the field equation for the field φ(x

µ

, λ) of
a free scalar boson, say, should be something like

(52 − ∂2/∂t2 + ∂2/∂λ2)φ(x
µ

, λ) = 0 , (2)

with the solution

φ(x
µ

, λ) = const× exp[i(p · r − Et±mλ)] (3)

with the constraint (1) on the constants p, E, and m.

However, this first try is too naive for several reasons. First, the new
dimension λ is simply grafted onto space-time, uncritically assuming that
the enlarged space is still flat (cf. Eq. (2)). The symmetry group of Eq.
(2) and of the corresponding 5-D metric

dS2 = dr2 − dt2 + dλ2 (4)

is the set of 5-D rotations and translations. But this group preserves
nothing significant in space-time. One would like the new symmetry
group to be related to some structure defined in space-time alone, to
preserve some geometric entity of space-time.

The second reason that Eq. (2) is too naive is that the mass spec-
trum is continuous: 0 < m <∞. But the whole mystery of particle mass
spectra is that they consist of a few points with non-uniform spacing!
Clearly a perfectly free particle field equation like (2) can never predict
mass spectra of this type. We suggest that there should always be a
self-force acting on the particle, whether or not it is acted on by exter-
nal forces. The self-force must certainly involve the new coordinate λ,
conjugate to mass.

The third reason that Eq. (2) is too naive is that it was simply
written down ad hoc without any regard for the symmetry group of the
new 5-D space. But as Bargmann and Wigner showed many years ago [4],
the particle field equations now accepted — the scalar boson equation,
the Dirac equation for spin 1/2 fermions, the photon field equation, etc.
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— correspond to the irreducible unitary representations of the Poincaré
group P, labelled by its two Casimir invariants spin j and mass m, which
uniquely fix these equations. Therefore the new symmetry group should
have been chosen first, in accordance with the first criterion above, and
then the field equations of the various particle species determined by its
IUR’s.

Back to the first criterion: the present kinematical symmetry group
of space-time is the Poincaré group P, which preserves the space-time
length element ds2 = gµνdx

µ

dx
ν ≡ dr2 − dt2. One is thus motivated

to search for the simplest and smallest extension of P which preserves
something geometrical in space-time and has P as a subgroup. An im-
mediate candidate is the group C which preserves space-time angle. By
Liouville’s Theorem [5] C is a 15-parameter Lie group composed of the
10-parameter subgroup P, which preserves space-time length (and there-
fore space-time angle) augmented by a 5-parameter set of transforma-
tions which preserve space-time angle but not length.

To answer an expected immediate objection: of course C’s transfor-
mations cannot act just on the 4-D space-time, with its length metric
ds2 = gµν dx

µ

dx
ν

, because angle-preserving transformations of space-
time do not in general preserve the length, and thus C would not be
the symmetry group of this metric. (This was Einstein’s reason for
rejecting the group C, see [6].) The way to introduce the group Cn

of conformal (≡ angle-preserving) transformations of n-dimensional eu-
clidean space En of coordinates x

µ

, µ = 1, 2 · · ·n, was well-known to the
great geometers of the nineteenth century (F. Klein, Liouville, Möbius,
Lie et al.) some 150 years ago, but seems unknown today, at least
to modern theoretical physicists. In brief, one introduces the (n + 1)–
dimensional space of spheres in En characterized by their centers x

µ

and radii xn+1. The group Cn is then that group of transformations
x′

α

= f
α

(x1, x2, · · ·xn, xn+1), α = 1, 2, · · ·n, n + 1, which preserve the
angle θ under which two spheres x

α

and y
α

intersect, see Fig. 1. For
infinitesimally close spheres y

α

= x
α

+ dx
α

one gets [7]

dθ2 = (xn+1)−2[(dx1)2 + (dx2)2 + · · · (dxn)2 − (dxn+1)2] . (5)

(This is nothing but the Law of Cosines, familiar from plane geometry
class in high school.) The expression (5) defines the metric (dimension-
less angle metric) of the appropriate (n + 1)-dimensional Riemannian
space which has the conformal group Cn as its symmetry group. It
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turns out that this space is not flat but is of constant curvature. All of
this is explained in exhaustive detail elsewhere [7].

Thus for the pseudo-euclidean space-time with n = 4 we get the
5-dimensional space with metric

dθ2 = −λ−2(dr2 − dt2 + σdλ2), σ = ±1 , (6)

with {x1, x2, x3, x4} and x5 renamed {x1, x2, x3, x0} and λ respectively.
Of course the “sphere” x

α

is the hyperboloid gµν(ξ
µ − x

µ

)(ξ
ν − x

ν

) +
σλ2 = 0 as a real locus. The sign σ, that is, whether the fifth dimension
is spacelike (σ = +) or timelike (σ = −) is left open for the moment.

This concludes the informal, qualitative part of this Introduction.

We show here how the field equation for spin 1/2 fermions in five
dimensions coupled to a self-force dependent on the fifth coordinate pre-
dicts point mass spectra of just a few points and non-uniform spacing.
If the Casimir invariant of this particular irreducible unitary represen-
tation has a certain range, it is a 3-point spectrum for isospin up or
down. The spectrum is consistent with the experimental bounds on the
isospin-down quarks d, s, and b for values of the coupling constant α of
order unity and range κ−1 of the spatial wave functions of a few fermis.

To avoid a possible confusion at the outset: this 5-D theory has noth-
ing to do with the Kaluza or Kaluza-Klein theories. The enlargement of
space-time to a five-dimensional manifold is forced, not arbitrary, if the
conformal group is demanded as the basic kinematical symmetry group
[7]. This fifth coordinate λ is conjugate to mass just as position and
time are conjugate to momentum and energy. Partial derivatives with
respect to λ replace mass terms in fermion and boson field equations.
In solutions of gauge boson field equations λ plays the role of a micro-
scopic length “parameter” which modifies the usual space-time causality
of point particles. It gives point particles a structure or extension in a
certain sense [7].

We argue in this paper that this five-dimensional extension of special
relativity (“conformal relativity”) is the natural framework for a theory
of elementary particle mass. The results obtained here are promising but
are only a first step; the main problem is the exact form of the quantum-
mechanical self-force. Some extra points, including a puzzle, are made
in the concluding remarks. These also include an argument that the
5-D theory gives a theoretical basis for some features of the electroweak
theory which were postulated on the basis of experiment alone.
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2. SOME BACKGROUND

As explained in the Introduction, the metric of conformal relativity
is [7]

dθ2 = −λ−2(dx2 + σ dλ2) ,

dx2 ≡ gµνdx
µ

dxν , µ, ν = 0, 1, 2, 3; x5 ≡ λ; σ = ± , (2.1)

where dθ is the infinitesimal angle under which spheres (x
µ

, λ) and (x
µ

+
dx

µ

, λ+ dλ) intersect. We use the metric −g00 = g11 = g22 = g33 = +1.
Whether the extra dimension is spacelike (σ = +) or timelike (σ = −)
is not yet clear, or maybe both occur. The ranges of the coordinates are
−∞ < x

µ

< +∞ as usual, and 0 < λ < ∞ (or possibly 0 <| λ |< ∞).
The metric is singular if λ = 0, so λ = 0 is excluded from physical space,
which is of course consistent with the action of the conformal group C

[7]. We call these two 5-D Riemannian spaces (2.1) K+ and K− (after
Felix Klein).

The field equation for spin 1/2 fermions in the C-covariant theory
is1 [8]

(γ
α∇

α
+ γβ7ν) ψ = 0 , ∇

α
≡

γ

∇α
−ig A

α
. (2.2)

Here the six anticommuting γ-matrices obey

γ
α
γ

β
+ γ

β
γ

α
= 2γαβ 1 , γ

α
γ + γγ

α
= 0 , γ2 = 1 , (2.3a)

β7 ≡ iλ5γ1γ2γ3γ0γ5γ ; α, β = 0, 1, 2, 3, 5 , (2.3b)

where γαβ is the angle metric (2.1). Indices are raised and lowered with

this metric.
γ

∇α
is the covariant derivative on spinors ψ which fixes the

spin algebra γ
α
, γ. (Note that the spaces K

σ
are not flat, so that co-

variant derivatives occur in field equations.) We consider here only a
U(1) internal symmetry with gauge boson A

α
. The equation (2.2) is

uniquely fixed by requiring that the solutions ψ span an irreducible uni-
tary representation (IUR) of C. The parameter ν is a Casimir invariant
for this IUR, and Eq. (2.2) is the sole independent condition for spin
1/2 [8]. The six γ

α
, γ are 8× 8 and ψ is an 8-spinor because eight is the

minimum dimension allowed for a matrix representation of the algebra
(2.3a). When the spin connection is inserted, Eq. (2.2) reduces to

1Eq. (2.2) here is Eq. (4.3) of the second article of Ref. [8], where ν ≡ −(4/9)q3.
Note that these articles considered only the case σ = +. Much of the physical
discussion there is dated.
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(γ̃ ·D + γ̃5D5 + 2σλγ̃5 + νβ7)ψ = 0 ,

γ̃
α
≡ γγ

α
, D

α
≡ ∂

α
− igA

α
, (2.4)

where the • will always mean the 4-D scalar product γ̃ ·D ≡ γ̃
µ

D
µ
. Note

that D
α

involves the ordinary partial derivative ∂
α

; the third term in
Eq. (2.4) comes from the spin connection.

To be able to calculate with Eq. (2.4) a representation of the six 8×8

matrices γ
α
, γ must of course be chosen. We choose γ

α
= γ

∼

γ
α

and

∼

γ
µ
= λ−1

(
−γ

µ
0

0 γ
µ

)
,

∼

γ 5 = λ−1

(
h 0
0 −h

)
, γ =

(
0 1
1 0

)
.

(2.5a)

The
∼

γ
α

are obtained by raising the indices with the metric (2.1). For
the 4 × 4 γ

µ
, h, and 1 in these matrices, see Eq. (2.6). Then β7, Eq.

(2.3b), is

β7 =

(
1 0
0 −1

)
. (2.5b)

It can be shown (unpublished) that by comparing a Lagrangian for the
spin 1/2 field equation (2.4) with the Lagrangian for the electroweak the-
ory ([1], Chap. 7) that we can identify the upper and lower 4-spinors in
the 8-spinor ψ as the T3 = +1/2 and −1/2 components of the isodoublets
of the electroweak theory in this representation. In fact, the whole elec-
troweak theory can be reproduced. More on this in Sec. 4. Therefore
we call the representation (2.5) the EW (electroweak) representation.
The field equation (2.4) written in the EW representation splits cleanly
into wave equations for the T3 = +1/2 and −1/2 components (there is
no coupling between these fields) and further, these wave equations are
identical.

This common wave equation for the case σ = − is

{γ · (∂ − ig A) − ih(∂5 − ig A5) + (ν + 2ih)/λ}ψ = 0 ,

γ
µ
γ

ν
+ γ

ν
γ

µ
= 2gµν1 , h ≡ iγ1γ2γ3γ0 . (2.6)

Here the γ
µ

are the usual 4×4 constant γ-matrices, ψ is now a 4-spinor,
and h is the handedness operator (usually called γ5 in the literature):
hψL = −ψL, hψR = +ψR for left and right-handed spinors.
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The field equation for the gauge boson A
α

is

γ

∇α
F

α

β
= 0 , Fαβ ≡ ∂

α
A

β
− ∂

β
A

α
. (2.7)

These are reduced to a set of partial differential equations for the 5-vector
A

α
in Ref. [7].

3. FERMION MASS SPECTRUM FOR A TIMELIKE FIFTH

DIMENSION

We look at stationary states: ψ(t, r, λ) = e−iEtg(r, λ) of Eq. (2.6).
If we insert a self-force ASF

α
and solve for a resting spin 1/2 fermion, the

energy spectrum should be the mass spectrum: E = M . The self-force
should certainly involve the fifth coordinate λ, so we adopt provisionally

ASF
0 = −g′/λ , other ASF

α
≡ 0 . (3.1)

More on this in Sec. 4. Then the equation becomes

{
γ0(M − α/λ) + iγ · ∂ + h∂

λ
+ (iν − 2h)/λ

}
g(r, λ) = 0 . (3.2)

Here α ≡ g′g (g′ = g is natural for a self -force, but we leave this open
for generality.) Consider s-states g(r, λ) only; then iγ · ∂ becomes iγr∂r

where γr ≡ γ · n, n a unit 3-vector. We seek a separable solution in r
and λ, so take g(r, λ) = e−κrg(λ) with κ real and positive. Eq. (3.2)
then reduces to the ordinary differential equation in λ

{
γ0(M − α/λ) − iκγr + h∂

λ
+ (iν − 2h)/λ

}
g(λ) = 0. (3.3)

The solution is given in the Appendix. It is formally very similar to
the solution of the Dirac equation for the relativistic hydrogen atom [9]
with λ and the mass levels of the particle playing the roles of r and the
hydrogenic energy levels, respectively. (The spectrum is very different
however.) The mass spectrum is

M(n′,τ)/κ =| S
τ

+ n′ | �[α2 − (S
τ

+ n′)2]1/2

n′ = 0, 1, 2, 3, · · · , τ = ± , (3.4a)

S
τ
≡ τ(α2 − ν2)1/2 , (3.4b)

S
τ

+ n′ has the sign of α ≡ g′g , (3.4c)
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norm restriction2: (α2 − ν2)1/2 < 1/2 for τ = − . (3.4d)

One can see first in a general sort of way that this is a finite point
spectrum: when the radicand in the denominator of Eq. (3.4a) goes
negative, the spectrum ends. In fact, if we choose γ ≡ (α2 − ν2)1/2 as a
convenient independent variable (do not confuse this γ with the matrix γ
in Eq. (2.3)!) and set F (γ;n′, τ) ≡ α2−(S

τ
+n′)2, we get, on expanding

and cancelling etc.

F (γ;n′, τ) = −2n′τγ + ν2 − n′2 . (3.5)

Now choose g′ = g, or α ≡ g2 > 0, as seems natural. Then the necessary
and sufficient conditions for a spectral point (n′, τ) are

γ < (ν2−n′2)�2n′ , τ = + ; γ > (n′2−ν2)�2n′, τ = − , (3.6a)

γ < n′ for τ = − , (3.6b)

γ < 1/2 for τ = − . (3.6c)

These are respectively from F (γ;n′τ) > 0, Eq. (3.4c) for α > 0, and Eq.
(3.4d).

In modern particle theory there are three families (isodoublets) of
quarks and three of leptons. Relevant to this, the following theorem can
be proved from the conditions (3.6a, b, c):

Theorem. There are three and only three mass levels if and only if
1 < ν2 < 2. These levels are (n′, τ) = (0,+), (1,−), and (1,+).

The mass spectrum written in terms of γ is

M(n′,τ)�κ = (τγ + n′)�(−2n′τγ − n′2 + ν2)1/2 (3.7)

from just above. Thus for the three levels (0,+), (1,−), and (1,+) we
get

M(0,+)�κ = γ� | ν | ,

M(1,−)�κ = (1 − γ)�(2γ − 1 + ν2)1/2 ,

M(1,+)�κ = (1 + γ)�(−2γ − 1 + ν2)1/2 ,

1 < ν2 < 2 , 0 < γ < 1/2 .

(3.8)

2For the 4-spinor ψ the norm is || ψ ||2≡
R

d3r
R

∞

0
dλλ−4

−

ψ γ0ψ, t = const., where

γ0 is the constant 4 × 4 matrix. For this “bound” solution we require ||ψ||2 < ∞.
The bound (3.4d) on γ comes from requiring the λ-integral to converge at its lower
limit λ = 0.
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Then from these expressions one can deduce that the only possibility
that one mass is much greater than the other two is

ν2 = 1 + 2γ + ε , 0 < ε << 1 , (3.9)

in which case M(1,+) is the large one. (This assumes ε << γ.)

Fitting the quarks. We try to fit the T3 = −1/2 set of quarks d, s,
and b. The experimental mass limits in MeV are [10]

Md = 3 − 9 , Ms = 60 − 170 , Mb = 4100 − 4400. (3.10)

So we adopt the value (3.9) for ν2 and identify (1,+) ≡ b. Next, inserting
ν2 (3.9) into the mass formulae (3.8) and neglecting ε in (0,+) and (1,−),
we get the ratio

M(1,−)�M(0,+) = (1 − γ)(1 + 2γ)1/2�2γ3/2 . (3.11)

It can be checked that this ratio is always > 1 for 0 < γ < 1/2, so
we choose (1,−) ≡ s and (0,+) ≡ d. Now equate the ratio (3.11) to
Ms/Md, using the average values Md = 6 MeV and Ms = 115 MeV .
The resulting equation

(1 − γ)(1 + 2γ)1/2 = 38.4 γ3/2 (3.12)

has the solution γ ≈ .088. Finally, to determine ε, set the theoretical
and experimental ratios Mb/Md equal. This gives

(1 + γ) | ν | �γε1/2 = (Mb/Md) exp tl . (3.13)

Insert γ = .088 and | ν |= 1.088 and use the minimum value 4100/9 ≈
455 for the ratio on the right to get the maximum size of ε. This gives
εmax ≈ 8.7 × 10−4, and verifies our assumption ε << γ.

The values of the coupling constant α and the range κ−1 of the
spatial wave functions are also of interest. We can evaluate κ from
κ(M(n′,τ)/κ) = (Mq)exp tl. If we use the same average values for Md and
Ms as used above to determine γ, we will get the same κ for either (1,−)
or (0,+). Choose (0,+).

κγ/ | ν | = .081κ = 6 MeV ⇒ κ = 74.2 MeV ,

which gives κ−1 ≈ 200/74.2 ≈ 2.7 f . Also α2 = γ2 + ν2 ≈ 1.18, or
α ≈ 1.09, which suggests a self-force of QCD origin.
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In summary, a fit to the three isospin-down quarks d, s, and b has
been obtained as the levels

(0,+) ≡ d , (1,−) ≡ s , (1,+) ≡ b (3.14a)

for the Casimir invariant ν2 ≈ 1.176 and the reasonable values of the
physical parameters

α ≈ 1.09 and κ−1 ≈ 2.7 f . (3.14b)

Of course nearby values of these parameters will also give a fit owing to
the wide latitude (3.10) in the experimental masses.

4. CONCLUDING REMARKS

A further characteristic of this theory necessary in any theory of mass
should be mentioned. In inelastic scattering of elementary particles, en-
ergy and momentum are conserved but mass is not. Thus in any theory
which unifies these quantities in some sense mass must be qualitatively
different from energy and momentum and so must the conjugate quanti-
ties. Now note that the fifth coordinate λ is qualitatively different from
the other four x

µ

; look for example at the metric (2.1). Further, the
symmetry group C includes translation groups on r and t, hence mo-
mentum and energy are conserved in particle scattering [11]. But there
is no translation group on λ [7], so the conjugate quantity mass need not
be conserved.

The mass spectrum analyzed in Sec. 3 does fit the experimental
numbers for the quarks, at least to within their (very loose) bounds.
However, this spectrum is not intended to be final and quantitative at
this stage. We only meant to show here that this particular 5-D theory
required by conformal symmetry is capable of predicting few-point mass
spectra of the right order of magnitude. The main problem is the crudity
of the self-force (3.1) adopted. This field does not in fact satisfy the
boson field equations (2.7) (see Ref. [7]) and must therefore be thought
of as an approximation to an actual solution3 or simply as a model. A
quantitative theory needs a realistic self-force, perhaps one involving also
SU(2) gauge bosons.

A few other points, including some puzzles, will be mentioned.

3The boson field equations (2.7) have the Coulombic solution A0 =
−g′�

√
λ2 − r2, 0 ≤ r < λ; = −g′�

√
r2 − λ2, 0 < λ < r <∞, other Aα ≡ 0.
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1) The signature σ = − was needed for an interesting mass spec-
trum. We can show that for σ = + a one-point spectrum results for
α > 0 (unpublished). The puzzle here is that σ = + is definitely indi-
cated in the classical self-force theory [7], which successfully resolves the
anomalies due to classical point particles.

2) Notice that if the lepton self-force is electromagnetic: α ≈ 1/137,
the mass spectrum (3.4) cannot fit the T3 = −1/2 leptons e, µ, and τ
since then γ ≡ (α2 − ν2)1/2 is pure imaginary for 1 < ν2 < 2. This
is a puzzle. But we add that for σ = +, (ν2 − α2)1/2 occurs where
(α2 − ν2)1/2 occurs for σ = −, hence the equation (3.2) written for
σ = + with a better self-force than (3.1) might work.

3) For perfectly free spin 1/2 fermions (no external force and no self-
force) the field equation (2.4) with A

α
≡ 0, σ = + or −, space-time

dependence in eip·x with p2 +m2 = 0, and γ
α

and γ in the EW represen-
tation is easily solved. The λ-dependence is in factors λ5/2ZµL

(mλ) and
λ5/2ZµR

(mλ) for the L- and R-handed components of ψ, with µL 6= µR.
The Z

µ
are cylinder functions of order µ. The mass spectrum is con-

tinuous, 0 ≤ m < ∞. In the case σ = + if ν = −1/2 is chosen for the
Casimir invariant, then in the limit m → 0 (neutrino solution) only a
left-handed neutrino survives. This makes the value ν = −1/2 very at-
tractive theoretically for leptons. Perfectly free fermions are unphysical
because of the continuous mass spectrum. But this also supports the
idea that the mass problem for leptons should be phrased in the space
σ = + (cf. point (2) above) with ν = −1/2.

4) As indicated briefly above, this theory based on C instead of P as
the kinematical symmetry group of particle physics is compatible with
the EW theory. Further, it furnishes a theoretical foundation for some of
the features of that theory adopted on the basis of experiment. Consider
the following points. (a) The six basic anticommuting γ-matrices (2.3a)
demand an 8-dimensional spinspace, thus allowing the upper and lower
4-spinors to be identified with the T3 = ±1/2 isodoublets. (b) But more
than this, in the differential operator involving the primary gauge bosons
B

α
and Wi

α
(i = 1, 2, 3), the spin algebra of the SU(2) × U(1) internal

symmetry group is formed entirely from the 8 × 8 γ-matrices (2.3a,b).
Define the matrices

τ1 ≡ γ , τ2 ≡ iγβ7 , τ3 ≡ β7 . (4.1)

Then these have the same commutation relations as the Pauli matrices.
Further, in the EW representation (2.5) they take exactly the standard



1000 R. L. Ingraham

form, where the 1’s and 0’s are 4×4. Contrast this with the situation in
the present day EW theory where generators of the internal symmetry
group SU(2), unrelated to the γ

µ
, are imported from the outside. The

handedness projections Ph′ , h′ = ±, are built from the 8×8 H ≡ λβ7γ̃5,
which takes the form

H =

(
h 0
0 h

)
, (4.2)

where h is the 4 × 4 handedness operator (see below Eq. (2.6)), in the
EW representation. (c) If the Lagrangian

L = ψ̄
[
γ̃ ·D + γ̃5D5 + 2σλγ̃5 + νβ7

]
ψ , (4.3)

which yields the field equation (2.4), is equipped with the gauge bosons
B

α
and W

α

i, it exactly reproduces the Lagrangian of the EW theory
([1], Chap. 7) plus some extra terms coming from the fifth components
B5 and W5

i, presumably small corrections to the 4 −D theory. Then
the standard mixing produces the photon and Z fields. d) However, the
aspect in which this theory is not compatible with the EW theory (or the
whole Standard Model) is the main point of this paper. In this theory
the fermions may be massive, like the quarks considered in this paper.
The fifth dimension plus an appropriate self force provides the masses.
The Higgs mechanism is unnecessary.
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APPENDIX. SOLUTION FOR THE MASS EIGENSTATES

AND SPECTRUM

Insert the formally 2 × 2 representation

γ0 = i

(
0 1
1 0

)
, γr = i

(
0 −1
1 0

)
, h =

(
1 0
0 −1

)
(A1)

and g(λ) =

(
F
G

)
into Eq. (3.3). F and G are thus 2-spinors; in fact

F = gR and G = gL in view of the form (A1) of the handedness operator
h. Multiplying by −i we get

(M − iκ− α/λ)G− i(∂
λ

+ (iν − 2)/λ)F = 0 ,

(M + iκ− α/λ)F + i(∂
λ
− (iν + 2)/λ)G = 0 .

(A2)

Rephase: iF → F , G→ G. Define

β1 ≡M + iκ , β2 ≡M − iκ , β2 ≡ β1β2 = M2 + κ2 . (A3)

Divide equations (A2) by β ≡
√
β2 and put βλ ≡ τ .

(β2/β − α/τ)G− (∂
τ

+ (iν − 2)/τ)F = 0 ,

(β1/β − α/τ)F − (∂
τ
− (iν + 2)/τ)G = 0 .

(A4)

Set F,G ≡ e−τ (f, g). Then ∂
τ
F = (ḟ − f)e−τ etc. where • ≡ ∂/∂τ .

Solve the equations in terms of f and g by the power series

f = τs
∞∑

n=0

anτ
n , g = τs

∞∑

n=0

bnτ
n , a0 and b0 6= 0 . (A5)

When these power series are inserted into the equations for f and g and
coefficients of τs+n−1 equated to 0, we obtain

(β2/β)bn−1 − αbn − (s+ n)an + an−1 − (iν − 2)an = 0 ,

(β1/β)an−1 − αan − (s+ n)bn + bn−1 + (iν + 2)bn = 0 .
(A6)

Multiply the top equation (A6) by β1/β and subtract the bottom equa-
tion. The terms an−1 and bn−1 go out since β1β2/β

2 = 1. After rear-
rangement this gives

[(β1/β)(s+ n− 2 + iν) − α] an = [s+ n− 2 − iν − β1α/β2] bn . (A7)
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To get the indicial equation choose n = 0 in Eq. (A6) and ignore the
terms a−1 and b−1. The determinant must vanish so that nonzero a0

and b0 result; the result is

S
η
≡ s

η
− 2 = η(α2 − ν2)1/2 , η = ± . (A8)

(We have changed the subscript τ on S
τ
, Eq. (3.4b), to η so as not to

confuse it with the τ ≡ βλ of Eq. (A4) et seq.) This is Eq. (3.4b).
By letting n → ∞ in Eq. (A7) we get bn = (β1/β)an in this limit;
substituting this into both equations (A6) for n→ ∞, we find an/an−1 =
2/n and the same for the b’s in this limit. Thus both series (A5) diverge
like e2τ , which is not allowed by the assumed finiteness of the norm.
Hence both series must terminate:

an′+1 = bn′+1 = 0 , n′ = 0, 1, 2, · · · . (A9)

Set n = n′+1 in Eq. (A6); we get bn′ = −(β1/β)an′ . Put this result into
Eq. (A7) for n = n′. After cancellation of some terms and rearrangement

2(β1/β)(s+ n′ − 2) − α(1 + (β1/β)2) = 0 (A10)

results. Divide this by 2β1/β and use β1/β = β/β2. After some algebra
we obtain

S
η

+ n′ = αM/β . (A11)

(This implies Eq. (3.4c).) Finally, do some algebra on Eq. (A11), using
β ≡

√
M2 + κ2, to solve for M . This gives the mass spectrum (3.4a).

The mass eigenstates. From Sec. 3 and this Appendix, the mass

eigenstates are ψ =

(
F
G

)
, where the 2-spinors F and G are

F (t, r, λ) = e−iMt e−κr F (λ) , G(t, r, λ) = e−iMt e−κrG(λ) ,
(A12)

F (λ) = (−i)e−ττsη

n′∑
n=0

anτ
n × u+ ,

G(λ) = e−ττsη

n′∑
n=0

bnτ
n × u− ,

(A13)

where
τ ≡ βλ =

[
(Mq/κ)

2 + 1
]1/2

κλ . (A14)
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Here the quantum number of the eigenstate q ≡ (n′, η) and Mq/κ is
given by Eq. (3.4a) with the sign τ changed to η. The relation of the
bn to an and the an to the an−1 are given by Eqs. (A7) and (A6). The
constant 2-spinors u+ and u− are normalized in some way; the overall
normalization of the 4-spinor ψ is secured by the free parameter a0.
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Figure 1: The spheres x
α

1
and x

α

2
, α = 1, 2, · · · n, n + 1, in E

n

inter-

secting under angle θ. Here the center x
1

stands for {x 1
1

, x 2
1

, · · · x n

1
}

and similarly for x
2
.


