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ABSTRACT.
The paper consists of two parts. In the first part, we derive relativistic
equations of motion for a massless particle from Newtonian equations
by variation the inertial mass for which the module of three-velocity
is fixed by the speed of light. In the second part, same algorithm is
used in order to derive relativistic equations of motion with variation
of proper mass. For that purpose we start from Stuckelberg-Horwitz-
Piron "off mass-shell" equations which are analogous to Newtonian
equations in 4D space-time. By variation the inertial mass for which
the pseudo-module of four-velocity is fixed by the speed of light, we
derive 5D equations of motion for penta- massless and penta -massive
particles.

1 Introduction

In 1891 F.Klein [1] generalized the Hamilton-Jacobi theory for D > 3
spaces pointing out that in the spaces of higher dimensions a trajectory
of the massive particle can be considered as a light trajectory in the
corresponding medium. In order to unify gravitation with electromag-
netism in 1921 T.Kaluza [2] suggested to introduce a fifth component of
momentum related with the charge. The ideas of F.Klein and T.Kaluza
had been deeply developed by Yu.Rumer [3]. Later 5D space-time for-
mulations appeared for different purposes in quantum field theories [4],
in the classical relativistic dynamics of charged spinning particles [5],
and in the density functional theory [6].

In 1941 Stueckelberg [7] proposed a form of relativistic and quantum
mechanics for one particle providing a manifestly covariant description of
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dynamical processes, including pair production and annihilation, and in
which the particle rest mass is not constant. In 1950 Feynman [8] showed
how a Schrödinger type equation, coinciding with that of Stueckelberg,
could be derived from a path integral technique for the motion of a point
in space-time as a function of an invariant parameter along the path. In
the sequel, there has been much study of this theory by Horwitz and
collaborators in which the evolution of the system was parameterized by
invariant world (or historical) time τ . Investigations of several aspects of
the structure of this theory have been carried out. Horwitz and Piron [9]
extended the ideas of Stueckelberg to the formulation of a theory appli-
cable to many particles with electromagnetic interaction. Saad, Horwitz
and Arshansky [10] have shown that the requirement of local gauge in-
variance leads to five compensation fields. These fields, which have been
called pre-Maxwell fields, are defined on a five-dimensional manifold with
coordinates (x, τ). The interpretations of these fields through an exam-
ination of the Lorentz force and the structure of the energy-momentum
tensor was done in Ref.[11].

In recent years we observe an emergence of theories overcoming the
assumption that a particle’s rest mass is constant (see, for instance,
in addition to references cited above, [12] and references therein). In
view of the problem of self-energy divergence and the field’s singular-
ities in relativistic dynamics, A.Vankov [13] suggested to consider the
proper-mass of the relativistic particle as a variable depending on an
external field. This assumption has been complemented with constancy
of pseudo-module of the four-velocity. However, variability of the proper
mass is not compatible with the main feature of the Minkowski-force to
be orthogonal to four-velocity. Therefore the usage of these assumptions
claims essential changes of the structure of relativistic dynamics. In this
paper we explore enlarged relativistic equations of motion derived on the
basis of these assumptions.

The main objective of the present paper is to show that the rela-
tivistic proper-mass variation leads us to 5D formulation of relativistic
dynamics. The paper can be divided into two parts. In the first part, we
elaborate a pathway from Newtonian to relativistic equations of motion
of a massless particle. This pathway is passed by assuming that the mass
of the Newtonian particle is not a constant, but is a variable whereas
the module of the three-vector of velocity is a constant of motion.

In the second part, we elaborate an algorithm to extend the relativis-
tic dynamics. Within the framework of the relativistic dynamics of the
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massive particle instead of constancy of module of the three-vector of
velocity we have constancy of the peudo-module of the four-vector of ve-
locity. In order to obtain an evolution equation for the variable proper-
mass we should extend the Minkowski four-force. Therefore we start
with Stueckelberg-Piron-Horwitz equations of motion, which analogous
to the Newtonian equations in 4D space-time. In this case the assump-
tion of constancy of the pseudo-module of four-velocity is a constraint.
In a manner similar to that carried out in the first part, the 4D Newton-
Lorentz equations are transformed into 5D relativistic equations. These
equations describe charged penta-massless particles in the enlarged elec-
tromagnetic fields. The class of penta-massless particles includes, as a
special case, the relativistic particles. In addition to the penta-massless
particles we introduce also the class of penta-massive particles.

The paper is organized as follows.
In Section 2, we outline some features of classical relativistic dynam-

ics. In particularly, we observe that the notion of masslessness does not
bind one to take as zero the mass parameter of the massless particle.

In Section 3, we build the passage from Newtonian equations into
relativistic equations of motion under two assumptions: 1) the mass of
the particle is variable, and 2) the module of the velocity is a constant
of motion. These assumptions unequivocally lead one to the equations
for a relativistic massless particle if the module of velocity is taken as a
speed of light.

In Section 4, the mass-variation algorithm is employed within
Stueckelberg-Piron-Horwitz "off mass-shell" equations where the proper-
mass is considered as a variable whereas the pseudo-module of four-
velocity is constrained by the speed of light. In this way we arrive at the
notion of penta- particles.

In Section 5, we explore a motion of charged penta-particles in inter-
action with 5D electromagnetic fields.

The paper closes with a summary.

2 Classical equations of motion of relativistic particle

The Lorentz-covariant form of the relativistic equations are usually writ-
ten with respect to an invariant evolution parameter — the proper time
of the particle:

d

dτ
pµ = Kµ, m0 gνµuν = pµ, uν =

dxν

dτ
. (2.1)
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where Kµ is, so-called, Minkowski-force. The main feature of the
Minkowski-force is orthogonality with the four-velocity, valid if we con-
strain the motion to mass shell

Kµuµ = 0. (2.2)

One of the concrete examples of the Minkowski-force is the Lorentz-force:

d

dτ
pµ =

e

c
Fµνuν , with Fµνuνuµ = 0, (2.3)

where Fµν is a tensor of the electromagnetic (e.m.) field composed of the
three-vectors of electric field strength ~E and the magnetic flux density
~B.

It is relevant to draw an analogy between three-dimensional gyro-
scopic (or ponderemotive) force ~G and the four-dimensional Minkowski
force. The force ~G does no work along the trajectory∫

(~G · d~l) = 0. (2.4)

The Minkowski force does not do "work" along the world-line trajectory∫
(Kµdlµ) = 0. (2.5)

The G- force does not exchange the kinetic energy of the particle. The
Minkowski force does not contribute to the change of mass, which is a
constant of motion

gνµpνpµ := p2
0 − p2 = M2c2. (2.6)

The relationship (2.6) has fundamental importance for the relativistic
dynamics. In order to interpret the constant of motion M one has to
reduce Eqs.(2.1) into the Newton equations of motion. For that purpose
rewrite (2.1) with respect to the coordinate time by using the formula

u0 =
dx0

dτ
= c

dt

dτ
. (2.7)

By taking into account (2.6), we get

d~p

dt
= ~K,

d~r

dt
= c

~p√
(Mc)2 + p2

. (2.8)
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In the case when
(Mc)2

p2
>> 1

Eqs.(2.8) give arise Newton equations if one takes M2 = m2
0. This

simple exercise suggests that the constant of motion M has to be taken
equal to the proper mass of the particle m0. Obviously, the procedure
of reduction is valid only if M2 6= 0. This restriction separates the class
of massive particles from the class of massless particles; the latter are
defined by the condition M = 0. Observe, however, the condition M = 0
does not bind one to set m0 equal to zero. Indeed, we have seen that an
interpretation of M as a mass of the particle comes from the principle
of correspondence with the Newton equations. When one takes M = 0
this correspondence breaks down. All the more that in this case an
interpretation of M is needless.

Consider a stationary motion obeying the relativistic equations in
the potential field V (r):

d~p

dτ
= −~∇V p0

1
m0c

,
dp0

dτ
= −(~∇V · ~p)

1
m0c

. (2.9)

This equations come from the Lorentz-force equations in absence of the
vector part of the electromagnetic potential. As a consequence of prop-
erty (2.2) we get the first constant of motion :

p2
0 − p2 = M2c2, (2.10)

where M2 = m2
0 for a massive particle and M = 0 for a massless particle.

Another constant of motion, the energy, emerges due to stationarity of
the potential field:

cp0 + V (r) = E . (2.11)

Now, let us apply this system of equations in order to describe the motion
of the massless particle. In this case M = 0 and, consequently, p = ±p0.
The pair of Eqs.(2.9) are reduced into one equation for the three-vector
of momentum:

(a)
d~p

dτ
= −~∇V p

1
m0c

, with (b) ~p = m0
d~r

dτ
, p = m0c

dt

dτ
. (2.12)

One may re-formulate Eqs.(2.12) with respect to the coordinate time.
One gets

d~p

dt
= −~∇V,

d~r

dt
= c~n, ~n =

~p

p
. (2.13)
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This result remains valid needless of the limit m0 → 0 in order to formu-
late equations of motion of the massless particle. The mass parameter
does not participate in Eqs.(2.13).

Our purpose was to show what kind of possibilities arise from rela-
tivistic equations of motion. From these equations, we have seen, there
follows the existence two classes of particles defined by the choice of the
constant of motion in (2.10). The first class, with M2 6= 0, is called
as a class of massive particles, because the principle of correspondence
with the Newton equations permits one to interpret M as the inertial
mass at rest. The second class, with M2 = 0, is called as a class of
massless particles. Does there exist a massless particle in the Nature?
This is a problem of the interpretation of the experimental data. Usually
in physics the massless particles are identified with the photon, which
moves with the speed of light. In the present paper we don’t touch
the problem of interpretation of the classical equations of the massless
particles.

In the direction of the vector of momentum Eqs.(2.9) admit a polar
representation [14]:

dp

dφ
= p0,

dp0

dφ
= p, (2.14)

where φ obeys the equation

dφ

dτ
=

e

m0c
( ~E · ~n). (2.15)

Formal solutions of (2.14) are given by

p0 = A(cosh(φ) + B sinh(φ)), p = A(sinh(φ) + B cosh(φ)), (2.16)

with
A2(1−B2) = M2c2,

where B2 < 1 for massive particles and B2 = 1 for massless particles.

3 Passage from Newtonian to relativistic equations of motion

The gap between Newtonian and relativistic mechanics usually is over-
come only in one direction: from the relativistic to the Newton equations
by taking the speed of light to infinity. In this limit, the relativistic
equations tend to the system including besides the Newton equations
an equation for the kinetic energy. In order to overcome the passage in
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the opposite direction the textbooks recount the history of the construc-
tion of relativistic dynamics. Meanwhile, there exists a simple way of the
passing between these two parts of the classical dynamics. In this section
we build a shortest pathway from Newton equations to the relativistic
equations for the massless particle. Before proceeding, notice that the
module of the velocity of the massless particle is a constant of motion.
In fact, v2 = c2 is a consequence of Eqs.(2.13). However, the potential
field inside of which the particle is moving produces work. Then the
following inquiry arises:
What kind of dynamic variable accumulates kinetic-like energy?
Let us settle this question starting from Newton equations of motion.

Consider Newton equations of motion given by

(a)
d~p

dt
= −~∇V, (b) m~v = m

d~r

dt
= ~p. (3.1)

From these equations the equation for the kinetic energy is derived

d

dt

p2

2m
= −(~v · ~∇V ), (3.2)

which due to the stationarity of the potential is nothing else than an
energy-conservation law:

d

dt
(

p2

2m
+ V ) = 0, E =

p2

2m
+ V. (3.3)

In these equations we supposed that the mass of the particle m is a
constant. Then the work of the potential field contributes to the kinetic
energy, or more precisely, to the module of velocity. Now, let us to fix
the module of the velocity simultaneously freeing the mass m. Thus,
we obtain the situation when the mass depends of the time m = m(t)
whereas the module of the vector of velocity is a constant of motion:

v2 = c2. (3.4)

Consequently, the velocity is orthogonal to the acceleration

(
d~v

dt
· ~v) = 0. (3.5)

This condition helps us to derive an equation for the mass from Eqs.(3.1).
We get

c2 dm

dt
= −(~v · ~∇V ). (3.6)
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Compare this equation with (3.2). Since we deal with a stationary po-
tential, from (3.6) we get the following energy-conservation law:

d

dt
(mc2 + V ) = 0, E = mc2 + V. (3.7)

Thus, the kinetic part of the energy of the particle with variable mass
and the top line module of the velocity is proportional to the mass of
the particle.

Now suppose that the variation of the mass begins at the moment
t = t0. Let us denote the initial value of the mass by m0 = mt=t0 .
Introduce a new evolution parameter τ by

dt

dτ
=

m

m0
. (3.8)

Define the velocity with respect to the new evolution parameter

~u =
d~r

dτ
.

The velocities ~v and ~u are related as follows

~u =
dt

dτ

d~r

dt
=

m

m0
~v. (3.9)

Correspondingly, formulae of the momentum are given by

~p = m0~u = m~v. (3.10)

Introduce a new component of momentum corresponding to variation of
the mass by

p0 = mc. (3.11)

By using the definitions (3.10) and (3.11) we can equivalently re-write
Eq.(3.6) as

d

dt

p2
0

2
= −(~∇ · ~p). (3.6a)

In order to formulate equations (3.1) and (3.6a) with respect to τ we
should multiply these equations by derivative dt

dτ and use (3.8). Then,
by using definitions (3.10) and (3.11), Eqs.(3.1), (3.6a) equivalently are
transformed into the following set of equations

d~p

dτ
= − 1

m0c
~∇V p0,

dp0

dτ
= − 1

m0c
(~∇V · ~p), (3.12a)
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with
~p = m0

d~r

dτ
, p0 = m0c

dt

dτ
. (3.12b)

These equations are nothing else than the relativistic equations of motion
(2.9) with the first constant of motion

p2
0 − p2 = C. (3.12c)

Notice, the same formula for C follows from Eqs.(3.1), (3.6a) written
with respect to t.

Remember that Eqs.(3.12) have been derived under the assumption
(3.4). Multiply (3.4) by m and take into account definitions (3.10) and
(3.11). Then we get p2

0 − p2 = 0 which corresponds to C = 0. Thus, in
(3.12c) we have to take C = 0.

Now, let us try to arrive at the relativistic equations for a massive
particle. In this case we have to suppose variability of the mass without
restricting the module of velocity. For that purpose we start from the
Newton-Lorentz equations with external electromagnetic fields

d~p

dt
= e( ~E + [~v × ~B]), ~p = m~v. (3.13)

Suppose m = m(t) and m0 = m(t)t=0. Define a new evolution parame-
ter τ by (3.8) and re-define velocity and momentum according to (3.9),
(3.10). With respect to τ Eq.(3.13) takes the following form

d~p

dτ
= e( ~E

m

m0
+ [~u× ~B]), ~p = m0~u. (3.14)

An equation for the mass variable now cannot be derived from (3.13).
This equation has to be postulated independently. If one makes a postu-
late of form of Eq.(3.6), then one arrives at the relativistic Lorentz-force
equations (2.3). Eq.(3.6) in the external electromagnetic field is written
by replacing ~∇V with −e ~E. One gets

c2 dm

dt
= e(~v · ~E), (3.15)

which with respect to the proper time as an evolution parameter takes
the following form

c2 dm

dτ
= e(~u · ~E). (3.16)
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By taking into account formulae (3.10) and (3.11), Eqs.(3.14), (3.16) one
may equivalently rewrite the equations of motion as follows

d~p

dτ
=

e

m0c
( ~E p0 + [~p× ~B]),

dp0

dτ
=

e

m0c
(~p · ~E),

which are nothing else than the Lorentz-force equations (2.3) written in
the components.

Let us close this section with the following remarks.
1. The Newtonian particle with the variable mass and with the velocity
constrained by v2 = c2, where c is not obliged to be speed of light, will
imitate behavior of the massless particle.
2. The celebrated Einstein formula E = mc2 is derived within the frame-
work of Newtonian mechanics where constancy of the module of the ve-
locity compensates by variation of the mass.
3. The constant of motion C 6= 0 is defined by C = m2

0c
2− p(0)2, where

p(0) is momentum at the initial moment of the motion.

4 Extension of Stuckelberg-Horwitz-Piron "off-shell" equa-
tions by variation of mass parameter

In the previous section we have seen that variation of the mass enables
us to transform Newton equations of motion into relativistic equations
of motion. In this algorithm the law of variation of the mass is derived
by fixing the module of the velocity. In the relativistic mechanics of
the massive particle the pseudo-module of the four-vector of velocity is
equal to the speed of light. This gives an idea to use the algorithm
of variation of the proper mass within the framework of the relativistic
dynamics. However, as we have mentioned above, the variation of the
proper mass contradicts with the assumption that the Minkowski-force
has to be orthogonal to the four-velocity. Let us explore this situation
more in detail. Let Kµ be a Minkowski-force. Then

Kνuν = 0, (4.1)

whereas we suppose that the proper-mass is a variable. Denote the
variable proper-mass by m. Then from Eqs.(2.1) we obtain an equality

d

dτ
(m2gµνuµuµ) = 0.

That is to say, the expression within the brackets is a constant of motion

m2uµuµ = C.
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Consequently, the pseudo-module of four-velocity is not a constant of
motion, because

uµuµ =
C

m2
.

From these formulae we come to the following conclusion:
If four-force is the Minkowski-force then both the proper-mass and the
pseudo-module of four-velocity have to be constants, or the both have to
be variables.

Now, let us abandon the condition (4.1). We must keep in mind,
however, removing this main property of the Minkowski-force we indeed
abandon the usual framework of relativistic dynamics. Denote the four-
force by Fµ, for which the inequality holds true

Fνuν 6= 0. (4.2)

This four-force will produce work along the world-line, that is∫ a

b

(Fνdlν) 6= 0. (4.3)

Consequently, the four-kinetic energy

Ekin =
1

2m
gµνpµpµ, (4.4)

will change. Thus, the inequality (4.2) lead us out of the conventional
framework of the relativistic dynamics. Since all four of the components
of energy- momentum are kinematically independent, the theory is the
Newtonian-like dynamics in 4D Minkowski space. This is very dynamics
introduced by Stuckelberg and developed by Horwitz and Piron and col-
laborators (see, references). In order to describe a system in interaction,
it is necessary to consider states which are not restricted to the "mass
shell". Therefore it is postulated that the states of a particle are de-
scribed by eight independent variables xµ, pµ. The usual point of view
is that the motion is described by a relation between all these variables
which defines a trajectory on the phase space xµ, pµ. In the "off mass
shell" theory a parameter of the evolution τ is not a proper time of the
particle. Horwitz and Piron [9] interpreted this parameter as historical
time.

The canonical 4D-equations of motion are written as

d

dτ
pµ = Fµ, m gνµuν = pµ, uν =

dxν

dτ
. (4.5)
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These equations fall into the usual framework of the relativistic dynamics
as soon as the force Fµ is taken as a Minkowski-force. In Hamiltonian
form these equations are written as follows

dpµ

dτ
= − ∂H

∂xµ
,

dxµ

dτ
= +

∂H

∂pµ
, (4.6)

where H is the Hamiltonian of the system. Consider a canonical form
of this Hamiltonian

H =
1

2m
gµνpµpµ + V (xµ).

If the external Lorentz-scalar potential field V (xµ) is not trivial then
the kinetic energy Ekin is a variable. This means that the theory is "off
mass shell". One may try to return to the usual framework by using the
constraint

gµνuµuµ = c2. (4.7)

Obviously, this constraint in the external Lorentz-scalar potential field
V (xµ) has to be considered together with the possibility for the proper-
mass to be variable. In this way we arrive at the situation just explored
in the previous section for 3D case. On making use of the constraint (4.7)
from Eqs.(4.6) we derive an equation for the variation of mass parameter
m:

dp4

dτ
=

1
c
uµFµ, (4.8)

where
p4 := mc, Fµ := − ∂V

∂xµ
.

Further, denote the initial value of the mass at the initial moment τ = 0
by µ = m(τ = 0) and introduce a new evolution parameter s via the
relation

dτ

ds
=

m

µ
. (4.9)

Define the velocity and the momentum with respect to s:

wµ =
dxµ

ds
, pµ = µ gµνwν . (4.10)

The following relations hold true

wµ =
dτ

ds

dxµ

dτ
=

m

µ
uµ, pµ = µ gµνwν = m gµνuν . (4.11)
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Employing s as an evolution parameter we cast Eqs. (4.5) and (4.8) into
the following form (with 4.11)

d

ds
pµ =

m

µ
Fµ,

dp4

ds
=

1
cµ

gνµpνFµ. (4.12)

These equations imply the following integral of motion:

pνpν − p2
4 = C. (4.13)

The passage from Eqs.(4.6) to Eqs.(4.8) is similar to the passage from
non-relativistic equations to the relativistic one. Notice, Eqs.(4.8) and
(4.12) are equivalent to equations (4.6) with constraint (4.7) if only if
C = 0. In this way we come to the following relationship

pνpν = m2c2, (4.14)

which looks like as mass-shell equation, but now the mass m is a variable.
By substituting relationships (4.11) into (4.14) we get null 5D metric
interval

(cdτ)2 − (cdt)2 + (dr)2 = 0.

In addition to the case with C = 0, Eqs.(4.8),(4.12) admit also a constant
of motion different from zero, i.e. C 6= 0. This constant has to be equal
to the term pνpν −m2c2 at the initial moment τ = 0. That is,

C := pν(0)pν(0)− µ2c2.

This case corresponds to the non-trivial 5D interval

(cdτ)2 − (cdt)2 + (dr)2 = ds2.

Further, consider the variable p4 = mc as a penta-component of the
momentum: p4 = mc. In these terms Eqs.(4.10) are written as follows

d

ds
pµ =

1
µc

p4Kµ,
d

ds
p4 =

1
µc

gµνpµKν . (4.15)

Like for the case of relativistic particles, we introduce two class of par-
ticles characterized by the value of the constant of motion.
The first class (the class of penta-massless particles) is defined by the
condition (4.14). The second class (the class of penta-massive particles)
is defined by the relationship

pνpν − p2
4 = µ2c2. (4.16)

The relativistic massive particles form a subset of the class of penta-
massless particles.
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5 5D Lorentz-force equations for charged penta-particles

In this section we explore a motion of charged penta-particles in the
presence of 5D electromagnetic fields.

Before proceeding, let us recall a motion of the Newtonian particle
inside stationary magnetic field

dpk

dt
= e vl Bkl, (5.1)

where Bkl antisymmetric tensor of the magnetic flux density. The force
G = e vl Bkl is orthogonal to the three-velocity. We remark that the
magnetic field does not contribute to the change of the kinetic energy.
Now, consider Newton-Lorentz force with external electromagnetic fields,

d~p

dt
= e( ~E + [v × ~B]), ~p = m~v. (5.2a)

In this force the electric field contributes to the change of the kinetic
energy according to the law

1
2m

dp2

dt
= e( ~E · ~v). (5.2b)

The relativistic Lorentz-force is analogous to the magnetic field, whereas
the Stuckelberg-Horwitz-Piron 4D "off-shell" Lorentz-force [11] analo-
gous to 3D Newton-Lorentz force (5.2a).

In the framework of a covariant relativistic quantum theory, in which
the evolution of the system is parameterized by invariant world (histor-
ical) time, Saad, Horwitz, Arshansky [10] have shown that the require-
ment of local gauge invariance leads to five compensation fields. These
fields have been called pre-Maxwell fields.

Consider the "off-shell" Schrödinger equation

i
∂

∂τ
Ψ =

1
2m

pµpµΨ. (5.3)

This equation may be made locally gauge-invariant under the transfor-
mations

Ψ → exp(iqΛ(x, τ))Ψ,

through introduction of compensation fields. Land and Horwitz [11]
have formulated the Lorentz-force associated with the pre-Maxwell fields
fµ4, fνµ:

d

dτ
pµ = e fµ4 + e uνfνµ, pµ = mgµνuν . (5.4)
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This force generates changes in the 4D-kinetic energy according to the
law

1
2m

d

dτ
(pµpµ) = e fµ4u

µ. (5.5)

In the absence of the term e fµ4 Eqs.(5.3) are reduced into relativistic
Lorentz-force equations (2.3). In this case the Lorentz-force does not
produce a 4D-work, consequently, the 4D-kinetic energy is a constant of
motion and can be interpreted via proper mass of the particle.

The field tensor satisfies the field equations

∂βfαβ(x, τ) = ejα(x, τ).

Integrating the α = µ components of this equation on (−∞,∞) over
τ , with the condition that fµ4 vanishes at τ → ±∞, one recovers the
Maxwell equation [11]

∂νFµν(x) = eJµ(x).

The integration over τ has been called "concatenation" and provides the
link between the notion of an event along a world line and the notion
of a particle, whose support in space-time is the world line. The repre-
sentation of fαβ(x, τ) as the antisymmetric derivative of a five-field is
equivalent to the homogeneous equation

∂αεαβγδσfαβ(x, τ) = 0,

analogous to the homogeneous Maxwell equations.
In a manner similar to the way the 3D Newton-Lorentz equations

were transformed into relativistic Lorentz-force equations, the 4D "off
mass shell" Lorentz equations can be enlarged into penta-Lorentz-force
equations by variation of the mass parameter. With respect to s as
an evolution parameter the penta-Lorentz-force equations are written as
follows

d

ds
pα = e wβfβα, pα = µ gαβwβ , α, β = 0, 1, 2, 3, 4, (5.6)

where
fβα =

∂Aβ

∂xα
− ∂Aα

∂xβ
, (5.7)

and
pµ = µ gµνwν , (µ, ν = 0, 1, 2, 3), p4 = µc

dτ

ds
. (5.8)
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The last relationship in (5.8) admits re-formulation of Eqs.(5.6) with
respect to τ . This leads us to the following set of equations

d

dτ
pµ = e Fµ4 + e uνFνµ, (5.9a)

pµ = µ gµν
uν√

1− gµν
uνuµ

c2

. (5.9b)

Compare these equations with Eqs.(2.8). In particlularly, in the "static"
potential field for which there is no s dependence the penta-equations
take on the form

d

dτ
pµ = − ∂Φ

∂xµ
,

d

dτ
p4 = −uµ ∂Φ

∂xµ
. (5.10)

These equations imply two constants of motion:

(a) p2 − p2
4 = C, (b)E = cp4 + Φ.

The case C = 0 corresponds to the 5D massless particle, whereas the case
C = µ2c2 corresponds to 5D the massive particle, we have denominated,
respectively, by penta-massless and penta-massive particles.

Notice that the equations of motion for the penta-massless particle
written with respect to τ do not contain a mass parameter µ:

d

dτ
pµ = Fµ,

d

dτ
xµ =

pµ

p
, p =

√
pνpν .

6 Summary

We have started by outlining some peculiar features of the classical rel-
ativistic dynamics. In particular, we have explored the distinction be-
tween massive and massless particles. The actual proposed theory is
applied to charged particles with mass m0 and the charge e; such par-
ticles experience an electric/magnetic field and, thus, a Lorentz-force
coded into a Minkowski force term( with the consequent orthogonality
between velocity and acceleration). One of the important conclusions
of this section is that the relativistic condition of masslessness does not
oblige one to set the inertial mass of the particle to zero. Furthermore,
we have shown that the relativistic equations of the massless particle,
as well as the celebrated Einstein formula, can be derived within New-
tonian mechanics by variation of the inertial mass. In order to derive
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an evolution law for the mass we have fixed the module of the velocity
by the speed of light. In this way we derive the relativistic equations of
motion for the massless particle.

The Stueckelberg-Piron-Horwitz "off- mass-shell" equations play the
role, in Minkowski space, of Newtonian type equations. Relativistic
equations in higher dimension have been derived from these equations
with proper-mass variation by using the relativistic relationship for the
pseudo-module of four-velocity as a constraint. In this way we arrived
at the equations of the penta-massless particles. When an external force
is the Minkowski force the penta-massless particles give arise the rela-
tivistic massive particle. Like in the relativistic dynamics, beside the
class of penta-massless particles we have introduced also the class of
penta-massive particles.
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