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1 Introduction

Are gauge theories the ultimate means for the description of the dynam-
ics of matter or can these theories be explained by the action of still
more elementary entities?

Seventy years ago a first step in this direction was made by de Broglie.
In his theory of fusion de Broglie showed that classical electrodynamics
can be deduced by considering photons as composite particles, the con-
stituents of which are neutrinos, i.e., in this way electrodynamics is not
an elementary but an effective theory, [1],[2].

In the meantime nonabelian gauge theories were invented which in
general are only used on the quantum level, [3],[4]. Thus with respect to
their elementarity the same question can be posed as in the case of de
Broglie’s derivation of electrodynamics.

However, such a problem cannot be treated within de Broglie’s origi-
nal fusion theory. In order to reveal that current quantum field theories
of matter are effective theories, a quantum field theoretic version of de
Broglie’s theory of fusion is needed.

Such a model based on a nonlinear spinor field was developed in
the past decades, [5],[6],[7], and, in particular, nonabelian gauge field
quantum theories were derived in [8]-[14]. In this article an updated and
improved summary of these treatments will be given.

2 Algebraic representation of the spinor field

The algebraic representation is the basic formulation of the spinor field
model and the starting point for its evaluation. We give only some
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basic formulas of this formalism and refer for details to [5],[6], [7]. The
corresponding Lagrangian density should not be identified with similar
(effective) Lagrangians of nuclear physics and reads, see [6], eq. (2.52)

L(x):=
3∑

i=1

λ−1
i ψ̄Aαi(x)(iγµ∂µ −mi)αβδABψBβi(x) (1)

−1
2
g

2∑
h=1

δABδCDv
h
αβv

h
γδ

3∑
i,j,k,l=1

ψ̄Aαi(x)ψBβj(x)ψ̄Cγk(x)ψDδl(x)

with v1 := 1 and v2 := iγ5 . The field operators are assumed to be
Dirac spinors with index α = 1, 2, 3, 4 and additional isospin with index
A = 1, 2 as well as auxiliary fields with index i = 1, 2, 3 for nonperturba-
tive regularization. The algebra of the field operators is defined by the
anticommutators

[ψ+
Aαi(r, t)ψBβj(r′, t)]+ = λiδijδABδαβδ(r− r′) (2)

resulting from canonical quantization. All other anticommutators van-
ish.

If the adjoint spinors are replaced by formally charge conjugated
spinors

ψc
Aαi(x) = Cαβψ̄Aβi(x) (3)

a uniform transformation property with respect to Lorentz transforma-
tions can be obtained which leads with the index Λ to the introduction
of superspinors:

ψAΛαi(x) =
(
ψAαi(x);Λ = 1
ψc

Aαi(x);Λ = 2

)
(4)

Then the set of indices is defined by Z := (A,Λ, α, i).
For obtaining definite results, a state space is needed in which the dy-

namical equations resulting from (1) can be formulated. This is achieved
by the use of the algebraic Schroedinger representation. For a detailed
discussion we refer to [5],[6],[7].

To ensure transparency of the formalism we use the symbolic notation

(ψI1 ...ψIn) := ψZ1(r1, t)...ψZn(rn, t) (5)

with Ik := (Zk, rk, t). Then in the algebraic Schroedinger representation
a state |a〉 is characterized by the set of matrix elements

τn(a) := 〈0|A(ψI1 ...ψIn
)|a〉, n = 1...∞ (6)
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where A means antisymmetrization in I1...In.

By means of this definition the calculation of an eigenstate |a〉 is
transferred to the calculation of the set of matrix elements (6) which
characterize this state. For a compact formulation of this method, gen-
erating functionals are introduced and the set (6) is replaced by the
functional state

|A(j; a)〉 :=
∞∑

n=1

in

n!

∑
I1...In

τn(I1...In|a)jI1 ...jIn |0〉F (7)

where jI := jZ(r) are the generators of a CAR-algebra with correspond-
ing duals ∂I := ∂Z(r) which satisfy the anticommutation relations

[jI , ∂I′ ] = δZZ′δ(r− r′) (8)

while all other anticommutators vanish. With ∂I |0〉F = 0 the basis
vectors for the generating functional states can be defined. The latter
are not allowed to be confused with creation and annihilation operators
of particles in physical state spaces. According to (7) to each state |a〉 in
the physical state space we associate a functional state |A(j; a)〉 in the
corresponding functional space. The map is biunique and the symmetries
of the original theory are conserved. For details see [5],[6].

In order to find a dynamical equation for the functional states, we
apply to the operator products (5) the Heisenberg formula

i
∂

∂t
A(ψI1 ...ψIn

) = [A(ψI1 ...ψIn
),H]− n = 1...∞ (9)

where H is the Hamiltonian of the system under consideration.

If |0〉 as well as |a〉 are assumed to be eigenstates of H, then between
both states the matrix elements of (9) can be formed and subsequent
evaluation of these expressions leads to the functional equation

Ea
0 |A(j; a)〉 = [KI1I2jI1∂I2 −WI1I2I3I4jI1(∂I4∂I3∂I2+

AI4J1AI3J2jJ1jJ2∂I2)]|A(j; a)〉
(10)

with Ea
0 = Ea − E0 . For details of the derivation, see [5],[6].

The symbols which are used in (10) are defined by the following
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relations

KI1I2 :=iD
0
I1I(D

k∂k −m)II2 , WI1I2I3I4 := −iD0
I1IVII2I3I4 (11)

Dµ
I1I2

:=iγµ
α1α2

δA1A2δΛ1Λ2δi1i2δ(r1 − r2) (12)
mI1I2 :=mi1δα1α2δA1A2δΛ1Λ2δi1i2δ(r1 − r2) (13)

VI1I2I3I4 :=
2∑

h=1

gλi1Bi2i3i4v
h
α1α−2δA1A2δΛ1Λ2(v

hC)α3α4δA3A4δΛ31δΛ42(14)

δ(r1 − r2)δ(r1 − r3)δ(r1 − r4)
Bi2i3i4 :=1; i2, i3, i4 = 1, 2, 3

and the anticommutator matrices

AI1I2 := λi1(Cγ
0)α1α2δA1A2σ

1
Λ1Λ2

δi1i2δ(r1 − r2) (15)

So far this functional equation holds for any algebraic representation.
A special representation can be selected by specifying the corresponding
vacuum. This can be achieved by the introduction of normal ordered
functionals which are defined by

|F(j; a)〉 := exp[
1
2
jI1FI1I2jI2 ]|A(j; a)〉 =:

∞∑
n=1

in

n!
ϕn(I1...In|a)ji1 ...jIn

|0〉F

(16)
where the two-point function

FI1I2 := 〈0|A{ψZ1(r1, t)ψZ2(r2, t)}|0〉 (17)

contains an information about the groundstate and thus fixes the repre-
sentation.

The normal ordered functional equation then reads, see [5], Theorem
3.13

Ea
0 |F(j; a)〉 = HF (j, ∂)|F(j; a)〉 (18)

with

HF (j, ∂):=JI1KI1I2∂I2 +WI1I2I3I4 [jI1∂I4∂I3∂I2 − 3FI4KjI1jK∂I3∂I2

+(3FI4K1FI3K2 +
1
4
AI4K1AI3K2)jI1jK1jK2∂I2 (19)

−(FI4K1FI3K2 +
1
4
AI4K1AI3K2)FI2K3JI1jK1jK2jK3 ]
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Equation (19) is the algebraic Schroedinger representation of the
spinorfield Lagrangian (1), written in functional space with a fixed al-
gebraic state space. With respect to the physical interpretation of this
formalism two comments have to be added:

i)The algebraic Schroedinger representation is the formulation of the
Hamilton formalism for quantum fields independently of perturbation
theory. Nevertheless for the justification of this procedure the findings
of perturbation theory are indispensible.

From perturbation theory one learns that during the time interval
where mutual interactions between the particles take place, these par-
ticles cannot be kept on their mass shell. This means that in order to
get nontrivial interactions one is not allowed to enforce the particles on
their mass shell all the time.

The formal treatment of perturbation theory starts with the Schroedinger
picture, i.e., the Hamilton formalism which explicitly avoids the on shell
fixing of particle masses. Hence if this treatment of the perturbation
theory is extended to the case of composite particle interactions, the use
of the Hamilton operator leads to the formalism introduced above.

Then one will ask whether in consequence of this procedure relativis-
tic covariance is completely lost. In perturbation theory this is not the
case, because the equivalence of the Hamilton formalism and the co-
variant formulation can be shown. A similar result can be obtained for
composite particle theory in algebraic Schroedinger representation: The
corresponding effective theories for composite particle reactions can be
likewise covariantly formulated.

ii) In general, in the literature, spinor field models, like the NJL-
model in nuclear physics, are considered as effective, low energy theories.
If spinor field models are to play a more fundamental role, they need a
special preparation to suppress divergencies. In the case under consider-
ation this preparation is expressed by the introduction of auxiliary fields
with constants λi in (1),(2) and (14),(15) which are designed to generate
a nonperturbative intrinsic regularization of the theory.

This regularization is closely connected with the probability interpre-
tation of the theory. As the λi are indefinite an indefinite state space of
the auxiliary fields results. Hence these auxiliary fields are unobservable
and a special definition of a corresponding physical state space is needed.
This definition is identical with the intrinsic regularization prespription
and leads in turn to probability conservation in physical state space.
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Furthermore it can be shown that the latter property can be transferred
to the corresponding effective theories themselves. For details we refer
to the literature [7]

3 Bosonization in functional space

For showing the non-elemental character of gauge theories, we treat the
simple case of collective modes where bound states are represented by
fermion pairs.

In nuclear physics this treatment has a long history which in a general
way can be summarized as follows: Given a fermionic Hamiltonian in
Fock space, a transformed Hamiltonian has to be derived which describes
the system dynamics in terms of an equivalent independent Fock space
of boson operators associated to the fermion pairs, cf. [15],[16]

In the case under consideration the algebraic Schroedinger represen-
tation of the spinor field replaces the ordinary Schroedinger equation in
Fock space and the corresponding equations are defined by a functional
equation (18),(19).

A transformation of the latter functional equation to describe fermion
pairs leads to a corresponding bosonic functional equation in algebraic
Schroedinger representation. For this case exact mapping theorems were
derived in [17],[18] and [13]. In [13 ] the functional mapping formalism
was formulated in close analogy to ordinary bosonization in Fock space
by Kerschner.

In the algebraic Schroedinger representation the central formula
which defines the map into the boson representation was originally given
by the expansion, see [5],[6].

ϕn(I1...I2n|a) =
1

(2n)!
%(k1...kn)C{I1I2

k1
...C

I2n−1I2n}
kn

(20)

where the wave functions CII′

k are single time functions which result from
fully covariant wave functions ϕk(x1, x2) by formation of the symmetric
limit t1 → t, t2 → t, and by separation into parts which describe the wave
functions of collective variables, see Section 4. So the wave functions
CII′

k reflect in their structure their relativistic origin by containing the
relativistic deformations, but no genuine energy eigenvalue equation can
be derived for them. According to ii) the state space of the auxiliary
fields is indefinite, see [5],[6].
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From these facts it follows that in general C∗
k is not the dual of Ck.

In contrast to the Fock space mapping methods in nuclear physics, it
is thus necessary to introduce dual states Rk

II′ , [8], where both types of
states are assumed to be antisymmetric functions

CII′

k = −CI′I
k ; Rk

II′ = −Rk
I′I (21)

and where the relations ∑
I1I2

CI1I2
k Rk′

I1I2
= δk′

k (22)

∑
k

CI1I2
k Rk

I′1I′2
=

1
2
(δI1

I′1
δI2
I′2
− δI1

I′2
δI2
I′1

) (23)

have to be satisfied by definition, provided the wave functions {Ck} are
a complete set of antisymmetric functions in I1 − I2 -space.

In order to study the equivalence of both sides of (20), we study the
inversion of (20) by multiplying (20) with the corresponding duals and
summing over I1...I2n. This gives

Rk1
I1I2

...Rkn

I2n−1I2n
ϕ(I1...I2n|a) = %̃(k1...kn|a) (24)

with
%̃(K1...kn|a) = Sk1...kn

k′1...k′n
%(K ′

1...k
′
n|a) (25)

where

Sk1...kn

k′1...k′n
=

1
(2n)!

∑
I1...I2n

Rk1
I1I2

...Rkn

I2n−1I2n
C
{I1I2
k′1

...C
I2n−1I2n}
k′n

(26)

The latter tensors have projector properties

Sk1...kn

k′1...k′n
S

K′
1...K′

n

l1...ln
= Sk1...kn

l1...ln
(27)

Although (20) is admitted, see Prop. 4.2 in [5], a bijective mapping
for the functions appearing in (20) can only be achieved if (20) is replaced
by

ϕn(I1...I2n|a) =
1

(2n)!
%̃(k1...kn|a)C{I1I2

k1
...CI2n−1I2n} (28)

Then according to (27) formula (24) is indeed the inverse of (28).
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In the next step we define the generating functional state

|B(b|a)〉 =
∞∑

n=1

1
n!
%̃(k1...kn|a)bk1 ...bkn

|0〉B (29)

with functional creation operators bk and the functional Fock vacuum
|0〉B , where with the duals ∂b

k of bk the commutation relations

[bk, ∂b
k′ ]− = δkk′ (30)

are assumed, while all other commutators vanish.

Furthermore for later use we define the projektor

P =
∞∑

n=1

1
n!
bl1 ...bln |0〉BS

l1...ln
l′1...l′n

B〈0|∂b
l′n
...∂b

l′1
(31)

which leaves the boson state (29) invariant

P|B(b|a)〉 = |B(b|a)〉 (32)

Therefore by the definition (16) of the fermion functional state, by
the definition of the mapping relation (28) and the definition of the boson
functional state (29) a bijective map between (16) and (29) is established.

It remains the task to transform the eigenvalue equation (18) for the
fermion state (16) into a corresponding eigenvalue equation for the boson
state (29).

The first step must be to replace the mapping definition in config-
uration space (28) by a corresponding mapping definition in functional
space.

By generalizing the Usui- transformations of nuclear physics, [16],
the following definition was introduced by Kerschner, [13]:

T (b, ∂f ) :=
∞∑

n=1

1
n!
bk1 ...bkn

|0〉BRk1
I1I2

...Rkn

I2n−1I2n F 〈0|∂f
I1
...∂f

I2n
(33)

which leads to the mapping definition

|B(b|a) = T (b, ∂f )|F(j|a)〉 (34)
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and owing to the general definition of duals (22),(23) the inverse relation
of (34) reads

|F(j|a)〉 = S(j, ∂b)|B(b|a)〉 (35)

with

S(j, ∂b) :=
∞∑

n=1

1
(2n)!

jI1 ...jI2n
|0〉FCI1I2

k1
...C

I2n−1I2n

kn
B〈0|∂b

kn
...∂b

k1
(36)

In contrast to nuclear physics the inverse operator of T is not its
Hermitean conjugate, but (36).

For these operators the following relation can be derived, [13 ]:

T (b, ∂f )S(j, ∂b) = P (37)

and
S(j, ∂b)T (b, ∂f ) = 1(j, ∂f ) (38)

Using these relations equation (18) can be mapped into equation

Ea
0 |B(b|a)〉 = HB(b, ∂b)|B(b|a)〉 (39)

for the boson functional states (29) with

HB(b, ∂b) = T (b, ∂f )HF (j, ∂f )S(j, ∂b) (40)

To evaluate equation (40) the commutator between T and HF has
to be derived. This can be achieved by the combination of two special
commutation relations, [13]:

T (b, ∂f )jI = 2Rk
IKbkT (b, ∂f )∂f

K (41)

and
T (b, ∂f )∂f

I ∂
f
K = CKI

k ∂b
kT (b, ∂f ) (42)

and repeated application. Similar commutator relations were evaluated
and applied in nuclear physics, [15],[16]

For the case under consideration with the functional energy operator
(19) one obtains

Ea
0 |B(b|a)〉:={Kkk′bk∂

b
k′ +W kll′

1 bk∂
b
l ∂

b
l′ +W kk′

2 (bk + Γll′

kk′′blbl′∂k′′)∂b
k′ +

W kk′l
3 (bk + Γl′l′′

kk′′bl′bl′′∂
b
k′′)bk′∂

b
l + (43)

W k1k2
4 (bk1 + Γl1l′1

k1k′1
bl1bl′1∂

b
k′1

)(bk2 + Γl2l′2
k2k′2

bl2bl′2∂
b
k′2

)}|B(b|a)〉
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where the various tensor coefficients are defined by the following relations

Kkk′ :=2KI1I2R
k
I1KC

I2K
k′ (44)

W kll′

1 :=2UI1I2I3I4R
k
I1KC

I4K
l CI2I3

l′

W kk′

2 :=−6UI1I2I3I4FI4IR
k
I1IC

I2I3
k′

W kk′l
3 :=4UI1I2I3I4(3FI4IFI3I′ +

1
4
AI4IAI3I′)Rk

I1IR
k′

I′KC
I2K
l

W k1k2
4 :=−4UI1I2I3I4(FI4IFI3I′ +

1
4
AI4IAI3I′)FI2I′′R

k1
I2IR

k2
I′I′′

Γll′

kk′ :=−2CI1I2
k Rl

I2I3
CI3I4

k′ Rl′

I4I1

The effective boson functional equation (43) is identical with those
equations in [17],[18], which were earlier derived without using the for-
malism introduced above.

4 Boson states and their duals

The basis of the fermion-boson map is the definition of a set of boson
states and their duals (21) which have to be explicitly known. A suitable
starting point for the derivation of this set is given by the set of solu-
tions of corresponding generalized de Broglie-Bargmann-Wigner equa-
tions. These equations are relativistically invariant quantum mechanical
many-body equations with nontrivial interaction, selfregularization and
probability interpretation and result from the general field theoretic for-
malism.

In accordance with de Broglie’s fusion theory abelian and nonabelian
gauge bosons are assumed to have a partonic substructure with two
fermionic constituents. For this case exact vector boson states can be de-
rived as solutions of the generalized de Broglie-Bargmann-Wigner equa-
tions.

The quantum numbers of these states can be calculated and lead to
a SU(2) ⊕ U(1) classification with fermion number f = 0. The com-
plete set of solutions of these equations contains apart from bound state
solutions also scattering state solutions. For heavy parton masses the
scattering states decouple from the bound state dynamics and need not
to be discussed here. Furthermore in [11],[12] the dynamics of a com-
bined treatment of all possible boson bound states was studied, and it
was shown that one is allowed to treat the dynamics of the set of abelian
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and nonabelian vector bosons separately from all other solutions. Hence
we can confine ourselves to the treatment of these vector bosons only.

With respect to the explicit form of the exact vector boson states we
refer to the literature [19],[20],[21]. In its general form these functions
are given by the following expression

ϕ2 := T a
κ1κ2

exp[−ik(x1 + x2)/2]Aµ
a(k)χµ(x1 − x2)i1i2

α1α2
(45)

with k := four-momentum of the boson, and T j superspin-isospin ma-
trices. This function transforms as a relativistic spin tensor and with

Fµν
a (k) :=

i

2
Aµ

ak
ν
as{µν} (46)

it can be decomposed into two parts

ϕ2 = Fµν
a (k)T a

κ1κ2
ϕµν(x1, x2|k)i1i2

α1α2
+Aµ

a(k)T a
κ1κ2

ϕµ(x1, x2|k)i1i2
α1α2

(47)

We interprete the coefficients Fµν
a (k) and Aµ

a(k) as the field strength
tensor and the vector potential of the vector boson states. This field
strength tensor is completely fixed for single composite vector boson
states (45) which are exact solutions of the corresponding generalized
de Broglie-Bargmann-Wigner equations. But, if we switch on the full
dynamics which is described by the functional energy operator (19) and
which leads to interactions between the vector boson states, these states
will be deformed under the influence of their interactions. In order to
express this deformation we assume that the coefficient functions A and
F become the field variables of the effective theory. Hence for the map
we consider the functions ϕµν and ϕµ as independent quantities.

In accordance with Section 3, for the transition from the fermion dy-
namics to the effective boson dynamics only the single time wave func-
tions are admitted. If the symmetrical limit of t1 and t2 to a single
time t is performed, this limit preserves the antisymmetry of the wave
functions and leads to the set of independent single time boson functions

CI1I2
q := {T a

κ1κ2
ϕµν(r1, r2|k)i1i2

α1α2
, T a

κ1κ2
ϕµ(r1r2|k)i1i2

α1α2
} (48)

where the set of matrices which represent the SU(2) ⊕ U(1) states are
explicitly given in [19],[20],[21]. Corresponding to these definitions we
specify the general set of boson generators and their duals by

{bk} := {bµ,a(k), bµν,a(k)}, {∂b
k} := {∂µ,a(k), ∂µν,a(k)} (49)
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Furthermore for the evaluation of the fermion-boson mapping the
duals to the set of boson states (48 ) have to be constructed. The general
formula for this construction is given in [22]. For brevity we refer for
details to the literature.

5 Evaluation of the map

To grasp the physical content and meaning of equation (43), it is nec-
essary to separate the terms representing the field dynamics from those
terms which result from field quantization. In the original functional
equation (10) the latter terms are given by the last term on the right
hand side of (10) containing only the anticommutators AII′ .

If by the normal transformation (16) a special vacuum is selected,
the resulting equation (18) with energy operator (19) contains in the
last two terms of (19) superpositions of anticommutators and propa-
gators. Obviously these terms have to be interpreted as generalized
quantization terms, where the anticommutators (15) which govern and
define the abstract field operator algebra are modified by the influence
of the vacuum and in addition by the influence of the composite particle
structure i.e., by the influence the special representation under consid-
eration. This means: for an effective theory one cannot expect that for
the corresponding effective fields exact canonical commutation relation
hold.

The influence of the vacuum and of the composite particle structure
on the quantum properties of the effective fields as expressed in the
terms W3 and W4 needs a special investigation which, for instance, was
performed in [5], Section 6.5. For brevity we refer to this investigation
and consider in this paper only the map of the terms describing the
dynamics of the system. In this case the effective functional equation
(43) is reduced to the equation

Ea
0 |B(b|a)〉d:={Kkk′bk∂

b
k′ +W kll′

1 bk∂
b
l ∂

b
l′ (50)

W kk′

2 (bk + Γll′

kk′′blbl′∂
b
k′′)∂

b
k′}|B(b|a)〉d

where |F(b|a)〉d is the functional state exclusively referred to the dynam-
ical terms. If the corresponding equation is evaluated then one gets an
information how the original fermion system dynamics is mapped into
the effective boson system dynamics.

If by means of the set of boson functions (48) and their duals the
coefficient functions (44) of the effective theory are calculated and sub-
stituted into (43), one obtains the explicit form of this effective boson



Are Abelian and Nonabelian Gauge Field . . . 907

theory. It is, however, not possible to perform this mapping in a gauge
invariant way:

The physical state space of the original fermion theory is positive
definite, [7], and allows a probability interpretation and conservation,
[7]. It can be shown that this property of the original fermion theory is
transferred to the effective boson theory by exact mappings, [7]. On the
other hand in various gauges the phenomenological boson state spaces
are indefinite. In consequence a mapping from the fermion state space
into these indefinite boson state spaces would lead to contradictions.
Hence only a mapping into gauges with positive boson state spaces is
allowed which ends up in gauge fixing. Indeed the formalism itself en-
forces the use of the temporal gauge which is positive definite. In the
following all calculations are done in this gauge.

Under these premises one obtains for (50) the following expression,
see [10],[14]

Heff
b :=i

4
5

∫
d3rbAl,a(r)∂F

l0,a(r) + i

∫
d3rbFi0,a(r)εijkεklm∂j(r)∂F

lm,a(r)|l>m

−i
∫
d3rbFij,a(r)εijkεklm∂l(r)∂F

m0,a(r)|i>j (51)

+iG
∫
d3rεabcεijkεklmb

F
ij,a(r)∂F

l0,b(r)∂
A
m,c(r)|i>j

+iG
∫
d3rεabcεijkεklmb

F
l0,a(r)∂F

ij,b(r)∂
A
m,c(r)|i>j

where εabc are the structure constants of the group SU(2) and and b(r)
and ∂(r) are the Fourier transforms of the set (49). In performing this
evaluation the last term of (50) was estimated to give a vanishing con-
tribution compared with the leading terms in (50). Furthermore the
coupling constant of the original fermion theory was fixed in order to
compensate a mass renormalzation term which leads to a vanishing ef-
fective mass of the vector bosons.

In this form (51) can only be compared with the corresponding phe-
nomenological counterpart in functional formulation which is not a fa-
miliar expression. Thus we apply some rearrangements which clarify the
physical content of (51).

Due to the time-translational invariance of the algebraic Schroedinger
representation the effective energy operator (51) and the generating func-
tional are referred to an arbitratry time t. For the further evaluation of
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(51) it is important that all quantities are explicitly referred to this
time, i.e., we replace bk(r) and ∂b

k(r) by bk(r, t) and ∂b
k(r, t) in (51). In

this case in analogy to quantum mechanics the time dependent alge-
braic Schroedinger representation can be derived from (50). It reads in
functional formulation, [5],[6]:

Heff
b |B(b|a)〉 = i

∫
d3r[bk(r, t)

∂

∂t
∂b

k(r, t)|B(b|a)〉 (52)

Furthermore we decompose the field strength generators into non-
abelian electric and magnetic fields by the following definitions, [10],[14]:

bEi,a(r, t) := bFi0,a(r, t) ∂E
i,a(r, t) := ∂F

i0,a(r, t) (53)

bBi,a(r, t) := εijkb
F
jk,a(r, t) ∂B

i,a(r, t) := εijk∂
F
jk,a(r, t)

and substitute these definitions into (58). Then it is easily seen that one
obtains a solution of equation (52) if the following equations are satisfied
by the common state |B〉

∂

∂t
∂A

i,a(r, t)|B〉:=−∂E
i,a(r, t)|B〉 (54)

∂

∂t
∂E

i,a(r, t)|B〉:=[εijk∂j∂
B
k,a(r, t) +Gεabcεijk∂

A
j,b(r, t)∂

B
k,c(r, t)]|B〉

∂

∂t
∂B

i,a(r, t)|B〉:=[−εijk∂j∂
E
k,a(r, t)−Gεabcεijk∂

E
j,b(r, t)∂

A
k,c(r, t)]|B〉

In order to illustrate the meaning of these functional equations, we
consider the classical limit which corresponds to the neglection of higher
order quantum correlations in statistical mechanics. This limit is ex-
pressed by the ansatz, [5],[6],[10],[14]

|B〉 := exp[Z(b)]|0〉 (55)

with

Z(b) :=
∑
X

∑
k,a

∫
d3rXk

a (r, t)bXk,a(r, t) (56)

where X is given by A, E and B.

If this ansatz is substituted into (54), one gets a solution of these
functional equations if the following classical equations for the ampli-
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tudes are satisfied:

Ȧa=−Ea (57)
Ėa=∇×Ba +GεabcAb ×Bc

Ḃa=−∇×Ea −GεabcEb ×Ac

where for brevity we suppressed the arguments of these fields.

In phenomenological theory the dynamical equations are supplied by
constraints. These constraints can be directly derived from the system
(57). If this is done our result can be summarized by the following system
of equations

Ȧa=−Ea (58)
Ėa=∇×Ba +GεabcAb ×Bc

while the constraints are given by

Ba=∇×Aa +
1
2
GεabcAb ×Ac (59)

0=∇ ·Ea +GεabcAb ·Ec

Equations (58) and (59) represent the exact formulation of a non-
abelian SU(2) gauge field theory expressed in terms of its canonical
variables in temporal gauge. An analogous derivation can be performed
for the abelian case which for short will not be explicitly given here. For
a discussion of the quantization terms we refer to [5], section 6.5.

In deriving this result, apart from the quantization terms, the last
term in (50) can be estimated and neglected with respect to the other
leading terms, if the parton masses are sufficiently large. So one can
argue that by weak mapping one gets a version of this nonabelian theory
which in the high enery range loses its gauge invariance owing to this
small correction term.

Is therefore the elemental character of such gauge theories saved?
Surely not, because even the most ardent adherent of the elemental char-
acter of these gauge theories must admit that the high energy range will
never be so well explored as to secure the valitidy of such gauge theories
up to infinite large energies.
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