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Current status of Yang’s theory of gravity
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ABSTRACT. The historical route and the current status of a curvature-
squared model of gravity, in the affine form proposed by Yang, is briefly
review. Due to its inherent scale invariance, it enjoys some advantage
for quantization, similarly as internal Yang-Mills fields. However, the
exact vacuum solutions with double duality properties exhibit a ‘vac-
uum degeneracy’. By modifying the duality via a scale breaking term,
we demonstrate that only the Einstein equations with induced cosmo-
logical constant emerge for the classical background, even when coupled
to matter sources.

1 Introduction

In 2004 we commemorate not only the 50th anniversary of the Yang-Mills
equation [46] but also the 30th anniversary of Yang’s theory of gravity
[45]. The historical route to the SU(2) gauge theory is beautifully laid
out by Mills [30], with several ramifications [28] mainly due to the paper
of Schrödinger [35], in which the compact ‘Clifform’ formula [25] for the
Riemannian curvature anticipated the concept of gauge curvature, see
also the letter of the late Bob Mills to one of the authors reprinted in
Appendix A.

Here we will concentrate on the gravitational aspect: In 1974 Yang
[45] considered the possible replacement of Einsteins general relativity
(GR) by an affine gauge theory with a Yang-Mills type action. In fact,
curvature-squared Lagrangians had been considered before, first in 1919
by Weyl [43] with the emphasis on scale invariance, and then later by
Stephenson [38], Higgs [12], as well as Kilmister and Newman [15].
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When written in differential forms, the Stephenson-Kilmister-Yang
(SKY) Lagrangian is given by

VSKY = −1
2
Rαβ ∧ ∗Rαβ , (1)

cf. Appendix B and C for the notation [11] which follows closely Car-
tan’s exterior calculus. The short-time initial value problem of Yang’s
equations

D ∗Rαβ = 0 (2)

is well-posed [7]. Moreover, it does not depend on any length scale,
i.e. it is scale invariant as envisioned by Weyl [44] and therefore a good
starting point for quantization. The complexified version of the telepar-
allelism equivalent of Einstein’s GR has also received a Yang-Mills type
reformulation [24, 26], but will not be considered here.

Due to its scale invariance, Yang’s theory can be regarded as a funda-
mental theory of (quantum) gravity in the high-energy limit [10], with-
out invoking extra dimensions or supersymmetry, cf. Ref. [14]. In
this paper we investigated its classical limit, corresponding to the most
probable, extremal ‘trajectories’ in the Feynman path integral. Here,
these are classical configurations with self- or anti-self dual curvature.
In order to lift this ‘vacuum degeneracy’, we consider a modified duality
ansatz which explicitly breaks scale invariance. For torsionless configu-
rations, we demonstrate that only Einstein’s GR, consistenly coupled to
the symmetrized energy-momentum current of matter fields, surface as
low-energy (long range) effective theory.

2 Selfdual SKY gravity

It is rather instructive to supplement the SKY Lagrangian by the topo-
logical Euler term (30) as a boundary term, i.e.,

V
(?)
SKY=−1

2
Rαβ ∧ ∗Rαβ −

(−1)s

2
Rαβ ∧R(?)

αβ

=−1
4

(
Rαβ + ∗R

(?)
αβ

)
∧ ∗

(
Rαβ + ∗Rαβ(?)

)
, (3)

where we distinguish between the Hodge dual ∗ and the Lie dual (?) in
a space(-time) of signature s. It is obvious from the equivalent binomial
form of the Lagrangian that anti-selfdual solutions [21]

Rαβ = − ∗R
(?)
αβ (4)
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i.e., Einstein spaces, annihilate the corresponding partially topological
action, whereas the selfdual spaces

Rαβ = ∗R
(?)
αβ (5)

i.e. Thompson spaces [39], are extrema. Both satify Yang’s equation (2)
due to the Bianchi identity (27) for the Lie dual of the curvature. This
‘vacuum degeneracy’ of the ‘Yang-Mielke’ theory is discussed in more
detail in Ref [41].

Concentrating on topological terms such as those of Pontrjagin (21)
and Euler (30), related self–dual modifications are more recently advo-
cated as topological 4D selfdual gravity by Nakamichi et al. [31]. There,
self- or anti-selfdual solutions are ‘living’ on Einstein spaces, as well. The
addition of the Pontrjagin term with respect to the Riemannian curva-
ture R{}

αβ and the axial torsion one-form A := ∗(ϑα ∧ Tα) is motivated

by the the axial anomaly 〈dj5〉 = 2im〈ψ ∗γ5ψ〉 −
(
R
{}
αβ ∧ R{}αβ + 1

2dA∧
dA
)
/48π2 in the coupling to Dirac fields ψ, cf. [16].

3 Gravitational gauge field equations

Let us slightly generalize our gemetrical framework: The total action
of interacting matter and gravitational gauge fields is assumed to be a
functional of suitable matter fields Ψ and of the metric gαβ , the coframe
ϑα, as well as the linear connection Γα

β as geometrical variables. Besides
the Euler-Lagrange equation δL/δΨ = 0 for matter, their independent
variations yield the following nonlinear field equations [11]:

DHα − Eα=Σα, (1st) (6)
DHα

β + ϑα ∧Hβ=∆α
β . (2nd) (7)

In general, the gauge field momenta are defined by the two–forms:

Hα := − ∂V

∂Tα
, and Hα

β := − ∂V

∂Rα
β
. (8)

The translational momenta Hα have dimension [length]. In addition to
the material currents of energy–momentum Σα := ∂L/∂ϑα and dynam-
ical hypermomentum ∆α

β := ∂L/∂Γα
β , generalizing the spin current

three-form ταβ = ∆[αβ] there occur the three–form of energy–momentum

Eα := ∂V /∂ϑα = eαcV + (eαcT β) ∧Hβ + (eαcRβ
γ) ∧Hβ

γ (9)
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of the gravitational gauge fields themselves. Note that Eα is the gener-
alization of the usual Einstein current three-form Gα := R{}βγ ∧ ηαβγ/2
which is dual to the usual Einstein tensor Gij := Ric

{}
ij − 1

2gij . In exte-
rior form notation, the symmetric Ricci tensor is the holonomic version
of the zero-form Ricαβ := (−1)s ∗(R(α

δ ∧ ηδ|β)).
The 0th field equation arising from the variation of the metric gαβ

is omitted here because it is known to be redundant ‘on shell’, i.e., once
the matter equation is fulfilled.

3.1 Quadratic curvature Lagrangians

In the restricted Poincaré gauge framework, the most general quadratic
curvature Lagrangian reads

VQR=−1
2
Rαβ ∧Hαβ ,

Hαβ :=− ∗

(
6∑

N=1

b(N)
(N)Rαβ

)
, (10)

for which the propagating modes and its particle content has been de-
termined by Sezgin and van Nieuwenhuizen [36], cf. Ref. [17].

In metric-affine extensions [11], there are not 6 but 11 irreducible
pieces: Five more quadratic terms have been proposed by Esser [5] in
an interesting decomposition. However, they may be partially related
to the irreducible components of the topological Pontrjagin and Euler
invariants. For instance, the Ricci squared term (27) of Ref. [42] is
known [4] to be part of the Euler invariant (30). From the correspond-
ing 2nd Noether identity there arises the generalized Bach-Lanczos iden-
tity (A.3.7) of Ref. [11] which relates some of the a priori independent
quadratic curvature pieces in the first of the two vacuum field equation
as equivalent terms.

4 Classical GR from modified double duality

In order unfold the classical correspondence of quadratic curvature La-
grangians to GR, let us now consider a variational principle with the
constraint of vanishing torsion, consistently implemented by Lagrange
multipliers:

ṼQR = VQR + λα ∧ Tα . (11)

Then obviously Tα = 0 emerge and the 2nd field equation (7) amounts
to an algebraic equation for the Lagrange multiplier two-form λα. After
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a resolution, it converts the 1st field equation (6) into (5.8.25) of Ref.
[11], i.e.

2D
(
eβcDHαβ −

1
4
ϑαe

γceδcDHγδ

)
− Eα = Σα −Dµα , (12)

where µα = 1
4
∗j5 ∧ ϑα is the spin-energy potential. In the case of Dirac

spinors, it is dual to the axial current j5 := ψγ5
∗γψ, cf. Ref. [27].

Let us consider now the modified double duality ansatz

Hαβ(∗∗) = θ?
LR

(?)
αβ +

θ∗T
2`2

ηαβ (13)

for the rotational field momenta [22, 24, 47], where θ∗T, and θ?
L are di-

mensionless constants related to the individual coupling constants in the
θ–type boundary terms (29) and (30). (The instanton solutions of Yang’s
theory of gravity, classified [21] already 1981, are a special case of the
ansatz (13) for the choice θ∗T = 0 and θ?

L = ∓1.)

Since DR
(?)
αβ ≡ 0 and Dηαβ = 0 in a Riemannian spacetime, the

higher derivative Cotton type three-form in (12) drops out. Moreover,
the Lie dual R(?)

αβ of the curvature does not contribute in (9 ), due to the
Bach-Lanczos identity (A.3.7) of Ref. [11] for Riemannian spacetimes.

Then we are left with (5.8.29) of Ref. [11], i.e.

−Eα =
θ∗T
2
R{}βγ ∧ ηαβγ − θ∗TΛθ ηα = `2 σα . (14)

For θ∗T = 1 we obtain the classical Einstein equations

Gα − Λθ ηα = `2 σα (15)

for the Riemannian background with the symmetric Belinfante-Rosenfeld
three-form σα := Σα −D{}µα as source.

5 Discussion

Our main result is that the modification of the double duality relation
(13) eliminates the ‘vacuum ambiguity’ for the exact solutions of SKY
gravity, such that only Einstein spaces remain as classical background.
Due to the explicit appearance of a length scale 〈ϕ〉 ∝ 1/` in the ansatz
(13), it is suggestive to associate this with a (sponteneous) symmetry
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breaking of the scale or Weyl invariance of the original Lagrangian (10),
for instance in a model [10] dynamically coupled to a dilaton field ϕ, cf.
Ref. [3]. Then an induced cosmological constant

Λθ = − 3θ∗T
2`2(θ?

L + b6)
(16)

of microscopic origin [22] is unavoidable with an interesting (Anti-) de
Sitter background, similarly as in the intriguing AdS/CFT correspon-
dence.

The proposed duality could be extremely important for the path inte-
gral approach to quantum gravity where the quantum-mechanical tran-
sition amplitude

∫
DΓ exp

[
−
∫
V

(?)
SKYd

4x/~
]

is evaluated in an imaginary
‘spacetime’ with Euclidean signature, cf. Ref. [23]. For anti-selfdual
SKY gravity, instanton type configurations [6, 13] near the classical ones,
i.e. Einstein spaces, are more probable then the ‘spurious’ Thomson
spaces, as one would expect naively. For the modified duality with a
breaking of scale invariance, the transition amplitude peaks at classi-
cal Einstein spaces only. Alternatively, in a four-dimensional Yang-Mills
theory gauging the de Sitter group [20, 34], scale invariance gets spon-
taneously broken by a pseudo-Goldstone type ‘radius vector’ [40], odd
under CP , in order to recover the Hilbert-Einstein action plus the Euler
term.

From the work of Stelle [37] we know that the curvature squared
gravity in Riemannian spacetime is perturbatively renormalizable but
plagued with ghost [19]. However, by absorbing the quadratic Weyl
curvature part of (1) in the Wess-Zumino action, these negative-metric
states can be removed dynamically [8] and unitarity restored.

Thus it seems that there is still room for a quantization program
based on Yang’s theory of gravity, departing, in a gauge covariant ap-
proach, from the nilpotency of the corresponding BRST charges [29] or
from superconnections [32].
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Appendix A: A letter of Robert Mills

R.R. 1, Box 431
W. Charleston VT

July 25, 1989

Dr. Eckehard W. Mielke
Universität zu Köln
Institut für Theoretische Physik
Zülpicher Str. 77
D-5000 Köln 41
Federal Republic of Germany

Dear Dr. Mielke:
I was very please to get your letter of July 5, which reached me here

a few days ago. I appreciate very much your comments on my paper on
gauge fields in AJP.

The paper was intended, as I’m sure you can tell, more as an intro-
duction to the subject than as a history and, as you can also tell, I’m not
much of an historian. I learn my history by reading other peoples’ books,
and not by tracing back to original sources! It is therefore a pleasure to
me to get some of the benefit of your knowledge of the history, specially
from the European perspective.

I was well aware of the fact that Hilbert was Noether’s mentor and ad-
vocate at Göttingen, but I had not appreciated the interactions between
them that must have played an important role in the development of the
famous theorem, nor the nature and degree of Klein’s influence. I was in
particular unaware of Klein’s “Erlanger Programm”, and would like to
know more about it. My German is almost nonexistent – is “Erlanger”
related to “erlangen”, or is it a proper noun?

I have struggled through a couple of the relevant passages of your
paper with Hehl that you kindly sent me, and what I could uncover
looks very interesting. I haven’t been able to understand Schrödinger’s
1923 idea. It sounds from what you say as if he simply observed that the
quantization of action is equivalent to a quantization of a log Ω in units
of hcγ/e. Does he then go on to speculate on γ being imaginary and Ω
being complex? In this pre-Schrödinger equation context I should think
that would be very radical – the most noteworthy thing about the idea.
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I am particularly intrigued by your comments about Schrödinger’s
1932 paper, which you mentioned briefly in the paper. I shall look it up
when I get back to civilization in September. Was Schrödinger thinking
in the context of quantum field theory, or was he working from the
analogy of general relativity? I gather from your letter that he was
thinking of a curvature tensor of some sort rather than a physical field
analogous to the EM field. In 1954, when Yang and I were thinking
about this (with me following in his dust) we were not thinking at all of
generalized curvatures. If Frank saw the similarity to the Riemann tensor
he kept it to himself; the whole thrust was to extend the electromagnetic
case, with the nonlinear terms as an exciting complication

When the gravitational case began to be discussed it is my impression
that the gravitational field was seen by physicists as an example of a
gauge field without the converse idea, of other gauge fields as connections
on a curved manifold, being thought of at all until a later time when
physicists became aware of fiber bundle theory. Frank’s excitement when
that idea did surface among physicists, makes it seem pretty clear to me
that he hadn’t thought of gauge theory in a geometrical light previously.

I must confess that I didn’t mention Oskar Klein’s model in my paper
because I felt, very possibly incorrectly, that while the equations looked
somewhat the same it wasn’t really the same idea. My recollection (and
I didn’t study it in depth) is that he has a nonlinear field equation, but
without any relationship to a local invariance, the central idea in gauge
theory. I would be happy to have your comments on this perception for
future reference.

I am still very much puzzled by gauge fields. Nothing seems to fit
together quite as smoothly as a good theory should, as I mention at
the end of the AJP article. I mentioned there some of my uneasiness
about the awkwardness of quantizing gauge fields, and the suggestion
that perhaps we don’t really understand quantum theory. I’m disturbed
also by the difficulty of defining and performing gauge transformations
on the quantized field operators. The only way I know of to get from
one gauge to another (except for trivial c-number transformations) is to
go back to the classical theory and quantize again in the other gauge.
Is there a theorem that says that all the theories arrived at in this way
are equivalent? (I made a sort of effort in this direction in a paper on
gauge transformations within the Feynman graph prescription, in the
early 1970’s. I don’t have the reference with me, but it’s in Phys. Rev.,
and is something about “propagator gauge transformations” as I recall.)
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Another cause of uneasiness is the lack of any real principle for deter-
mining the Lagrangian. For the straightforward cases of internal symme-
tries it’s pretty obvious that the only reasonable choice is the standard
Fµν ·Fµν . When you get to general relativity, though, the choice seems
much less obvious, and the choice nature has made is apparently not
what a gauge theorist would have chosen. Is gravity really a gauge field,
or is it rather a symptom of the inadequacy of the gauge field concept? If
it’s a gauge field, what are the gauge potentials? The connection in GR
is not a fundamental field as it is in a true gauge field; and I can’t tell
whether to regard the connection or the curvature tensor as the proper
analog of Fµν . These all may be questions to which the professional GR
people have clear answers by now, and I’d be glad to know how things
now stand. (Also, if gravity is a gauge field, then the symmetry group
has to be the Poincaré group, which means torsion has to be included. Is
it the present understanding that this is a consistent and unambiguous
program, at least at the classical level?)

My deepest question is the one I pose at the end of he article: Is it
possible for the full unitary invariance of quantum theory to be a local
symmetry? The associated gauge field is then an operator potential Aµ,

which looks for all the world like the EM potential field except that the
symmetry group is very non-Abelian. This now satisfies my wish for an
operator gauge transformation, though the Lie algebra doesn’t seem to
reduce to finite representations (and I’m not sure I’d want it to). If the
infinitesimal transformations are generated by an infinitesimal operator
field θ(x), then the covariant derivative of any field ψ is

Dµψ = ∂µψ − i [Aµ, ψ] .

The potentials transform according to

δAµ = Dµθ ,

and the operator field Fµν has the nonlinear term [Aµ, Aν ]. You can
write down obvious field equations for the interactions with a simple
Dirac field, but I don’t have a Hamiltonian or any kind of commutation
relations. Even the equal time commutators can’t be nice because the
operator field θ makes a mess of them when you make a gauge transfor-
mation.

I think one the more appealing things about this idea is the hope
of a local formulation of quantum theory. The state vector itself would
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be defined locally, and would be subject to parallel displacement and
the effects of curvature, whatever these might mean physically. I have
hunted around for some conceivable system of physical interpretation for
such an algebra, but without success.

Anyway, if the idea has merit maybe someone will see how to exploit
it. If not, then there has to be something wrong with the dream that
gives rise to it. Comments would be appreciated.

Again, many thanks for your interest, and for the things you sent
me. I shall look up your 1987 paper when I return to Columbus.

With best wishes,
Sincerely yours,
Bob Mills
Robert Mills

Appendix B: Geometry of a Riemann–Cartan spacetime

Our geometrical arena consists of a four–dimensional manifold equipped
with a local metric of Lorentz signature (oαβ) = diag(−1, 1, 1, 1). For
the representation of spinors in a curved spacetime, it is necessary to have
the anholonomic formalism available on par. Therefore, we introduce an
orthonormal local frame and coframe field

eα = ei
α ∂i , ϑα = ej

α dxj (17)

of dimension [1/length] and [length], respectively. According to our con-
ventions, α, β, ... = 0, 1, ..., 3 are anholonomic frame indices, i, j, k, ... =
0, 1, ..., 3 are holononic or world indices, and ∧ denotes the exterior prod-
uct. The coframe field of basis one–forms are reciprocal to the frame eα

with respect to the interior product c, i.e., eαcϑβ = ei
α ei

β = δβ
α.

In a Yang–Mills type gauge theory of gravity, the coframe ϑα of
dimension [length] and the dimensionless connection one-form Γα

β =
Γiα

β dxi are regarded as gauge potentials of non–linearly realized local
translations and local linear transformations, respectively, cf. Ref. [40].
The corresponding translational field strength is the torsion two–form

Tα := Dϑα = dϑα + Γβ
α ∧ ϑβ =

1
2
Tij

α dxi ∧ dxj , (18)

of dimension [length] and the dimensionless Riemann–Cartan (RC) cur-
vature two–form [11]

Rα
β := dΓα

β − Γα
γ ∧ Γγ

β =
1
2
Rijα

β dxi ∧ dxj . (19)
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These field strengths obey the first and second Bianchi identities

DTα ≡ Rγ
α ∧ ϑγ , and DRαβ ≡ 0 . (20)

The corresponding Lagrangians [9] are the Chern–Simons type boundary
terms

dCTT :=
1

2`2
d (ϑα ∧ Tα) =

1
2`2

(
Tα ∧ Tα +Rαβ ∧ ϑα ∧ ϑβ

)
=: VNY ,

(21)

dCRR :=
1
2
d
(
Γαβ ∧Rαβ − 1

3
Γα

β ∧ Γβ
γ ∧ Γγ

α
)

=
1
2
Rαβ ∧Rαβ =: VPontr ,

(22)
where ` is a fundamental length. Up to normalizations, they are also
known as Nieh–Yan four-form [33] and Pontrjagin term, respectively.
Observe that both are violating parity P , see, e.g., Ref. [25], where also
a more condensed notation in ‘Clifforms’ is used.

The Riemannian content of our geometrical framework can be
brought out by splitting the RC connection according to Γαβ = Γ{}αβ −
Kαβ into the unique Levi–Civita connection Γ{}αβ of Riemannian ge-
ometry and into the contortion

Kαβ = −Kβα = e[αcTβ] −
1
2
(eαceβcTγ)ϑγ . (23)

It follows from (18) that the latter is implicitly related to torsion via
Tα = Kα

β ∧ ϑβ . In turn, the RC curvature two–form (19) decomposes
as follows

Rαβ = R{}αβ +D{}Kαβ +Kα
µ ∧Kµβ . (24)

Appendix C: Dual forms

On an n–dimensional manifold with metric index s, the Hodge dual of
p–forms is almost involutive, i.e. : ∗∗α = (−1)p(n−p)+sα. For spacetimes
where s = 1 holds, it induces an almost complex structure, cf. [2]. In
four dimensions, the Hodge dual applied to two–forms is conformally
invariant [1].

Our Hodge dual ∗ of exterior forms is defined such that the normal-
ization

∗(ϑα ∧ ϑβ ∧ ϑγ ∧ ϑδ) = ηαβγδ, where ηαβγδ := +δ0123αβγδ (25)

holds.
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From the volume four–form η = 1
4!ηαβγδ ϑ

α ∧ ϑβ ∧ ϑγ ∧ ϑδ, the so-
called η- or dual basis {η, ηα, ηαβ , ηαβγ ηαβγδ} of exterior forms can
be generated by consecutive interior products: ηα := eαcη = ∗ϑα,
ηαβ := eβcηα = ηαβγ ϑ

γ = eβceαcη = ∗(ϑα ∧ ϑβ) = 1
2ηαβγδ ϑ

γ ∧ ϑδ,
and ηαβγ := eγcηαβ = ∗(ϑα ∧ ϑβ ∧ ϑγ). Anholonomic indices are low-
ered by oαβ = ei

α e
j
β gij , where (oαβ) = diag(−1, 1, 1, 1) denotes the

signature of spacetime.
The Lie dual of Lorentz algebra–valued forms such as contortion and

curvature is defined by

K(?)
α :=

1
2
ηαβγ ∧Kβγ , R

(?)
αβ :=

1
2
ηαβγδR

γδ , (26)

and satisfies
DR

(?)
αβ ≡ 0 (27)

due to the second Bianchi identity (20) and Dηαβγδ = 0 for a vanishing
Weyl covector.

In four dimensions, it is useful to consider also the self– or anti-
selfdual torsion and curvature two-forms

T±α :=
1
2

(Tα ± ∗Tα) ,

R±
αβ :=

1
2

(Rαβ ± ∗Rαβ) , R
(±)
αβ :=

1
2

(
Rαβ ±R

(?)
αβ

)
, (28)

defined in terms of the Hodge or Lie dual, respectively. In view of this,
the teleparallel boundary term can be written as

dCTT∗ :=
1

2`2
d(ϑα ∧ ∗Tα) =

1
2`2

(Tα ∧ ∗Tα −D ∗Tα) . (29)

On the other hand, the topological Euler term

VEuler:=
(−1)s

2
d
(
Γαβ ∧Rαβ(?) − 1

3
Γα

β(?) ∧ Γβ
γ ∧ Γγ

α
)

=
(−1)s

2
Rαβ ∧R(?)

αβ

≡ 1
2
Rαβ ∧ ∗Rαβ − 2Ricαβ ∧ ∗Ricαβ +

1
2
Ricα

α ∧ ∗Ricβ
β (30)

for Riemann-Cartan spaces has, in view of the Lanczos identity [18], an
equivalent representation in terms of Yang’s Lagrangian VSKY as well as
a Ricci-squared and curvature scalar squared term, cf. Eq. (3.1) of Ref.
[21].
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ternationalen Hermann–Weyl–Kongresses, Kiel 1985, W. Deppert, K.
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