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ABSTRACT. In this note we study the possibility that the historical
problematic aspects in the achievement of a consistent grand unifi-
cation are due to axiomatic incompatibilities between gravitation, as
currently formulated on curved spaces, and electroweak interactions.
Since the latter theories have proved to have a majestic axiomatic and
physical consistency while the former theories have been afflicted by a
large number of unresolved problematic aspects since their inception,
in this note we identify the modifications of gravitational theories that
are necessary to achieve an axiomatic compatibility with electroweak
theories, thus permitting a consistent grand unification. The result of
the study is a tribute to Henri Poincaré because of the emergence of
the Poincaré symmetry as the universal symmetry of nature, including
the reformulation of gravity in a form that is Poincaré invariant (rather
than covariant).

1 INTRODUCTION

In this note we study the possibility that the historical problematic as-
pects in the achievement of a consistent grand unification are due to
axiomatic incompatibilities between gravitation, as currently formulated
on curved spaces [1], and electroweak interactions [2].

Since the latter theories have proved to have a majestic axiomatic
and physical consistency while the former theories have been afflicted by
a large number of unresolved problematic aspects since their inception
(see, for instance, Ref. [3d] and papers quoted therein), in this note we
identify the modifications of gravitational theories that are necessary to
achieve axiomatic compatibility with electroweak theories with conse-
quential straightforward axiomatically consistent grand unification.
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The content of this note was first presented in the Proceedings of the
VIII Marcel Grossmann Meeting on General Relativity held in Jerusalem
in 1998, Ref. [6h], whose appearance is here indicated with appreciation.

The primary axiomatic incompatibilities between gravitation, as cur-
rently formulated on a curved space, and electroweak theories are the
following:

(1) Incompatibility due to curvature. Electroweak theories are
structured on Minkowskian axioms, while gravitational theories are for-
mulated via Riemannian axioms, a disparity that is magnified at the
operator level because of known technical difficulties of quantum gravity
[3], e.g., to provide a PCT theorem comparable to that of electroweak
interactions.

(2) Incompatibility due to antimatter. Electroweak theories
are bona fide relativistic theories, thus characterizing antimatter via
negative-energy solutions, while gravitation characterizes antimatter via
positive-definite energy-momentum tensors. Fundamental inconsisten-
cies then occur, such as the impossibility to explain why, within the
context of gravitation on a curved space, how one photon can produce
an electron-positron pair.

(3) Incompatibility due to fundamental space-time symme-
tries. Electroweak interactions are based on the axioms of special rela-
tivity, thus verifying the fundamental Poincaré symmetry P (3.1), while
such a basic symmetry is absent in contemporary gravitation. It is then
evident that the inclusion of gravitation on a curved space requires a
necessary breaking of the Poincaré symmetry with consequential catas-
trophic implications for the otherwise majestic beauty of electroweak
theories.

Without any claim of uniqueness (see, e.g., the recent studies on
unified theories of monograph [2m] and references quoted therein), the
modifications of gravitational theories that are necessary to resolve the
above incompatibilities can be outlined as follows:

(A) Isotopies. The view here submitted is that the above structural
incompatibilities are not necessarily due to insufficiencies of Einstein-
Hilbert field equations, but rather to insufficiencies in their mathemat-
ical treatment. Stated in plain language, we believe that the achieve-
ment of axiomatic compatibility between gravitation and electroweak
interactions requires a basically new mathematics, that is, basically new
numbers, new spaces, new geometries, new symmetries, etc.
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In the hope of resolving in due time this first structural incompat-
ibility, Santilli [4a] proposed back in 1978, when at the Department of
Mathematics of Harvard University under DOE support, a new math-
ematics based on the so-called isotopies, and today known as Santilli
isomathematics as studied in numerous works by the author and sev-
eral other researchers [4-11] (for original mathematical aspects see in
particular memoir [4e]).

The isotopies are nowadays referred to liftings of any given linear,
local and canonical or unitary theory into its most general possible non-
linear, nonlocal and noncanonical or nonunitary extensions, that are
nevertheless capable of reconstructing linearity, locality and canonicity
or unitarity on certain generalized spaces and fields, called isospaces and
isofields. From their Greek meaning, isotopies are therefore ”axiom-
preserving.”

The fundamental isotopy of this note is that of the 4-dimensional
unit I = diag (1, 1, 1, 1) of the Minkowskian and Riemannian spacetimes
into a 4x4-dimensional, everywhere invertible, Hermitean and positive-
definite matrix Î whose elements have an arbitrary functional depen-
dence on the local space-time coordinates x, as well as any other needed
variable,

I = dia.(1, 1, 1, 1) → Î(x, ...) = (Îµ
ν (x, ...)) = Î† = [T̂ (x, ...)]−1 > 0, (1)

with corresponding lifting of the conventional associative product

A×B → A×̂B = A× T̂ ×B, (2)

under which Î(x, ...) = [T̂ (x, ...)]
−1

is the correct left and right unit of
the new theory called isounit, in which case T̂ (x, ...) is called the isotopic
element.

When applicable, liftings (1) and (2) require, for consistency, the
reconstruction of all mathematical methods of contemporary physics,
with no exception known to this author.

In a communication at the VII Marcel Grossmann Meeting on Gen-
eral Relativity held in 1994 at Stanford University, Santilli [5a] showed
that isomathematics permits a novel classical and operator treatment of
gravitation that, on one side, preserves all Riemannian metrics, Einstein-
Hilbert field equations and related experimental verifications while, on
the other side, verifies the abstract Minkowskian axioms.
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The main mechanism [5a] is that based on the factorization of any
given Riemannian metric (e.g., Schwarzschild metric [1c]) g(x) into the
Minkowski metric η = Diag.(+1,+1,+1,−1)

g(x) = T (x)× η(formoredetails, seeRef.[5e, 6g]) (3)

where the gravitational isotopic element T (x) is evidently a 4-dimensional
matrix which is always positive-definite from the locally Minkowskian
character of Riemann. The entire theory must then be reconstructed
with respect to the gravitational isounit

Î = [T̂ (x)]−1 = η × [g(x)]−1 > 0, (4)

It should be stressed for clarity that we are here referring to a mere
mathematical reformulation of Einstein-Hilbert field equations on the
mathematical isominkowskian spaces (i.e., refer said equations to a new
unit Î) because the projection of the treatment into the conventional
spacetime (i.e., when referred to the conventional spacetime unit I) re-
covers the said equations in their totality.

The reader should be aware that the above classical and operator
isotopies are supported by two, hitherto unknown symmetries, first pre-
sented in memoir [4f] under the tentative name of isoselfscalar symme-
tries, which are characterized by the transforms

η → η̂ = n−2 × η, I → Î = n2 × I, (5)

where n is a parameter, and yield the symmetry of the conventional
Minkowskian interval

x2 = (xµ × ηµν × xν)× I = (xµ × η̂µν × xν)× Î = x2̂, (6)

with a corresponding invariance for the Hilbert space

< φ| × |ψ > ×I =< φ| × n−2 × |ψ > ×(n2 × I) =< φ|×̂|ψ > ×Î . (7)

The isominkowskian representation of gravity then emerges from the
above classical and quantum isosymmetries via the axiom-preserving ad-
dition of an x-dependence in the n-parameter, much along the transition
from Abelian to non-Abelian gauge theories.

(B) Isodualities. Structural incompatibility (2) is only the symp-
tom of deeper problems in the contemporary treatment of antimatter.
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To begin, matter is treated nowadays at all levels, from Newtonian to
electroweak interactions, while antimatter is treated only at the level of
second quantization. Since there are serious indications that half of the
universe could well be made up of antimatter, a more effective theory of
antimatter must apply at all levels.

The dramatic disparity in the treatment of matter and antimatter
also has its predictable problematic aspects. Since we currently use only
one type of quantization (whether naive of symplectic), it is easy to see
that the operator image of the contemporary treatment of antimatter is
not the correct charge conjugate state, but merely a conventional state of
particles with a reversed sign of the charge.

At any rate, stars can be safely assumed to be neutral. Therefore, the
current Riemannian treatment of antimatter via the mere change of the
sign of the charge prohibits any serious differentiation between matter
and antimatter, resulting in predictable inconsistencies at deeper levels
of research.

In an attempt to resolve these additional inconsistencies, Santilli en-
tered into the search for a second novel mathematics under the condition
of being an anti-isomorphic image of the preceding isomathematics in or-
der to be equivalent to charge conjugation. After inspecting a number of
alternatives, this author submitted in Ref.s [6] what is today known as
Santilli isodual theory of antimatter, characterized by the lifting called
the isodual map:

Q(x, ψ, ...) → Qd = −Q†(−x†,−ψ†...). (8)

When applied to the totality of quantities and their operations of
a given theory of matter, map (8) yields an anti-isomorphic image, as
axiomatically needed for antimatter. Moreover, while charge conjugation
is solely applicable within operator settings, isoduality (8) is applicable
at all levels of study, beginning at the Newtonian level. For brevity, we
refer the reader to Refs. [7] for details.

It is evident that isodualities offer a realistic possibility of resolving
the second structural problem between electroweak and gravitational in-
teractions because antimatter can be treated in both cases with negative-
energy.

The reader should also be aware that the isodual theory of antimatter
was born from properties of the conventional Dirac equation

[γµ × (pµ − e×Aµ/c) + i×m]×Ψ(x) = 0, (9a)
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γk =
(

0 σk

−σk 0

)
(9b),

γ4 = i×
(
Is 0.
0 −Is

)
. (9c)

In fact, as one can see, the negative unit Id
s = Diag.(−1,−1) appears

in the very structure of γ4. The isodual theory was then constructed
precisely around Dirac’s unit Id

s

In essence, Dirac assumed that the negative-energy solutions of his
historical equation behaved in an unphysical way because tacitly referred
to the conventional mathematics of his time, that with positive units
Is > 0. Santilli [7] showed that, when the same negative-energy solutions
are referred to the negative units Id

s < 0, they behaved in a fully physical
way. This eliminates the need of second quantization for the treatment
of antiparticles (as expected in a theory of antimatter beginning at the
Newtonian level), and permits the reformulation of Dirac’s equation in
the form

[γ̃µ × (pµ − e×A/c) + i×m]× Ψ̃(x) = 0, (10a)

γ̃k =
(

0 σd
k

σk 0

)
, γ̃4 = i

(
Is 0,
0 Id

s

)
, (10b)

{γ̃µ, γ̃ν} = 2ηµν , Ψ̃ = −γ̃4 ×Ψ = i×
(

Φ
Φd

)
, (10c)

where Φ(x) is now two-dimensional. Note that the above reformulation
of Dirac’s equation is fully symmetrized between particles and antipar-
ticles.

It should be indicated that the isodual theory of antimatter was con-
structed to resolve the inconsistency according to which Lie’s theory
prohibits the existence of a four dimensional representation of spin 1/2.
In fact, in the representation now becomes a two-dimensional regular
representation of spin 1/2 time its isodual.

In so doing, we also reach a yet new basic symmetry, called isoself-
duality, namely, the invariance under isoduality (8), a feature clearly
possessed by Dirac’s gamma matrices, γµ ≡ γd

µ. Despite its simplicity,
the implications are rather deep. In fact, if the universe is isoselfdual, it
is composed of equal amounts of matter and antimatter, the expansion
of the universe becomes a natural consequence of the necessary gravi-
tational repulsion between matter and isodual antimatter, all its total



Axiomatic inconsistencies of grand unifications . . . 959

characteristics (time, mass, energy, angular momentum, etc.) are iden-
tically null without any discontinuity at creation.

As was the case for the preceding isotopies, the isodual theory of
antimatter also sees its solid roots in two additional novel symmetries,
also unknown until recently, and first presented in memoir [4f], the first
holding for the conventional Minkowski interval

x2 = (xµ × ηµν × xν)× I = [xµ × (−n−2 × ηµν)× xν ]× (−n2 × I)

= (xµ × η̂d
µν × xν)× Îd = xd2d (11)

and the second holding for the Hilbert space

< φ|×|ψ > ×I =< φ|×(−n−2)×|ψ > ×(−n2×I) =< φ|×T̂ d×|ψ > ×Îd.
(12)

The above isodual symmetries ensure that all physical laws of matter
also hold for antiparticles under our isodual representation, with corre-
sponding symmetries for the isodual expressions.

(C) Isotopies and Isodualities of the Poincaré symmetry. A
resolution of fundamental incompatibility (3) of grand unifications called
for a third series of studies presented in Refs. [6,7] on the isotopies and
isodualities of the Poincaré symmetry P̂ (3.1), today called the Poincaré-
Santilli isosymmetry and its isodual [8-12].

We are here referring to the reconstruction of the conventional sym-
metries with respect to an arbitrary positive-definite unit (1), for the
isotopies, and with respect to an arbitrary negative-definite unit, for the
isodualities. This reconstruction yields the most general known nonlin-
ear, nonlocal and noncanonical liftings of conventional symmetries, while
being locally isomorphic (for isotopies) or anti-isomorphic (for isoduali-
ties) to the original symmetries.

It is evident that the Poincaré-Santilli isosymmetry and its isodual
have fundamental character for this note. In fact, one of their pri-
mary applications has been the achievement of the universal symme-
try (rather than covariance) of all possible Riemannian line elements in
their isominkowskian representation [6]. Once the unit of gauge theories
is lifted to represent gravitation, electroweak interactions will also obey
the isopoincare’ symmetry for matter and its isodual for antimatter, thus
offering realistic hopes for the resolution of the most difficult problem of
compatibility for grand unifications, that for space-time symmetries.
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The fundamental space-time symmetry of the grand unified theory
inclusive of gravitation submitted in this note is the total symmetry
of the conventional Dirac equation, here written with their underlying
spaces and units

STot = {SL(2.C)× T (3.1)} × {SLd(2.Cd)×d T d(3.1)}, (13a)

MTot = {M(x, η,R)× Sspin} × {Md(xd, ηd, Rd)×d Sd
spin}, (13b)

ITot = {Iorb × Ispin} × {Id
orb ×d Id

spin}, (13c)

Note that the Poincaré symmetry emerges from these studies as being
eleven dimensional in view of symmetries (6) and not ten dimensional
as popularly believed throughout the 20-th century, and the same eleven
dimensionality holds for the isodual symmetry in view of isodual sym-
metries (11).

The reader should not be surprised that the four new invariances
(6)-(7) and (11)-(12) remained undetected throughout the 20-th century
because their identification required the prior discovery of new numbers,
first the numbers with arbitrary positive units for invariances (6)-(7),
and then the additional new numbers with arbitrary negative units for
invariances (11)-(12).

2 ISOTOPIC GAUGE THEORY

The isotopies of gauge theories were first studied in 1980’s by Gasperini
[11a], followed by Nishioka [10b], Karajannis and Jannussis [11c] and
others, and ignored thereafter. However, these studies were defined on
conventional spaces over conventional fields and used the conventional
differential calculus. As such, these studies are not invariant, as we
learned only in memoirs [4f].

The correct isotopies of (Abelian or non-Abelian) gauge theories re-
quires their formulation via the entire use of Santilli isomathematics,
thus including: isofields [4d] Ĉ(ĉ, +̂, ×̂) with: additive isounit 0̂ = 0;
generalized multiplicative isounit Î given by Eq. (1); elements, isosum,
isoproduct and related generalized operations,

â = a× Î , a = n, c, â+̂b̂ = (a+b)× Î , â×̂b̂ = â×T̂× b̂ = (a×b)× Î , (14a)

ân̂ = â×̂â×̂...×̂â, â ˆ1/2 = a1/2 × Î1/2, â/̂b̂ = (â/b̂)× Î; (14b)
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isominkowski spaces [6a] M̂ = M̂(x̂, η̂, R̂) with isocoordinates x̂ = x×Î =
{xµ} × Î, isometric N̂ = η̂× Î = [T̂ (x, . . .)× η]× Î , and isointerval over
the isoreals R̂

(x̂− ŷ)2̂ = [(x̂− ŷµ×̂N̂µν×̂(x̂− ŷ)ν = [(x−y)µ× η̂µν×(x−y)ν ]× Î , (15)

equipped with isocontinuity [10a] and isotopology [10b,4f,10e] (see also
Aslander and Keles [10d]); isodifferential calculus [4e] characterized by
the following isodifferentials and isoderivatives

d̂x̂µ = Îµ
ν ×dx̂ν , d̂x̂µ = T̂ ν

µ × x̂ν , ∂̂µf̂ = ∂̂f̂ /̂∂̂x̂µ = (T̂ ν
µ ×∂νf)× Î , (16a)

∂̂µf̂ = (Îµ
ν × ∂νf)× Î , ∂̂x̂µ/̂∂̂x̂ν = δ̂µ

ν = δµ
ν × Î , etc.; (16b)

and all remaining aspects of isomathematics, such as the isofunctional
isoanalysis [6g]; isominkowskian geometry [5e]; relativistic hadronic me-
chanics [4f]; and theLie-Santilli isotheory [4,6,8d,10c].

This new mathematics permits the definition of the isogauge trans-
form

ψ̂′ = Û×̂ψ̂ =
(
e−i×Xk×T̂ (x,...)×θ(x)k

)
× ψ̂; (17)

Û = ê−i×Xk×θ(x)k = (e−i×Xk×T̂×θ(x)k)× Î , Û†×̂Û = Î , (18)

whose nontriviality is expressed by the fact that the gravitational isotopic
element appears in the exponent, as well as by the reconstruction of
unitarity on isospaces over isofields; isocovariant derivatives [5e]

D̂µψ̂ = (∂̂µ − i×̂ĝ×̂Â(x̂)k
µ×̂X̂k)×̂ψ̂; (19)

iso-Jacobi identity

[D̂α ,̂[D̂β ,̂D̂γ ]]+̂[D̂β ,̂[D̂γ ,̂D̂α]]+̂[D̂γ ,̂[D̂α ,̂D̂β ]] = 0, (20)

where one should note the reconstruction of unitarity on isospaces over
isofields, g and ĝ = g × Î are the conventional and isotopic coupling
constants, A(x)k

µ×Xk and Â(x̂)k
µ×̂X̂k = [A(x)k

µ×Xk]× Î are the gauge
and isogauge potentials; the isocovariance

(D̂µψ̂)′ = (∂̂µÛ)×̂ψ̂+̂Û×̂(∂̂µψ̂)−̂î×̂ĝ×̂Â′(x̂)µ×̂ψ̂ = Û×̂D̂µψ̂, (21a)

Â(x̂)′µ = −ĝ−1̂×̂[∂̂µÛ(x̂)]×̂Û(x̂)−1̂, (21b)

δ̂Â(x̂)k
µ = −ĝ−1̂×̂∂̂µθ̂(x̂)k+̂Ĉk

ij×̂θ̂(x̂)i×̂Â(x̂)j
µ, (21c)
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δ̂ψ̂ = −î×̂ĝ×̂θ̂(x̂)k×̂X̂k×̂ψ̂; (21d)

the non-Abelian Yang-Mills isofields

F̂µν = î×̂ĝ−1̂×̂[D̂µ̂, D̂ν ]ψ̂, (22a)

F̂ k
µν = ∂̂µÂ

k
ν−̂∂̂νÂ

k
µ+̂ĝ×̂Ĉk

ij×̂Âi
µ×̂Âj

ν ; (22b)

with related isocovariance properties

F̂µν → F̂ ′
µν = Û×̂F̂µν×̂Û−1, (23a)

Isotr(F̂µν′×̂F̂µν′
) = Isotr(F̂µν×̂F̂µν), (23b)

[D̂α ,̂F̂βγ ]+̂[D̂β ,̂F̂γα]+̂[D̂γ ,̂F̂α‘β ] ≡ 0; (29c)

derivability from the isoaction

Ŝ =
∫̂
d̂4̂x̂(−F̂µν×̂F̂µν /̂4̂) =

∫̂
d̂4̂x̂(−F̂ k

µν×̂F̂
µν
k /̂4̂), (24)

where
∫̂

=
∫
×Î, plus all other familiar properties in isotopic formula-

tion.

The isodual isogauge theory is the image of the preceding theory fol-
lowing the application of the isodual map (8) to the totality of quantities
and their operations. The latter theory is characterized by the isodual
isogroup Ĝd with isodual isounit Îd = −Î† = −Î. The base fields are the
field R̂d(n̂d, +̂d, ×̂d) of isodual isoreal numbers n̂d = −n̂ = −n × Î and
the field Ĉd(ĉd, +̂d, ×̂d) of isodual isocomplex numbers ĉd = −(c× Î)† =
(n1 − i× n2)× Îd = (−n1 + i× n2)× Î.

For the reader not familiar with the new isomathematics, it should
be noted that the above isotopy of Yang-Mills fields implies no variation
of their numerical value, that is, Yang-Mills isofields on isospaces over
isonumbers have the same numerical values of conventional Yang-Mills
fields computed on ordinary spaces over ordinary numbers and, similarly,
isodual Yang-Mills fields or isofields are equivalent to their charge con-
jugate forms for the representation of antiparticles (for brevity, see [loc.
cit.].
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3 ISO-GRAND-UNIFICATION

Iso-Grand-Unification (IGU), first indicated in Ref. [6h], is the direct
product of Yang-Mills isofields and their isoduals as characterized by the
the the total isoselfdual symmetry

ŜTot = (P̂(3.1)×̂Ĝ)× (P̂(3.1)d×̂d
Ĝd) =

= [ŜL(2, Ĉ)×̂T̂ (3.1)]× [ŜL
d
(2, Ĉd)×̂d

T̂ d(3.1)], (25)

where P̂ is the Poincaré-Santilli isosymmetry [10c] in its isospinorial
realization [6f].

It should be indicated that we are referring here to the axiomatic con-
sistency. The physical consistency is a separate problem which cannot
possibly be investigate in this introductory note and will be investigated
in future works. At this point we merely mention the general rule ac-
cording to which isotopic liftings preserve not only the original axioms,
but also the original numerical values [6g] (as an example, the image
in isominkowskian space over the isoreals of the light cone, not only is
a perfect cone, but a cone with the original characteristic angle, thus
preserving the speed of light in vacuum as the maximal causal speed in
isominkowskian space). This peculiar property of the isotopies implies
the expectation that the proposed Iso-Grand-Unification preserves the
numerical results of both the conventional unified gauge theories and the
conventional treatment of gravitation.

The reader should be aware that the methods of the recent mem-
oir [4f] permit a truly elementary, explicit construction of the proposed
IGU. As well known, the transition from the Minkowskian metric η to
Riemannian metrics g(x) is a noncanonical transform at the classical
level, and, therefore, a nonunitary transform at the operator level. The
method herein considered for turning a gauge theory into an IGU con-
sists in the following representation of the selected gravitational model,
e.g., Schwarzschild’s model:

g(x) = T (x)× η, T (x) = (U × U†)−1, (26a)

U ×U†) = Diag.[(1− 2×M/r)× diag(1, 1, 1), (1− 2×M/r)−1), (26b)

and then subjecting the totality of the gauge theory to the nonunitary
transform U×U†. The method then yields: the isounit I → Î = U×I×
U†; the isonumbers a→ â = U×a×U† = a× (U×U†) = a× Î , a = n, c;
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the isoproduct with the correct expression and Hermiticity of the isotopic
element, A × B → U × (A × B) × U† = (U × A × U†) × (U × U†)−1 ×
(U × B × U†) = Â × T̂ × B̂ = Â×̂B̂; the correct form of the isohilbert
product on Ĉ, < φ|× |ψ >→ U× < φ|× |ψ > ×U† = (< ψ|×U†)× (U ×
U†)−1 × (U × |ψ >)× (U × U†) =< φ̂| × T̂ × |ψ̂ > ×Î; the correct Lie-
Santilli isoalgebra A×B −B ×A→ Â×̂B̂ − B̂×̂Â; the correct isogroup
U × (eX)×U† = (eX×T̂ )× Î, the Poincaré-Santilli isosymmetry P → P̂,
and the isogauge group G→ Ĝ.

It is then easy to verify that it the proposed Iso-Grand-Unification
is indeed invariant under all possible additional nonunitary transforms
W ×W † = Î, provided that, for evident reasons of consistency, they are
written in their identical isounitary form, W = Ŵ × T̂ 1/2,W ×W † =
Ŵ ×̂Ŵ † = Ŵ †×̂Ŵ = Î. In fact, we have the invariance of the isounit
Î → Î ′ = Ŵ ×̂Î×̂Ŵ † = Î, the invariance of the isoproduct Â×̂B̂ →
Ŵ ×̂(Â×̂B̂)×̂Ŵ † = Â′×̂B̂′, etc. Note that the isounit is numerically
preserved, as it is the case for the conventional unit I under unitary
transform, and that the selection of a nonunitary transform W×W † = Î ′

with value different from Î evidently implies the transition to a different
gravitational model.

It should be noted that the isounit representing gravitation verifies all
the properties of the conventional unit I of gauge theories, Î n̂ = Î , Î

ˆ1/2 =
Î , dÎ/dt = Î×̂Ĥ − Ĥ×̂Î = Ĥ − Ĥ = 0, etc. The ”hidden” character
of gravitation in conventional gauge theories is then confirmed by the
isoexpectation value [4f] of the isounit which recovers the conventional
unit I of gauge theories, <̂Î>̂ =< ψ̂|×T̂×Î×T̂×|ψ̂ > / < ψ̂|×T̂×|ψ̂ >=
I.

It then follows that the proposed IGU constitutes an explicit and con-
crete realization of the theory of ”hidden variables” [13a] λ = T (x) =
g(x)/η, Ĥ×̂|ψ̂ >= Ĥ × λ × |ψ̂ >= Eλ × |ψ̂ >, and the theory is cor-
rectly reconstructed with respect to the new unit Î = λ−1, in which
von Neumann’s Theorem [13b] and Bell s inequalities [13c] do not apply,
evidently because of the nonunitary character of the theory (see [13d or
Vol. II of Refs. [6g] for details).

In summary, the main aspect conveyed in this note is the possibility
that gravitation has always been present in unified gauge theories and it
did creep in un-noticed until Ref. [6h] because embedded where nobody
looked for, in the ”unit” of gauge theories.
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