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ABSTRACT. Assessments of the quantum Hall effect by wave function 
procedures are compared with a global assessment using Aharonov-Bohm 
and Ampère-Gauss period-integrals for flux and charge quanta.  
 

 
The contemporary assessments of the quantum Hall effect (QHE) is di-

chotomous in nature in the sense that an inherently statistical tool (Schroed-
inger’s equation) is being used on one of the most highly ordered manifesta-
tions in modern experimentation. Extremely low temperatures and very high 
magnetic fields create the order. Normally one might not use a statistical tool 
in trying to cast light on a non-statistical situation. So why are not more 
people upset about such contradictory behavior? The answer is that Copen-
hagen made the statistics nonclassical, which meant its rules are bent.  

The fact is that all of us have been exposed to a measure of brainwashing 
by the successes of the Copenhagen school of quantum mechanics. The 
Copenhagen school teaches that its Ψ function statistics is nonclassical, 
which in practice means no real universe of discourse has been established. 
Its views of quantum mechanics see Ψ as probability amplitude relating to 
(point) particle presence. This picture just falls short of a universe of dis-
course. Hence, the nonclassical touch remains; if you can’t avoid it, learn to 
live with it. That is how we have been intimidated to tolerate nonclassical 
ways of thinking. 

The Copenhagen methodology as here depicted is believed to be fair. 
They have some unnecessary absolutes that have never been proven and can 
never be proven. In fact, a first counter-example to the thesis of a nonclassi-
cal statistics was inadvertently produced by Planck [1]. His example goes 
back to 1912; hence he could hardly have been accused of prejudiced against 
the Copenhagen views emerging decades later.  
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Copenhagen absolutes range from a rather silent proposition of not hav-
ing a universe of discourse for the Ψ statistics, all the way to a dictum of a 
priori positional uncertainty. They, in turn, have given birth to related con-
cepts of an everywhere infinite zero-point energy of vacuum and last but not 
least a doctrine of taking the Schroedinger equation to be applicable in all 
quantum situations. These unproven features, ordained as doctrines of phys-
ics, reveal a religious sentiment in the Copenhagen interpretation that has to 
be identified if we are to become aware of the contradictory consequences 
thereof.  

Let the quantum Hall situation be taken as experimentum crucis to serve 
as test case. The QHE has been almost exclusively assessed using Schroed-
inger-based procedures. In this approach Ψ function solutions have been 
sought to account for the observed onset of its plateau states of order. In 
three interconnected papers R B Laughlin [2,3,4] has taken a leading initia-
tive in these procedures. An inspection of Laughlin’s papers shows attempts 
at understanding the condensed QH states through Ψ function behavior us-
ing the many body procedures of quantum mechanics. A delta function be-
havior of the statistics could be an onset of order, which means looking for 
regular sequence of generalized functions [5]. Yet, the analytic hurdles of 
many body theory, i.e., three bodies and upwards, are so formidable that one 
has to settle for exotic abstractions. As it stands QHE theory in refs.{2,3,4] 
emerges from a necessarily contrived narrow basis of probing by means of 
many body theory, which is based on a premise of a ground state of orbital 
flux. 

Independent of these specifics one may expect a formation of plateau 
states, as they manifest themselves in the QHE, to exhibit some form of 
Bose-Einstein condensation of cyclotron systems in a two dimensional en-
semble. Assuming the transitions between normal- and plateau states as 
fermion-boson transitions is indeed supportive of extensive reduction fea-
tures observed in the ratio of sample resistance over Hall resistance in the 
transition range between normal- and plateau states [6]. The inverse chain 
line hereby observed can be satisfactorily assessed as a fermion-boson tran-
sition. 

The next phase in quantum Hall observations made it necessary to ac-
commodate a so-called Fractional QHE [7]. The subsequent Laughlin [4] 
step was one of allowing rational fractions instead of even boson-paired 
orbital charge fillings. While this formally accounts for FQHE observations, 
this step remains a mathematical artifact unless higher flux states are proven 
to be impossible. A conceivable argument in support of this somewhat silent 
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assumption would be the experimentally observed superconducting state of 
the sample current when the sample enters the plateau state.  

If the ground state flux is accepted, the physical consequence of Laugh-
lin’s step would either be a suggestion of real fractionally charged entities or 
contrived lattices consisting of sub-lattices of cyclotron orbits of different 
orbital filling.  

Even so, while other realms of physics, e.g., quark theory, have experi-
mented with fractional charge, thus far they have remained unconfirmed. 
There is an obligation here to check whether fractional charge is compelling. 
This confronts us with the alternative of fractional charge versus supercon-
ductivity at higher flux states. 

Here we hold out for superconductivity at higher flux states nh/e. For pla-
teau states of a uniform cyclotron lattice moving in the 2-dimensional inter-
action space, the Hall voltage over current V/I equals VT/IT, which is the 
flux/charge ratio per cyclotron where T is the cyclotron period. This 
flux/charge ratio is a global feature relating to a ratio of two favorite inte-
grals of quantum interferometry. They are known as the Aharonov-Bohm 
(AB) integral and the Gaus-Ampère(GA) integral.  

Assuming, for the time being, a ground state flux h/e, the quantum Hall 
impedance becomes 

 Z = (1 / s)!(h / e
2
),  (1) 

in which s is an integer for what has become known as the integer quantum 
Hall effect; h and e are the quanta of action and charge.  

According to Laughlin [4] s can become a fraction, either pertaining to 
real fractional charge or a result of a compound lattice structure with sublat-
tice mixtures of different orbital charges. The literature speaks here of com-
posite fermions creating distinct quantum liquids.  

 Laughlin may well be in the best position to comment on whether a 
Schroedinger many particle approach without a presumed ground state of 
flux is doable. Yet without a proof one way or the other the fractional charge 
remains too much of an adaptation after the facts. The ground state of flux, 
as cited in ref.[4], is not a sine qua non for superconductivity. If instead we 
accept the possibility of flux states nh/e, with n an integer, the Hall imped-
ance formula assumes the more attractive form Eq.2, which gives a rather 
sensible and unified account of integer and fractional effects both: 

 Z = (n / s)!h / e2 !;!n!integer,!s!even.  (2) 
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In Eq.2 the Quantum Hall effect is governed by two quantum numbers, the 
flux integer n and the even number s counting total charge of boson paired 
orbital electrons. Since the observed s/n in experiments is naturally cited as a 
fully reduced fraction, the observed results exhibit a preponderance of odd-
values n; as indeed reported by Bell Lab. teams [7]. The flux ground state 
proposition cannot account for this phenomenon! Hence Bell Labs’ obser-
vation clearly pleads in favor of including higher flux states. 

Neither directly nor indirectly does Schroedinger’s process yield conclu-
sive evidence whether just ground- or also higher orbital flux states are rele-
vant. The Landau-like energy states, cited by Laughlin still retain zero-point 
energy components, which raises awkward questions whether they should 
also have an associated flux. Unsolved repercussions thereof have been 
recently reviewed [8], without generating much concern about the current 
Hall effect situation. The predicament can be best highlighted by the simple 
fact that Schroedinger gives energy eigenvalues, whereas the QHE needs 
flux and charge eigenvalues, such as given by the AB and GA integrals. In 
other words the quantum Hall effect is obviously not quantum-mechanical- 
but quantum-electrodynamical in nature. 

Since Eq.2 is contingent on states of orbitally linked flux nh/e, the ques-
tion is: do we have an appropriate justification compatible with fundamental 
law? The Aharonov-Bohm integral [9] really provides the best argument by 
far. According to current insights, the AB integral derives from Ψ single 
valuedness. Unlike the related particle-based Bohr-Sommerfeld in configura-
tion space, flux quantization nh/e in external magnetic fields as envisioned 
by London [10] is a particle independent spacetime statement, which quali-
fies it to be used in conjunction with the particle counting GA integral. So 
the quantum-electrodynamical process avoids here the analytic trials of 
many body procedures. 

Linked flux nh/e as evaluated by Aharonov-Bohm can, similarly as the 
Gaus-Ampère integral, become a mathematically exact statement, if the 
integration loop c resides where the exterior derivative of the integrand van-
ishes. Since in the present case c is the cyclotron orbit, the AB integral really 
equals nh/e if and only if electrons are taken to have a field-free interior. 
Compare [14] how this leads to electron moment anomaly.  

The unparalleled precision of validity of Eq.2 makes the field-free elec-
tron interior, as here postulated, a viable proposition. Just for comfort, clas-
sical mechanics plus Planck’s energy states verifies the flux states nh/e. 
Under the stipulated conditions, AB and GA integrals both give generally 
invariant exact spacetime quantization statements. 
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Ironically, the period-integral status of the Gauss integral of electrostatics 
is already an item of undergraduate instruction; an extension to the space-
time domain is no problem. Summarizing, the global approach to the quan-
tum Hall effect, using the period integrals AB and GA, seems a well-suited 
and legitimate way to defend the unified quantum Hall formula Eq.2.  

Quantization aspects of period integration were pioneered by R M Kiehn 
[11]. Its potential for describing the quantum Hall effect was briefly outlined 
in the conclusion of ref.12 and then explicitly stated in ref.13. 

Schroedinger and period integral approaches to QHE both emerged in the 
Eighties. Fears of conflict with Copenhagen views may have prevented the 
period integral view from catching more attention. Yet, period integrals [12, 
13] may be said to predate Copenhagen-based methodology. More extensive 
discussions in ref. [14]. 

Recently C A Mead [15] favored Eq.2 as common sense description of in-
teger and fractional Hall effect, using the equivalent of independent flux- 
and charge quantization, yet no explicit comparisons with Schroedinger or 
period integral approaches. Please let me know what I might have been do-
ing wrong using those period integrals? 

Recognizing the ratio of two quantum numbers as governing the QHE is 
an inescapable mathematical necessity; the question is what seems the more 
reasonable physical justification? Let the reader choose between fractional 
charge versus flux/charge ratio.  

When efforts at using existing theory for assessing new manifestations of 
nature are becoming too contrived, there comes a time for experiment to 
have its say. Not fractional charge, but a revision of Copenhagen views 
should here be in the making. There is a vast volume of thousands of papers 
on Schroedinger-based approaches to the quantum Hall effect. Yet, except 
Mead’s book and my own, I do not know of one that considers a flux/charge 
ratio as primary input for the Hall impedance. I wonder why has that prob-
ability been so low? It seems people are trying to prove (quantum) laws of 
electrodynamics by a reducing them to (quantum) mechanics. 
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