
Annales de la Fondation Louis de Broglie, Volume 30, no 1, 2005 97 

The Black Body and the Dulong and Petit Law* 
 

XAVIER OUDET 
 

Fondation Louis de Broglie,  23 rue Marsoulan, 75012 Paris, France 
Laboratoire de Magnétisme et d'Optique de l'Université de Versailles 

C.N.R.S., 45 Avenue des Etats-Unis, 78035 Versailles, France  
E-mail: Xavier.Oudet@physique.uvsq.fr 

 
 
ABSTRACT. The density of thermal energy of the black-body is supposed 
to be the reflection of the statistical repartition of the energy of the atoms of 
the solid constituent of the black body. As a result its study starts from that 
of the Dulong and Petit law. The calculation of the Stefan-Boltzmann con-
stant gives σ = 5.6265x10-8 W m-2 K-4. The difference with the experiment, 
lower to one per cent, is attributed to the losses inherent to the thermal 
equilibriums which defines the temperature of the solid, losses including the 
thermal radiation itself. 

1 Introduction 

In the study of the black body Planck has used the statistical approach of a 
physical phenomenon introduced by Boltzmann. As a result he was able to 
propose a satisfactory fit of the experimental data concerning the distribution 
of the energy [1]. Using statistics of the gas in the study of the light energy he 
was introducing the hypothesis of countable particles. There is a difficulty of 
our physics which is not always clearly realized. Indeed in our scale we have 
the notion of the continuum that is of measurements taking all possible values 
along a segment, of energy for example. But the number of the possible val-
ues along a segment is much larger that that of the integer numbers, they can 
always make a discrete series of points along a given segment. As a result the 
use of atomic statistics in the study of the black body makes the light a phe-
nomenon bound to the atomic scale, thus to the countable. It is by this way 
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that, more or less clearly, the quantum property to the light, soon uses again 
by Einstein in his interpretation of the photoelectric effect in 1905 [2]. Thus 
at the door of the twentieth century researchers were slowly becoming aware 
of the emission processes of the photons by the electrons of the atoms. It is 
according to this process that Planck interpretation gives satisfactory results.  
Indeed the photons are emitted by the atoms of the wall of the solid defining 
the black body. Thence the statistical weights of the energy that they emit 
must be in connection with those corresponding to the energy of these atoms, 
hypothesis that this study will allow to verify.  

This aspect of the study of the black body is important because the pho-
tons moving in vacuum all at the same speed, the statistical distribution of 
their energy reveals a mechanism essentially different from the one tacking 
place with the atoms of a gas. The purpose of this study is to extend for the 
black body the use of the density of probability previously determined for the 
gas [3], [4]. Now the photons are emitted by the atoms of the solids with 
which the black body is built. As a result this makes useful to start this study 
with that of the heat capacity of the solids to high temperature which deter-
mines the energy of the emitted photons.  

2 The heat capacity of the solids to high temperature  

For a solid according to Dulong and Petit law the heat capacity tends to 3k. 
As a result the energy stocked by the solid tends to 3kT. The classical inter-
pretation of this law comes from the law of Hooke, expressing the propor-
tionality between the deformations of a solid and the counter forces. One 
supposes that there is kT/2 for each degree of freedom. The other is supposed 
to come from the counter forces, in other words from the potential to be 
overcame by the atom to vibrate [5] [6] and [7]. We do not think that this 
explanation is sufficient.  Indeed the atom of gas has also to overcome a 
potential when it knocked the wall of the container. As a result it should have 
the same heat capacity as the solids to high temperature. Thus if we want to 
explain the Dulong and Petit law we have to understand how the energy of a 
solid tend to 3kT when the temperature increases. We have already under-
lined that the atoms of a solid at low temperature, according to their cohe-
sion, form a whole [8]. The Dulong and Petit law then can be interpreted 
supposing that when the temperature increases, the orientation of the atoms 
becomes progressively disordered. They are the atoms in disordered position 
which receive the thermal energy 3kT. 

Indeed let us suppose that the stocked thermal energy by one atom stays 
lower than a given value Eg. The synchronization between the motions of the 
electrons is responsible of the maximum value of the cohesion energy be-
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tween the atoms. As a result it tends to equalize the sharing of this thermal 
energy among the atoms to keep as much as possible the synchronization that 
is the order between the atoms. It is what is exhibited by the heat capacity of 
the solids at low temperature [8].  

Let us underline that the synchronization is a hypothesis supported by the 
recent interpretation of Dirac theory based on the trajectory of the electron 
[9]. Numerous experimental results are corroborating it: among them the 
lowering of the order disorder temperature with impurity as the fusion tem-
perature in presence of a small amount of another metal. In comparison to the 
analogous electrons to those of the principal metal those of the impurity have 
different periods and the synchronization disappears leading to a smaller 
cohesion and the lowering of the order disorder temperature, in that case the 
fusion temperature.  

Figure 1.  The probability function giving the asymptotic character of the Dulong and 
Petit law for the solids. In this case the unit is 3k. 

Thus to be in disordered position an atom must break the synchronous 
bonds developed with its neighbours. The energy need to break these bonds 
defines a potential barrier Eg. The number of atoms crossing this barrier is 
given by the probability function P(Eg,U) already calculated [3], [4]. In this 
approach one has to keep in mind that Eg decreases when the number of or-
dered atoms decreases. But the probability function clearly establishes the 
asymptotic character of the de Dulong et Petit law (figure 1). We have: 
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 P(Eg,U) = A-1ln[1+exp -α(Eg/U -1)]  with A = 1.7054 et α = 1.5049 (2.1) 

 When!U! 0,!!P(E
g
,U )! 0!!!!!!!!!and!when!!!!!!U!"!,!P(E

g
,U )!1  (2.2) 

One has now to understand why the disordered atoms keep an amount of 
thermal energy equal to 3kT. At low temperature the atoms of a solid are a 
whole which prevents one atom to vibrate independently from its neighbours. 
By hypothesis when an atom is in disordered position it can vibrate that is it 
can receive thermal energy rather independently from its neighbours. But it is 
not yet an atom of a gas, it cannot vibrate in the same way in all the direc-
tions, its neighbours being retained by attraction of coulomb. But the energy 
is stocked by the electrons moving around the nucleus of their kernel. As a 
result a same atom can thus receive energy from two opposite directions on 
the same line. As the energy received in to opposite directions comes neces-
sarily to two different times this amounts to considering that in solid there are 
six degrees of freedom. On the opposite a gas atom can just receive energy 
from one direction. Thus if the counter forces are effectively at the origin, for 
the solids of their specific heat double of that of the monatomic gas, this 
comes from their possibility to receive energy from to opposite directions.   

3 The photon and the disorder in the solids 

When the photon is emitted, it propagate with the speed c(ν). As a hy-
pothesis we suppose that it can be described as a packet of energy, formed of 
grains like the potential [9] in which gravitate the electrons but with an 
equivalent mass much smaller than the electron. On the other hand we will 
see that there are a very small number of photons in the volume of the black 
body. This aspect of the phenomenon leads to suppose that they are not di-
rectly in interaction but that the density to calculate is the reflection of the 
statistical repartition of the energy of the atoms of the solid constituent of the 
black body. Since the Dulong and Petit law is independent of the nature of 
the compound it will be the same for the characteristic laws of the black 
body. They will just depend of the temperature, an essential property of the 
thermal radiation of the black body.    

Consider an atom which has a thermal energy E higher than Eg. Thus it 
gets a disordered position allowing it to have a periodic motion asynchronous 
with those of the neighbour atoms. The period of the motion is defined by the 
relation ET = h where h is the constant of Planck. When the atom returns to 
its ordered state, we suppose by hypothesis which it emits a photon having 
the same period like that of its motion. This point is important because it 
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allows the calculation of the density of energy of the black body radiation. 
Indeed for the atom its periodic motion leads it to move away or to get closer 
from its neighbours. When it emits the photon corresponding to E the mo-
tions of the homologous neighbour atoms will be disrupted. We suppose that 
it is such a perturbation which induces the stimulated emission.    

4 The density of energy per unit of volume and frequency  

The study of the black body is that of the number of photons able to be re-
ceived upon the surface ds during a given time dt. The speed of the light 
being c, during the time dt the photons cover the distance cdt. The number of 
received photons leads to define the density of energy per unite of volume. 
The usage and the historical conditions of the study of the black body have 
led to define the density u(ν) per unit of volume and per unit of frequency. In 
summing upon all the frequencies one defines u the density of total energy.  

The calculation of the density of energy per unite of volume uses several 
factors associated to the frequency ν of the photon. These factors are: the 
statistical weight in the vicinity of a segment of energy, the volume Vc asso-
ciated to the emission of a photon whose the origin is discussed below and 
the number N of photons which can occupy this volume. Following is then 
the integration on all the frequencies.  

The statistical weight. To calculate the density of energy u per unite of 
volume of the black body we have to start from the function of distribution of 
the thermal energy for a solid. According to the study of the specific heat of 
the solids just the disordered atoms have a sufficient energy to emit a photon. 
Their mean thermal energy is them 3kT. They are in a given way a set of 
independent atoms thus without any special quantum property able to modify 
their statistical properties as it is supposed for the photons and the electrons 
also call bosons or fermions [10]. This aspect shows that the distribution to 
use is the same as that of the atoms of a gas. The energy of the photons that 
they emit is that exceeding the potential barrier Eg which they cross to be in a 
disordered position. It can vary between zero and infinity. Let D(E,U) be the 
function of the thermal energy of these independent atoms. These atoms 
being independent they follow the same law that that of the atoms of a perfect 
gas.  

Considering the segment of energy:  

 h! " E " h(! + d! )  (4.1) 
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The probability for an atom of the solid to have an energy included on this 
segment, in other words the statistical weight on the segment [3,4], is given 
by:  

 D(h!,U )hd! =
"
AU

hd!

1+ exp"
h!
U

#1$
%&

'
()

    (4.2) 

 with   A = 1.7054  and  α = 1.5049 

Thus the probability to have a photon emitted with this frequency on the 
width hdν is proportional to D(hν,U)hdν. However the photons to participate 
to the density u(ν) must be emitted toward volume of the black body. For one 
direction there is just one out of two. The other is emitted toward the inside 
of the solid in place to be emitted toward its surface. On the other hand there 
are in the space three independent directions thus one has to divide the statis-
tical weight D(hν,U)hdν per height that is 23. Then the corresponding prob-
ability of emission P(ν) is:  

 P(! ) = 2
"3
!D(h!,U )hd!  (4.3) 

The volume of emission. Consider the interferences obtained with mono-
chromatic light after to have crossed Young holes. To get interferences the 
two holes must be lighted with a point source, the two sources thus obtained 
are called coherent; this means that phase properties are linked. In the cor-
puscular approach we will express this property saying that the two sources 
contain trains of coherent photons, that is having between them an integer 
multiple of wave length λ of the photons. Furthermore to see the coherency 
disappears, one has to introduce between the two beams a difference of 
length of the order of ten meters, giving the order of magnitude of the trains 
of photons. Moreover the dimensions of the black body are often of the order 
of the centimeter. Thus we can suppose that each train of photons is continu-
ously reflected or absorbed and emitted again keeping always its properties 
of coherency. As a result it follows for the photon a volume of occupation Vc 
associated to the emission, proportional to the sphere of radius R = λ = 
cτ  = c/ν in which no other photon has been emitted for the considered direc-
tion. 

That is:  Vc =
4!

3
!c
3
t
3  (4.4)  
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The lengths in these kinds of radiation are of the order of the thousand of 
angstroms to compare to the atomic scale of the order of the angstrom. As a 
result there are a very small number of photons per unite of volume com-
pared to that of the atoms of the solid. Thus the spectral density u(ν) is in-
versely proportional to Vc. Furthermore the emitted photons are the reflection 
of the density of thermal energy of the atoms in disordered position of the 
solid defining the black body. As we have seen these disordered atoms have 
six degrees of freedom, thus from this fact if the total density u of thermal 
energy is inversely proportional to Vc, on the opposite it is proportional to the 
six degrees of freedom. Thus it appears a factor 6 which is the number N of 
photons associated to Vc and to the probability D(hν,U)hdν.  

The spectral density. Now let us consider the segment with a width of en-
ergy define by the relation (4.1). Along this segment the energy can be taken 
equal to hν. The corresponding emitted energy is hν D(hν,U)hdν. For the 
frequency ν, tacking into account of the probability of emission P(ν) given 
by (4.3), the density of energy u(ν) for a width in frequency dν is given by 
the relation:  
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It comes :  

 

u(! )d! =
"

AU

9

2
4#  c

3

! 4
h

2
d!

1+ exp"
h!
U

$1
%
&'

(
)*

 (4.6) 

With the change of variable hν = xU the relation (4.6) can be written:  
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Integrating between zero and infinity, the total density of energy u can be 
written:  
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With:   J
4
= x

4
D(x)dx 0

 !
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The calculation gives:  J
4
= 11,17   

With U = 3kT it comes:  u =
3
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5 The Stefan-Boltzmann constant.  

The study of the black body leads to measure the total flux of energy W 
per second. It is given by the relation W = cu/4. It comes:   

 W =
3
6

2
6

!

J
4

k
4

c
2

h
3
T
4  (5.1) 

It is the law of Stefan-Boltzmann : 

 σ = 40,486
32

4

h

k

c
 = 5.6265x10-8 W m-2 K-4 (5.2) 

The approach of Planck gives: 
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The experiment gives:   σ(Exp) = (5.66967±0.00076) x 10-8 W m-2 K-4  
 
The value of the Stefan-Boltzmann constant calculated from the relation 

(5.2) gives a difference lower than 1% in comparison to the experiment [11] 
and [12]. This difference is small but nevertheless important in comparison to 
the accuracy of the experiments. It has leads us to revisited our statistical 
work [3] and [4], that we discuss in the following section.   

6  Discussion 

The statistical study of the distribution of the thermal energy [3] and [4] 
starts from the following remark: the sum of the states of energy occupied by 
the particles of the system divided par their number, must be equal to the 
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mean value U per particle of this energy. The present determinations, to re-
spect this condition, use the method of Boltzmann which supposes that the 
entropy of the system is proportional to the logarithm of the statistical weight 
W of the most probable distribution. This hypothesis is introduced in a differ-
ential form with the relation: dS = klnW, hypothesis that we have replaced by 
the integral relation:  

 ! =
" 

 ),(
0

UdEUEED  (6.1) 

To solve the statistical problem we have supposed that the maximum of 
the statistical weight W(E) associated to a small segment of energy around 
the value E is obtained for the mean value U. This hypothesis is generally a 
sufficient approximation, however for very accurate experiment it turn out to 
be not good enough [13].  

Indeed consider a set of particles, here the atoms of the solid of the black 
body emitting the photons. It is in equilibrium with the thermostat allowing 
maintaining stable the temperature with the wanted accuracy. Every set of 
particles is subject to losses of thermal energy. In particular among them the 
thermal radiation the energy among which is taken that of the solid and 
which participates to the distribution of that of the solid as it is exhibited by 
this study. For the small fraction used for the measurement and get out of the 
black body itself it seems reasonable to consider it negligible or as calculable.  

For the rest of the flux it is absorbed again by the black body itself and one 
could believe that looses, as a result, are equally negligible. It seems not 
really correct. The photons after have been emitted become source of pertur-
bations for the black body. When they are absorbed again they constitute a 
new amount of energy which during some time modify the probabilities and 
do not obey to the same rules of equilibrium and exchanges between the 
atoms. In some way this energy is ignored during a time, of course short, but 
sufficient to modify the thermal equilibrium. Thus the photons emitted and 
absorbed again constitute looses during some time. As a result there is a flux 
of energy from the thermostat to the set of particles. This flux has for effect 
to move toward a value M slightly higher to U the maximum of the statistical 
weight W(E). It is this energy M which replaces U in the calculus leading to 
the expression of the Stefan-Boltzmann constant.  
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Figure 2.  The figure 38 of Quinn et Martin giving experimental values for the Stefan-

Boltzmann obtained since 1921.The uncertainties are the authors’ own es-
timates. The arrow indicating: value calculated from physical constants cor-
responds to the approach of Planck, the other arrow: this work gives the po-
sition of the value corresponding to this work. For bibliographic references 
to all the works before 1971, see Blevin & Brown [15]. (1) Quinn & Martin 
(1988) (5.66967±0.00076) x 10-8 W m-2 K-4; (2) Blevin & Brown (1971), 
(5.6644±0.0075) x 10-8 W m-2 K-4; (3) Kendal (1968); (4) Gilham (1968); 
(5) Faure (1965); (6) Eppley & Karoli (1957); (7) Muller (1933); (8) 
Mendenhall (1929); (10) Kaussmann (1924). 

So ε being a small positive number, it comes M = U(1+ε) and the relation 
(5.1) becomes:  

108 σ / (W  m -2 K -4 ) 

This work 
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To find again the experimental value of σ one have to take ε = 0.0019.   
 
Let us underline that the published values of σ up to now [12], [14] and 

[15] are all higher to the theoretical value given by the relation (5.1), see in 
particular the figure 38 of Quinn et Martin [12] reproduced on the figure 2. 
This confirms the meaning of the relation (6.3): the experiment can just gives 
values higher to that of the relation (5.1). 

In conclusion we know that the temperature is a macroscopic variable 
which in accurate experiments stay a well defined variable. We can put M = 
3kTeff, the measured or effective temperature is Teff. This measured tempera-
ture includes the flux of energy need to balance the losses. It is always higher 
than the temperature defined from PV = RT the law of perfect gas allowing to 
define the mean energy of a monatomic gas as U = 3kT/2 or that of a solid as 
U = 3kT value used to determine the statistical distribution of the energy of 
the corresponding sets.  
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