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ABSTRACT. The source of the failure of covariance for Hamiltonian
and center-of-mass methods in relativistic dynamics and of the absence
of a covariant n-body Dirac equation is traced to the loss of a
nonrelativistic kinematic symmetry between position and velocity in
the transition to special relativity. The cure is found in a new,
symmetric special relativity applicable to an expanding universe
hyperbolic in both position and velocity spaces, with a double
expansion in the Lorentz ratio v / c and a Hubble ratio r / cH �1 t( ) . Its
position-velocity symmetry has many consequences both local and
cosmological. It perfects a Hamiltonian symmetry in relativity,
connects the Hubble effect of distance on velocity with the Lorentz
effect of velocity on length and time, cures the dislocation between
relativistic and Hamiltonian dynamics and its consequences, solves the
center-of-mass problem and allows the creation of covariant n-body
Schrödinger and Dirac equations. The Hubble-Lorentz relationship has
the alternating (symplectic) symmetry of Hamiltonian and quantum
dynamics. This symmetry is displayed in a new hyperbolic Poincaré
group, the symmetry group of relativistic kinematics in an expanding
hyperbolic universe. Its symmetry and normalization require the time-
dependence � t( ) = cH �1 t( ) of the Hubble expansion to be shared with

a time-varying light speed c t( ) in such a way that their product
c t( )� t( ) = � is constant while their quotient is the Hubble function

c t( ) / � t( ) = H t( ) .
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I. Introduction

A. Special Relativity and the n-Body Dirac Equation

This paper initiates a revision of special relativistic physics to cure a
defect responsible for the covariance and simultaneity difficulties that
have impeded the use of Hamiltonian and center-of-mass methods in
relativistic dynamics and the construction of a covariant n-body Dirac
equation. The source of these difficulties is identified as the absence of a
standard measure of scale in position space comparable to c in velocity
space. The needed measure of scale is found in the time-dependent
Hubble length � t( ) of an expanding hyperbolic universe. Its introduction
in the structure of special relativity carries forward into the relativistic
regime a kinematic symmetry between position and velocity spaces that is
essential for the proper treatment of the dynamics of moving objects in
spatially extended systems.

The development of special relativity accomplished the reconciliation
of electromagnetic and optical theory with the kinematics of a moving
body by introducing the scale magnitude c into the topology of velocity
and momentum space, making these spaces hyperbolic. When the
physical situation involves two or more bodies the additional variable of
their distance of separation rij is an essential feature of the problem. This

feature is one that special relativity in its standard form has not been able
to treat with complete consistency because of the simultaneity problem.
Its solution requires the introduction of a standard of length in position
space comparable to c in velocity space. This standard of length is
naturally identified with the time-dependent Hubble length � t( ) = cH �1 t( )
in the expanding universe. Its incorporation in a new extended form of
special relativity converts the flat position space of Einstein and
Minkowski into a hyperbolic space isomorphic with relativistic velocity
space. This establishes a kinematic symmetry between position and
velocity that must now be recognized as an important structural feature of
the physical universe.

The presence of the time-dependent Hubble standard of length in the
new form of special relativity provides a natural solution to the
simultaneity problem. All proper times in the relativistic system now have
their common origin in the Big Bang singularity. In the doubly hyperbolic
universe simultaneity in dynamics follows from the fact that this common
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proper time with its well-defined origin—expansion time—is the progress
variable of dynamics. Simultaneity remains a frame-dependent concept in
the relative times of clocks and electromagnetic signals, of intervals and
of observers.

The new symmetric form of special relativity incorporates the Hubble
expansion as well as the doubly hyperbolic kinematics of position and
velocity spaces. The self-consistency of this structure is demonstrated by
constructing the new hyperbolic Poincaré group. Its symmetry and
normalization require recognizing that c as well as � can be
cosmologically time-dependent, subject to the observed Hubble
relationship c t( ) / � t( ) = H t( ) and a new product relationship c t( )� t( ) = � ,

where � = c0
2H 0

�1 is a new constant, the Hubble-Lorentz constant. The
presence of this symmetry in a universe expanding from a singularity
resolves the simultaneity problem and makes possible a new, self-
consistent, covariant treatment of centers of mass and of two-body and n-
body dynamics.

B. Quantum Mechanics and Relativity: Born’s Principle of Reciprocity

One of the unfulfilled goals of physical theory is to integrate quantum
mechanics and general relativity into a single consistent unit. Almost 70
years ago Max Born pointed out that a major obstacle to that union has
been a deep difference in structural symmetry between the two
component theories. A fundamental symmetry of quantum mechanics is
the Hamiltonian reciprocity between the space-time coordinates x� and
the momentum-energy components p

�
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position and momentum representation respectively. This fundamental
symmetry plays no part in the differential geometric structure of general
relativity, which is based on introducing the line element ds2

= g
��
x�x� in

position space alone and developing its consequences in an extension of
classical dynamics.

The entire structure of nonrelativistic quantum mechanics with its
commutators and uncertainty relations as it was developed from 1925 to
1927 found the preexisting Hamiltonian dynamical structure already
perfectly adapted to the new physics—a profound indication that the
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Hamiltonian symmetries express a fundamental pattern of the physical
universe. Born, who had experienced that sudden development close to its
center, always believed that the striking reciprocity between coordinates
and momenta in Hamiltonian dynamics and in quantum mechanics
reflected a deep and far-reaching symmetry in physics, important
consequences of which were probably still waiting to be found [1,2]. He
therefore proposed as a Principle of Reciprocity that position space and
momentum space in relativity should be subject to geometrical laws with
the same balanced structure. A consequence of this insight is that the
Hamiltonian symmetry of quantum mechanics is fundamental, and must
be preserved in a properly quantum mechanical relativistic theory.

Born’s proposed version of General Relativity in the light of this
Principle was unsuccessful. It failure is not surprising, because his
application of the Principle was incomplete. Born did not notice that
Special Relativity, the essential forerunner of General Relativity and its
low-density limit, does not itself satisfy the Reciprocity Principle, because
the limiting velocity c that controls the structure of velocity and
momentum space is not matched by a counterbalancing limit in position
space. The requirement of reciprocity in this direction provides the
essential constraint that is needed to establish the structure of a revised
special relativity. This can be achieved by using the time-dependent
Hubble length � t( ) as a limiting length in position space, and accepting
the possibility of a concurrent time-dependence to the limiting velocity
c t( ) . The Symmetric Special Relativity that results solves the problem of
the relativistic center of mass and completes the Hamiltonian description
of relativistic classical and quantum dynamics in two-body and n-body
systems. It also provides the necessary gravitation-free limit for the
extension of General Relativity that Born was seeking and leads to the
possibility of a new solution of that problem.

C. Dynamics in the Relativistic and Non-Relativistic Regimes

The special relativistic modification of dynamics had the secondary
effect of invalidating at high velocities the application of a number of
important techniques and principles of the widest currency and usefulness
in the treatment of dynamical problems in complex systems. The
requirement of velocity covariance and issues of simultaneity in systems
with spatially separated parts called into question the use of Hamiltonian
methods and of formulations depending on the use of centers of mass in
n-body systems. The desire to satisfy Minkowski’s four-space symmetry
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connecting position space and time has had similar consequences. A
striking gulf has developed separating the theoretical approaches that can
be used with confidence in relativistic problems from those that are used
with the greatest convenience and success in a vast range of problems in
the nonrelativistic regime.

The development of quantum mechanics illustrated this anomaly from
the beginning. The Schrödinger equation does not satisfy the space-time
symmetry requirement and is entirely nonrelativistic. The Dirac equation
crosses the relativistic frontier, but covariance requirements have limited
it to the description of only a single moving particle. More generally, the
need for explicit relativistic covariance led Feynman to reconstruct
quantum mechanics on a purely Lagrangian basis, relinquishing to the
sidelines the Hamiltonian symmetries on which it was founded. The
relativistic center-of-mass problem remained unsolved. This appears most
strikingly in the problem of the hydrogenic spectrum itself, where the
Dirac solution is unable to predict the isotope shift in the Balmer
spectrum, an effect of the two-body center of mass, because of the
absence of a properly relativistic two-body Dirac equation. An ad hoc
extension of the nonrelativistic expression for the center of mass,
modified only by including the relativistic dependence of the participating
masses on their relative velocities, has provided a successful algorithm
that solves this problem in practical calculations of two-body and n-body
problems, but it remains unjustified by a supporting general theory and its
possible limits of validity are not known.

D. Minkowski’s Four-Space Symmetry and Einstein’s Simultaneity Issue

To reconcile Maxwell’s electromagnetic field and its waves with the
Galilean and Newtonian kinematics of moving bodies Lorentz, Einstein
and Poincaré developed the principles of special relativity. The essential
physics of the reconciliation is expressed by the Lorentz transformation.
This does not require the underlying space to be Euclidean, it is equally
compatible with the other homogeneous three-spaces of the FRW metric,
a hyperbolic or an elliptic three-space. The common impression that the
Lorentz transformation necessarily implies the Minkowski metric and its
four-space symmetry of ict,x, y,z( ) is no longer true if position space is
allowed to be homogeneously curved in analogy to relativistic velocity
space. Instead that symmetry becomes a useful approximation valid only
locally in a limited region.
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Einstein especially emphasized the conversion of simultaneity from an
absolute to a relative concept in the case of events observed by witnesses
in relative motion. When these considerations were applied to the
prescription for the center of mass in systems of two or more particles in
relative motion it has become the accepted opinion that the center of mass
is not a properly definable concept for a relativistic system. Were this to
be true, the requirement of continuity would demand a clear prescription
for treating the transition region between the clearly understood
expressions of the low energy region to some other expressions in the
relativistic limit. Nothing of this kind has ever been propounded. Center
of mass effects are seen experimentally under relativistic conditions in
innumerable cases, and they have proved to be correctly calculable
through a well-defined and reasonable algorithm. The anomaly is in the
lack of a clear theoretical justification for this algorithm.

In the expanding hyperbolic universe the singularity at the origin of the
expansion provides an absolute origin for a cosmological proper time
variable that can also be identified as the progress variable of dynamics.
Its absolute origin synchronizes the proper times of all components of any
physical system and provides the basis for a unified treatment of a
generalized center of mass and momentum for any n-body system. The
simultaneity issue then provides no impediment to the development of an
n-body relativistic dynamics and a generalized Dirac equation within
whose context the current treatment of center of mass effects can be
justified and confirmed.

E. The Nature of the Solution

All these circumstances suggest that even prior to quantization, special
relativity has not made an adequate adjustment at the border connecting
dynamics and relativity, and that a new examination of that border region
is warranted. Such a reexamination must now be carried out in the light of
the cosmological information of the Hubble expansion. What is needed is
an approach to special relativity that (a) preserves the relativistic
recognition of velocity and momentum space as hyperbolic, with a
velocity scale measured by the speed of light, (b) extends throughout the
relativistic regime the Hamiltonian and quantal symmetries between
coordinates and momenta, (c) carries into the relativistic regime the
parallelism between mass centers in position space and momentum
centers in velocity space that is essential for the proper treatment of n-
body problems, and (d) is compatible with one of the best established
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overall properties of cosmological structure, the Hubble expansion from
an apparent singularity at a determinable past time.

These requirements can all be satisfied. Symmetry can be restored if
the structure of position space contains a magnitude of scale �

comparable to c in velocity space. In a relativistic system the position
vector r is conjugate not to the nonrelativistic velocity v but to the
relativistic velocity variable

u = p /m = v 1� v 2 / c2
( )

�1/2
. (1)

To match the role of c in the space of u , the universe presents us with
an appropriate scale magnitude in the space of r , the Hubble length
� t( ) = cH �1 t( ) , the distance to the cosmological horizon. It also presents
us with an absolute origin for a universal proper time t. These features
can be introduced to form a symmetric special relativity with hyperbolic
spaces of position r and relativistic velocity u . Astrophysical evidence
provides information on the expansion function H t( ) but does not enforce
the common assumption that c is constant. The time dependence of
expansion will therefore be taken as shared between an increasing length
scale � t( ) and a possibly time-dependent speed of light c t( ) , with the
constraint that their ratio is the astrophysically determined Hubble
expansion function

H t( ) = c t( ) /� t( ) . (2)

The resulting theory depends only on the functions and parameters of
existing theory, supplemented by the Hubble function H t( ) and especially
by its value H0 at the present time. It will be shown to be a property of
the position-velocity symmetry of the theory, as expressed in a new
hyperbolic Poincaré group of the resulting geometric and kinematic
system, that the product

c t( )� t( ) = � = c0
2H0

�1 (3)

is constant, the Hubble-Lorentz constant.
It is a remarkable feature of the symmetric special relativity of a

doubly hyperbolic expanding universe with a universal absolute proper
time that its extension to an n-body system makes possible a new,
symmetric solution to the center-of-mass problem as well. In the doubly
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hyperbolic system the two centers in position and velocity space are
replaced by a single mass hypercenter in a six-dimensional configuration
space spanned by the combined hyperbolic coordinates of position and
velocity. The proper time of the universal expansion is the progress time
of dynamics for all particles. Observable time intervals and lifetimes
remain relativistically frame-dependent. The Lorentz and Poincaré groups
of special relativity in Minkowski space are extended to the double
Lorentz group, a twelve-parameter group applicable to the six-
dimensional phase space of hyperbolic position and velocity, and then to
the hyperbolic Poincaré group, a thirteen-parameter group applicable to
the seven dimensional kinematic space of position, velocity and time. All
the important dynamical properties of center-of-mass transformations can
then be extended unimpaired throughout the relativistic regime. The
explicitly covariant relativistic Hamiltonian, the relativistic Schrödinger
equation and the covariant n-body Dirac equation all follow.

The Lorentz transformation and special relativity solved the
compatibility problem for electromagnetism and particle kinematics for
purely local interactions of particle and field. It left the same
compatibility problem unsolved for spatially extended systems in the
high-velocity regime. That broader compatibility problem now is solved
for both classical and quantal systems by recognizing the time-dependent
Hubble length as the standard magnitude of scale in an expanding,
hyperbolic position space. This solution brings to light a previously
unrecognized kinematic symmetry between the spaces of position and
relativistic velocity, a symmetry intimately connected with the symplectic
symmetry of Hamiltonian dynamics. This symmetry and the new view of
relativity, dynamics and quantum mechanics associated with it imply far-
reaching changes and opportunities for development in directions
stretching from microphysics to cosmology.

II. Hyperbolic Space and the Kinematic Symmetry of Position and
Velocity

Several specific issues can be identified in special relativity that require
reexamination in the further transition to a new, kinematically symmetric
form of special relativity. A treatment of the coordinate representations of
relativistic space-time that displays the smooth connection between an
expanding, hyperbolic FRW four-space and its spatially flat Minkowski
limit provides new insights into the contrasting roles of a cosmic proper
time connected with the expansion and the frame-dependent observer
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times appropriate to a Minkowski-space description. In addition, the
hyperbolic-to-flat connection shows quantitatively how the renowned
four-space symmetry of space and time in special relativity is broken in
the presence of a time-dependent universal expansion.

When the hyperbolic structure of position space is combined with the
known hyperbolic structure of relativistic velocity space the resulting
symmetry makes possible a new, symmetric treatment of the centers of
mass and momentum in special relativity. When the doubly hyperbolic
kinematics is extended to the case of two or more bodies, the separate
three-space conditions in position and velocity in Galilean kinematics
combine to a set of six conditions specifying a single center in a six-
dimensional configuration space of combined hyperbolic position and
velocity.

A. Position-Velocity Symmetry in Special Relativity

Special relativity reconciles electromagnetic theory with the kinematics
of moving bodies by introducing the scale magnitude c in velocity space.
The imperfection of the Dirac equation in dealing with the mass-
dependence of the spectrum of even a two-body system shows that this
reconciliation is incomplete. An important feature of its incompleteness is
that it does not deal correctly with the kinematics and dynamics of
systems with two or more spatially separated moving parts—systems
depending on spatial intervals rij . A prominent symptom of this defect is

the failure of covariance of the center of mass in standard relativistic
theory. Nonrelativistically the center of mass and momentum expressions
show a position-velocity symmetry . That symmetry is lost in ordinary
special relativity.

This defect is cured by using the Hubble length � t( ) = cH �1 t( ) as the
standard of magnitude in position space. The four-dimensional space-time
can then be described by the variables of the Friedmann, Robertson,
Walker (FRW) metric for an open, expanding hyperbolic universe in the
form:

ds2
= c 2dt2 � �

2 t( ) d�2
+ sinh2

� d�
�

2
+ sin2

�
�
d�

�

2
( )[ ] . (4)

This describes an expanding hyperbolic three-space whose Gaussian
curvature is � r = ��

�2 t( ) . The local three-vector



188 F. T. Smith

r = � t( )sinh� �̂ �
�
,�

�( ) = r,�
�
,�

�( ) , (5)

where r = � t( )sinh� , describes the coordinates of a point in that three-
space from a local origin r = 0. The hyperbolic arc � will be called the
“separation”. The complete four-space can be described by a four-vector
of position
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The hyperbolic geometry in this four-space is best parametrized by the
curvature length � t( ) and the dimensionless hyperbolic vector

� = �,�
�
,�

�( ) , the separation vector.

The symmetry between this position space and relativistic velocity
space is shown by the isomorphism between the position vector r and the
relativistic velocity vector u ,

u = p /m = v� = v 1� v2 / c 2
( )

�1/ 2
. (7)

The curvature of hyperbolic velocity space is � u = �c �2 . The
hyperbolic geometry of this velocity space is best parametrized by making
use of the rapidity � and the directional angles �

�
,�

�
of the rapidity vector

� = �.�
�
,�

�
( ) , so that the relativistic velocity is

u = c sinh� �̂ �
�
,�

�
( ) = u,�

�
,�

�
( ) , (8)

where u = c sinh� .
To complete the formal symmetry between the spaces of r and u , we

shall now take the light velocity as time-dependent, c t( ) , identifying its
present value specifically as c t0( ) = c0 . The velocity four-vector is then

U t;�( ) = c t( )
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The complete structural isomorphism between relativistic velocity
space as described by Eq. (9) and expanding hyperbolic position space as
described by Eq. (6) is a fundamental property of kinematics in symmetric
special relativity.

B. Lorentz Invariance in the Hyperbolic System

It is well known that the Lorentz invariance group of velocity boosts is
isomorphic with the invariance group of a hyperbolic three-dimensional
geometry. In special relativity this invariance is expressed in two separate
manifestations. In the original Lorentz transformation the operators of
velocity boosts operate on operands of a physical nature different from
velocity itself, the four-vectors of position and time, and the velocity
correction to the original position vector is subtractive. In Einstein
velocity addition the velocity boosts operate on the vectors of velocity
itself, and the velocity correction to the velocity operand is necessarily
additive. It is useful to think of these two effects as different, but related,
manifestations of the Lorentz group. Velocity addition generates a
geometric Lorentz group describing properties of velocity space itself.
The effect of a velocity boost on observations in space and time is a
kinematic effect, and generates what can be called a kinematic
representation of the Lorentz group. In the physical universe we can
contemplate describing the entire kinematic and geometric structure of
position and velocity with the help of a larger kinematic group, within
which these two representations of the Lorentz group will appear as
separate subgroups.

In the expanding universe with a hyperbolic position space,
translations within the position space are generalized rotations and will
generate still a third representation of the Lorentz group, a second
geometric representation. The strict isomorphism between the hyperbolic
geometries of position and velocity spaces in this universe is reflected in
isomorphic structure of the position and velocity four-vectors of Eqs. (6)
and (9). It is natural now to look for a second analogue of the kinematic
Lorentz subgroup of velocity boosts acting on position and time.
Symmetry suggests this should appear in the effect that a shift in position
space may have on velocity. Such an effect is well known in the physical
universe. It is the Hubble effect, in which a shift in position from the
observer to a remote location results in an additive contribution to the
observed velocity. The symmetries of this process can be described by a
fourth Lorentz subgroup. These four subgroups are part of a larger group
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structure that describes the symmetries of kinematics and geometry in the
relativistic expanding hyperbolic universe. Eqs. (4) to (6) illustrate an
important feature of the expanding hyperbolic universe: the separability of
its expansion time coordinate t, a universal proper time common to the
entire three-space of position, from the natural curvilinear coordinates

� = �,�
�
,�

�( ) of the curved position space. In the hyperbolic geometry

the entire effect of a Lorentz velocity boost operating on a four-vector of
position and time takes place in the space of � and the expansion time t
is invariant. In the Minkowski space of the usual special relativity the

separable coordinate system t;�,�
�
,�

�( ) is not available, and the

Minkowski four-space can be parametrized by either the coordinate

system c�, x1,x 2,x 3
( ) or c�;r,�

�
,�

�( ) , neither of which is separable.

C. Position-Velocity Symmetry and Hamiltonian Symmetry

The kinematic symmetry r� u( ) or �� �,�� c( ) shows a generic

relationship with the position-momentum balance r� p( ) of Hamilton’s
equations and the quantum commutators, but the mass factor in p = mu
on the right hand side impairs the identification between the kinematic
position-velocity symmetry and the Hamiltonian symmetry in its most
common form. However, we can take advantage of the invariance of the
Hamiltonian system and the quantum commutation relations under
canonical transformations to introduce a mass-weighted set of generalized
coordinates and momenta

qi = mi
1/ 2ri , pi = mi

�1/2pi = mi

1/2ui (10)

which preserve the reciprocating symmetry

p� q, q� �p (11)

of the Hamiltonian system while simultaneously expressing the position-
velocity balance r� u( ) of kinematic symmetry. This new system of
kinematic coordinates and momenta has the doubly balanced pattern

r� u

q = m1/2r� m1/ 2u = p
�

�
�

�

�
� . (12)
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We can now follow Born’s conjecture and use the reciprocating,
symplectic symmetry of Eq. (11) in the form of Eq. (12) as a guide in
developing in the physics of the border between nonrelativistic dynamics
and relativity. We shall apply Born’s rule of reciprocity by requiring that
the symmetries of Eqs. (11) and (12) survive unimpaired in the relativistic
domain.

The use of the privileged mass-weighted coordinates and momenta
of Eq. (10) brings the coordinate-momentum balance of the Hamiltonian
equations and the quantum commutators into agreement with the position-
velocity symmetry of the Galilean physics and its mass and momentum
centers, and extends that isomorphism into the domain of relativistic
velocities. In addition, we can recognize another aspect of these
symmetric patterns in a reciprocal relationship between the Lorentz effect
of a velocity boost on measurements of length and time and the Hubble
effect of a shift in position on measurements of velocity. This Hubble-
Lorentz reciprocity will be presented later in this paper. It reveals a new
example of the alternating sign in the reciprocity relationship of Eq. (11),
but appearing now as a mass-independent relationship in a purely
position-velocity context. This new appearance of the fundamental
Hamiltonian reciprocity is a striking confirmation of the importance of
what can now be called Born’s reciprocity principle.

III. Hyperbolic Space-Time and its Flat Space Limit

A. The Spaces and their Symmetries

The generating principle of special relativity is the requirement of
compatibility between the laws of kinematics of moving particles and the
properties of electromagnetic fields and waves described by Maxwell’s
equations. Its primary consequences are expressed in the Lorentz
transformation of intervals of space and time under a velocity boost and
the demand for Lorentz invariance of dynamical laws. This requirement
of electromagnetic and kinematic compatibility can be satisfied in
homogeneous and isotropic position three-spaces by geometries that are
flat, negatively curved (hyperbolic) or positively curved (spherical or
elliptical).

It is the coupling of the requirement of Lorentz invariance with the
assumption of a flat position space that leads to the metric condition of
ordinary special relativity for a space-time interval,
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ds2
= c 2d� 2

� dr2 . (13)

This form for the metric is the source of Minkowski’s requirement of
formal four-space symmetry in the variables ic� ,x, y,z( ) of special
relativity. In general relativity Einstein adopted the metric of Eq. (13) as
the boundary condition at infinity for the gravitational field around an
isolated mass concentration. Fock proposed instead using a hyperbolic
space for this boundary condition [3]. In that case the Minkowski-space
metric of Eq. (13) is replaced, in the simplest approximation, by the
metric of the time-dependent spatially hyperbolic space-time of
Friedmann, Robertson and Walker, Eq. (4). In the global coordinates

t,�,�
�
,�

�( ) of Eq. (4) we can describe a point in space-time by the

position four-vector of Eq. (6).
The time-dependent curvature length � t( ) in Eqs. (4) and (6) is

connected with the Hubble expansion function

� t( ) = cH �1 t( ) . (14)

I shall assume that in the neighborhood of the present time t0 this
function is adequately represented by the linear approximation

� t0 +�t( ) = cH0
�1
+ c�t . (15)

The present state of cosmological knowledge suggests a universe
whose expansion is open and whose curvature is negative but exceedingly
close to flat on the average. At the same time, the presence of gravitating
masses insures that it is essentially nowhere locally truly flat. It is a
standard result of gravitational theory that the cosmological density
parameter � = 8�Gd / 3H 0

2 , where G is the gravitational constant and d
is the average density of matter, must exceed unity for the average
curvature to be positive and the universe to be closed. A close to zero
average curvature implies that positive curvature near massive matter in
parts of the universe like our own must be compensated by negative
curvature in the vast voids that are also seen in maps of the visible
universe. This requires adopting Fock’s boundary condition and the FRW
metric of Eq. (4) in the gravitation-free limit. That is therefore an
appropriate metric for an alternative version of special relativity. The
hyperbolic geometry of position space which it implies will be shown to
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symmetrize the center of mass problem and provide it with a covariant
solution.

Adopting the metric of Eq. (4) instead of Eq. (13) has the consequence
that the familiar four-space symmetry of the variables ic� ,x, y,z( ) of
Minkowski space loses its universality and becomes a local and
approximate symmetry appropriate to a region of space and time where
�r / � t0( ) � � s � �r / c0H0

�1
<< 1 and c0 �t / � t0( ) � �t � �t / H0

�1
<< 1.

For local physics and microphysics this is not a significant limitation. For
cosmological distances and times, or for issues of principle like the
simultaneity issue, it becomes important to recognize that the Minkowski
four-space symmetry of space and time is in fact not a requirement of
relativity, but rather a convenient approximate rule, valid only locally,
like two-dimensional Euclidean symmetry in local surveying on the
earth's surface.

B. Hyperbolic and Minkowski Coordinates in Expanding Space-Time

1. The General Case

The expanding hyperbolic description of space-time in terms of the

global coordinates � t[ ];�,�
�
,�

�( ) , with their velocity-space conjugates

c t[ ];�,�
�
,�

�
( ) , provides the representation of choice to deal with general
symmetry issues and questions of covariance. Depending as they do on a
cosmologically remote origin in time these global coordinates are
altogether unsuited for describing local or microscopic processes, where
well-defined scales of length and time are needed, together with a local
origin in time. For this purpose we need to convert to a local Galilean and
Minkowski system �;r( ) of time and space coordinates suited to a region
where the global parameters � and t are very large and imprecisely
known. This is the requisite coordinate system with which to confront
experimental reality on the local scale.

The important coordinate transformation between hyperbolic and
Minkowski coordinates is a two-dimensional one, independent of the

angular variables �
�
,�

�( ) . It will be developed here for the simple case

where all velocities are nonrelativistic. Assuming the relationship � t( ) is
defined, the hyperbolic-to-Minkowski connection can be established in
two steps:
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Step 1: At any value of the expansion time t we define the new
coordinates

r = � t( )sinh�, w = � t( )cosh�.(16)

This provides us with a length variable r which remains finite even in
the limit t��, �� �,�� 0. Its companion variable w is the zeroth,
timelike, component of a four-vector X = w,r( ) = w,x,y,z( ) . The inverse
connection is

�
2 t( ) = w2

� r 2, tanh� = r /w .(17)

In Step 2 the Minkowski time variable � , a local time, is introduced by
a simple translational shift in the variable w to a local origin w0 = � t0( ) :

X 0
= w = �0 + c0� . (18)

Eqs. (16) and (18) can be combined to give

�
2 t( ) = �0 + c0�( )

2
� r2 and (19)

tanh� = r / �0 + c0�( ) . (20)

Both the global variable sets � t[ ];�( ) or w;r( ) and the purely local set
�;r( ) are available to identify a four-space point in the expanding

hyperbolic universe, and the descriptions are readily interconverted.
It is the practical need for a local origin of time in Galilean and

Minkowski kinematics that makes it impossible to construct a global
position four-vector like that of Eq. (6) in ordinary special relativity. The
hyperbolic metric is compatible with the existence of the global position
four-vector as well as the velocity four-vector, but the Minkowski one is
not. The local construction does permit the covariant existence of the
differential four-vector dx� = cd�,dr( ) and the local validity of the four-
space Minkowski symmetry associated with it. Globally in the wider
hyperbolic universe that symmetry is no longer valid. Covariance
symmetry under velocity boosts remains nonetheless. It can be expressed
by a boost through a rapidity change ��� or the equivalent velocity change
�U c,���( ) , carried out by the operation of the usual Lorentz matrix on
position four-vector X � t( ),�( ) . This is supplemented in the hyperbolic
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geometry by a similar covariance under translations �� in hyperbolic
position space, the space of the separation variables �.

2. The Effect of a Time-Varying Light Speed

The relationship between the hyperbolic and the Minkowski coordinate
descriptions of four-space will depend on the assumption made about the
time-dependence of the light speed. We consider two cases, the usual
special relativity with constant c = c0 , and symmetric special relativity
with a cosmologically time-varying light speed c = c t( ) subject to the
symmetry condition of Eq. (3). To demonstrate the characteristic features
of the situation it will suffice to assume the simplest plausible form for the
Hubble expansion function. It is convenient to work with the reciprocal of
the Hubble function, which has the dimensions of time. It will be denoted
h t( ) � H �1 t( ) . At least over a very large region in the neighborhood of the
present time t0 this relationship can be excellently approximated as linear
one in the expansion time, and we can assume it has the form
H �1 t( ) = h t( ) = t .

In case 1, ordinary special relativity, with constant light speed, the
magnitude of the position four-vector X = � t( ) = c0 H0

�1
+�t( ) , and of its

timelike component in Minkowski variables, Eq. (18), will be the same
whenever the magnitude of the spatial components X1,2,3

= � t( )sinh� are

negligible in comparison to X 0 , i.e. whenever sinh� = r / c0H0
�1
<< 1.

This condition is always satisfied on the human and even galactic scale,
and the identity in magnitude of �t and � can be relied upon in ordinary
special relativity except at cosmological distances or under conditions
involving relativistic velocity differences between one part of a system
and another.

The case of symmetric special relativity, with the light speed and
curvature length obeying Eqs. (2) and (3), brings in new and important
features. It will be labeled Case II. In it the curvature length and light
velocity take the form

�II t( ) = �
1/2h1/2 t( ) = �1/2 t1/2 , cII t( ) = �

1/ 2h�1/ 2 t( ) = � 1/ 2t�1/ 2, (21)

with � = c0
2H 0

�1. The left hand side of Eq. (17) is then �II
2 t( ) = �h t( ) .

Completing Eq. (17), we have
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�II
2 t( ) = �h t( ) = �t = wII

2
� r 2. (22)

It is now convenient to use h = h t( ) = H �1 t( ) as a measure of the
expansion time itself. Then

�II t( ) = �
1/2h1/2 , cII t( ) = �

1/ 2h�1/2 ,(23)

wII = �
1/2h1/2 cosh� = c0h0

1/ 2h1/ 2 cosh�. (24)

We can introduce the Minkowski time � near its local zero at t0 by
writing

wII = �0 + a0c0� = c0 h0 + a0�( ) , (25)

where a0 is a coefficient which to be determined by the requirement that a
time interval measured as �h (or �t ) in expansion time and as �� in the
local Minkowski time should be the identical in the neighborhood of t0 .
This is equivalent to the condition on the derivatives

�w /�h( ) t0
= �w /��( )t 0

. (26)

Applying this to the expressions in Eq. (24) and (25) we find

a0 =
cosh�

2
. (27)

We now combine Eqs. (24) and (25) using this value of a0 :

h0
1/ 2h1/ 2 cosh� = w II / c0 = h0 +

� cosh�
2

. (28)

Squaring both sides, we can put this into the alternative form

h = h0 sech� +
�

2h0

�

�
�

�

�
	

2

. (29)

We can now reexamine the two-parameter connection between the
global coordinate system h,�( ) , which we can use as the equivalent of

t,�( ) , and the local Galilean or Minkowski coordinate system �,r( ) . The
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connection depends explicitly on the parameters c0,h0( ) . The equations
are

� /h0 = 2 h /h0( )
1/2

� 2sech� , (30)

r / c0h0 = h /h0( )
1/2

sinh� . (31)

In Eqs. (29) and (30), we note that h = h t( ) � t measures the expansion
time from the remote Hubble singularity, while � measures the Galilean
and Minkowski time from a recent and local origin at
h = h0 = H 0

�1,� = 0( ) . The transformation equations (30) and (31) are

applicable unrestrictedly throughout space-time.
If we now write h = h0 +�t Eq. (29) becomes

�t = � + �
2 / 4h0 + h0 tanh2

� + sech��1( )�[ ] . (32)

We can also express this with an explicit display of its dependence on
the distance r instead of the separation �:

� = 2h0 1+�t / h0( )
1/2

� 1+ r2 / c0
2h0h( )

�1/2
�

��

�

	

= �t � �t 2 / 4h0 + r

2 / c0
2h0h…�

�
�
	
(33)

Each of the bracketed terms on the right hand side of Eq. (32) and in
the final form of Eq. (33) contains one of the two strong convergence
factors �space = r / cH0

�1 or �time = � /H 0
�1, and is fully negligible except at

cosmological distances or times. This confirms that both measures of the
flow of time, the cosmological time increment �t and the Galilean and
Minkowski time � , are identical in a very wide local region around the
present time � = 0 and location r � 0, but they diverge elsewhere in
regions cosmologically remote in either space or time.

The spatially local form of the above equations is especially simple. It
prevails over a wide range of noncosmological distances where
r << c0H0

�1 , in which case � in Eq. (32) essentially vanishes. In that case
Eq. (32) becomes the quadratic equation

�t = � + � 2 / 4h0 = � + �
2 / 4H 0

�1. (34)

To avoid a spurious root, one may use Eq. (30) with � = 0� or (33)
with r = 0 .
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For local measurements at times scales of human lifetimes or less, the
quadratic term in this equation is negligible, and both time scales are
equivalent, but for remote times past or future in the scale of terrestrial
and cosmic history the divergence of the scales of t and of � is important.
The Minkowski time variable � can thus be taken as measuring the time
of an event in the past or future of the local point of observation—the
historical time, while the time t is an astrophysically measured expansion
time—the cosmological time.

In particular, the Hubble time looking back from the present to the
beginning of the cosmic expansion, when h = 0, is different by a factor of
two in the cosmological and the local historical time scales:

�tHubble = �H0
�1, � Hubble = �2H 0

�1 . (35)

This is not surprising if we remember that the cosmological time �t is
measured by observing a signal which has been propagating through a
medium of varying light speed, while the historical time to some past
event represents a time interval measured locally and in the same velocity
frame. We can describe the cosmological effect on long distance signal
transmission as a foreshortening of the time.

The availability in the historical time scale of a time interval since the
Big Bang twice as long as the cosmologically measured Hubble time for
the evolution of stellar and galactic objects is of some significance in
view of the well known astrophysical observations of stars of
extraordinarily great age compared with the Hubble time.

C. The Roles of Time in an Open Expanding Universe

An open expanding universe is topologically equivalent to the
expanding hyperbolic universe described most naturally by the

coordinates � t[ ],�,�
�
,�

�( ) , but the extreme remoteness of the expansion

origin of the time coordinate t and the imprecision of our knowledge of it
and of the associated length measure � t( ) makes these coordinates
impractical for the description of physical processes on a local, terrestrial
or microscopic scale. For that purpose we must use the local coordinates
�,r( ) of Galilean and special relativistic physics. As the development in

the previous subsection has shown, the two time variables t and � of the
expanding hyperbolic universe represent distinct physical concepts: (a)
the universal proper time t of the expanding length scale � t( ) , and (b) the
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projection of t or � t( ) represented by the variable w and its increment
c� = w � w0 in the temporal direction of a four-dimensional space-time.

The time t is now a universal proper time, measured from the start of
the cosmic expansion, an invariant under both velocity translations and
displacements in hyperbolic position. Both t and �(t) are invariants of
the four-vector X . This proper time coordinate is the same for all
particles of a system, and is the progress time of dynamics. Its
synchronization follows from its absolute origin in the Hubble singularity.
Multiple times are not required for dynamics, even in the description of n-
particle systems. The time t of dynamics and of the universal expansion
can be identified as “absolute proper time”, “cosmological time” or
“dynamical time”.

The interval time or historical time� , the time component of
Minkowski four-space through the temporal variable
w t,�( ) / c t( ) = H0

�1
+ � of which it is a part, represents only one frame-

dependent component of a four-vector or tensor X t,�( ) . Velocity boosts
or translations in position will mix the temporal component w and the
spatial components r of X , and thereby modify � , but they leave t and
�t unchanged. There is thus a profound physical difference between the
cosmic time t or its proper time increment �t and the temporal
component time w / c or its Minkowski time � .

Special relativity has always contained two separate forms of time:
proper time, an invariant property of a particle or a system of particles in
its own home velocity frame, a scalar; and observer or clock time, a
frame-dependent observable, the fourth component of covariant four-
vectors of position. In symmetric special relativity this distinction
becomes sharper and more emphatic, because the singularity at the
beginning of the Hubble expansion is a unique origin common to the
proper time of every point in the geometry. We now encounter on one
hand the universal time t, a scalar invariant common to all particles, and
on the other the observer- and particle-dependent time of clocks, � i or � ij ,

the time of intervals between events, of time delays and lifetimes. This
interval time appears as an increment of the fourth component
wi = wi,0 + c�i or wij = wij ,0 + c�ij of a covariant position four-vector Xi or

Xij that is the peculiar property of a particular particle or object i or
interval ij . In an n-body system it is these particle or subsystem local
times that are multiple. Their variation with changes in the velocity frame
in respect to which they are evaluated is a familiar relativistic property.
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When position space is not flat their relationship with the universal proper
time also depends on the distance between the events by which they are
being measured, or the distance between an event and the observer. These
local times always make their appearance as increments �wi / c = � i or
�wij / c = � ij of the time-like component of a four-vector or a four-by-four

tensor of position. They can be called “local times”, “clock times” or
“observer times”.

The development of the preceding section shows how this Minkowski
variable can be extended smoothly throughout the whole range of time
from the Big Bang to the indefinite future.

The time dimension of a four-space with an expanding hyperbolic
position space can be envisaged as the analogue of the radial dimension in
a spherical coordinate system. Its time coordinate is orthogonal to the
hyperbolic spatial coordinates, and has its origin at the singularity of the
expansion. It is an absolute proper time, and it is the same for all points in
the hyperbolic three-space provided they are all stationary in the same
velocity frame. When Hubble and Lorentz corrections are properly made,
all points, moving or not, can be ascribed a unique absolute proper time.

The Minkowski limit can be brought into this picture by noting that it
is reached when the hyperbolic pseudosphere expands so that a local
region of it is carried to the infinite limit of a flat space. The local time
coordinate is the height coordinate of a cylindrical system orthogonal to
the hyperbolic three-space. At the same time the absolute origin of the
height coordinate recedes to minus infinity, and only a local time with a
nearby origin is definable.

These issues are clarified by the connection between the expanding
hyperbolic coordinate system and the Minkowski one given in Eqs. (28)
to (34). The time and separation variables t,�( ) of the hyperbolic world
become impractical to use in a small local system and must be replaced by
the variables �,r( ) that are valid in both the relativistic Minkowski world
and the Galilean-Newtonian world. In the hyperbolic world t is an
invariant, has an absolute origin in the remote past, is synchronized, and is
common to all particles; particle positions and separations are expressed
by the covariant variables � i and � ij orthogonal to t. In a local system
neither t nor � are practically usable coordinates and the non-covariant
variables � and r are required. Locally, nonetheless, the set of variables
c�,r( ) can be treated conditionally as a Minkowski four-vector in a region

where corrections of the order �r = r / c0H0
�1

( ) and �
�
= H 0� are
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negligible. These relationships are completed by the development of the
connection between the cosmological time t or �t and the historical time
variable � that is applicable over the entire span of time from the Big
Bang to the present and into the far future.

D. The Effect of Spatial Curvature in the Hyperbolic-to-Minkowski
Transition

It is informative to focus some attention on the transition regions in
time and in space in which the practical identity between the cosmological
and local time scales of �t and of � gives way, first to the entry of the
quadratic term in the time equation, (34), and then to spatial curvature
terms.

Minkowski space-time can be thought of as the limit of expanding
hyperbolic space-time in a region near the axis � = 0 when

�s = r / cH0
�1
� 0 . This limit has the important property that r,� and �t

as well as the angles �
�
,�

�( ) = �r,�r( ) remain well-behaved variables

while � = sinh�1 r / � t0 + �t[ ]( )� 0 vanishes in a singularity, and t0 and

� t0( ) increase without limit.
The cosmic time t and its increment �t are invariants of the four-

vector X , whereas � , through the temporal variable w / c = t0 + � of
which it is a part, represents only one frame-dependent component of X .
Velocity boosts will mix the temporal component w and the spatial
components r of X , and thereby modify � , but they leave t and �t
unchanged. There is thus a profound physical difference between the
cosmic time t or its proper time increment �t and the temporal
component time w / c or its Minkowski time increment � . This physical
distinction remains important even in the zero velocity frame, where the
difference is

c� � c�t = � t( ) cosh��1( ) , (36)

a quantity that vanishes only at the spatial origin r = 0, � = 0 . It is
important in principle, though exceedingly small in local applications. It
is significant in magnitude at cosmological distances.

The Minkowski coordinates �,r( ) = �,r,�r,�r( ) or �, x, y,z( ) , measured
from a local origin in space and time, are the natural tools for the
description of systems on a terrestrial scale. The expanding hyperbolic
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coordinates t,�( ) are cosmologically based. They provide the framework
for understanding the global symmetries and their consequences in a
universe that is likely to be topologically close to the universe of our
experience, but they are not useful for the detailed description of
processes in a limited, local region of space and time. For that purpose the
most appropriate description is through the familiar local time and space
coordinates �,r( ) ; they are valid and complete to describe both
nonrelativistic space and time and the flat Minkowski space-time of
ordinary special relativity. They are equally applicable in the expanding
hyperbolic universe provided they are being used in a region spatially
small compared to the Hubble length and over a time period small
compared to the Hubble time, but they need to be supplemented by
additional parameters to specify the hyperbolic curvature and the time
dependence of its expansion.

The transformations leading to Eqs. such as (32) and (33) make it
possible to transform in either direction between the FRW hyperbolic

coordinate system t,�,�
�
,�

�( ) or � t[ ],�,�
�
,�

�( ) and a Minkowski

coordinate system c�,r( ) = c�,x,y,z( ) . This transformation requires the
specification of additional parameters beyond those of the Minkowski
coordinate system. We can choose these to be a local origin of
incremental time 1

0 0
t H

�
� and the curvature length at that time

� t0( ) � cH0
�1. We can now augment the zero-order translation between

hyperbolic and Minkowski coordinate systems by an expansion making
use of these constants. Because practical measurements will be made in
the coordinates �,r( ) it will be most convenient to express the correction

terms through the dimensionless coefficients �r = r /� t0( ) � r / cH0
�1 and

�
�
= c� / � t0( ) � � /H 0

�1 or �
�t = c�t / � t0( ) � �t /H 0

�1 .
The correction terms we seek can be identified with the expression of

Eq. (28). It can be transformed by using the expansion

� t( )cosh� = � t( ) 1+ sinh2
�[ ]

1/2
= �

2 t( ) + r 2
[ ]

1/2
= � t( ) 1+

r 2

2�2 t( )
�

r 4

8�4 t( )
…

�

�
�

�

�
	 (37)

In the neighborhood of t0 � H0
�1 the time-dependent Hubble length can

be written

� t( ) = �0 + c�t +O c 2
�t2 /�0( ) � cH0

�1
+ c�t +O cH0�t

2
( ) . (38)
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The three spatial coordinates r = r,�
�
,�

�( ) are unaffected by this

change. Their timelike companion w can now be measured from its value
w0 = w t0,�0( ) = w t0,0( ) = �0 � cH0

�1 at the local space-time origin

t = t0, r = 0( ) and expressed as a function of r and 
t ,

�w = c� = w � �0 = �0 + c�t( )
2
+ r2�

�
�
	

1/2

� �0 = c�t + g �0 , r,�t( ) . (39)

The function

g �0,r,�t( ) = c � ��t( ) =
r2

2�0

�
r2c�t

2�0
2 �

r4
� 4r2c2

�t2

8�0
3 … .

= �0

�r
2

2
�
�r

2
�

�t

2
+
� r

2
�

�t
2

2
�
�r

4

8
…

�

�
	




�
�

(40)

is a curvature correction that depends on the poorly known Hubble length
�0 only through terms in powers of the very small quantities

�r
2
= r /�0( )

2
and �

�t = c0�t /�0 . It gives a measure of the error
introduced by using the flat space approximation, and is ignorable in
practical calculations except at cosmological distances and times.

Practical measurements are made in terms of � , the local time variable
of common experience, and not the incremental proper time 
t . The
curvature correction function g of Eq. (40) can then be expanded as a

function of the observable local time � , through the ratio �
�
= � / H0

�1

instead of �
�t = �t / H0

�1 ; the difference appears only in the fourth-order
correction:

c0 � � �t( ) = g �0,r,�( ) = �0

�r
2

2
�
�r

2
�
�

2
+
� r

2
�

�

2

2
+
�r

4

8
…

�

�
	




�
� . (41)

In a hyperbolic expanding space-time we can now establish a
tangential flat Minkowski space-time with the coordinates

x 0
= X 0

� RH,0 = �w = c0� = c0�t + g RH, 0,r,�( ),

xi( ) = X i( ) = r.
(42)
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The flat three-space of this Minkowski universe is tangent to the
hyperbolic three-space at the local origin r = 0. The four components of
the global four-vector X� have the covariance properties of a column
four-vector in the hyperbolic four-space, but the Minkowski array x�

does not. The differential of the Minkowski array, dx� = dX� , does not
suffer from this defect, and can be treated as a four-vector.

For local applications, the only coordinates that will be needed in
practice will be expressed as differences or differentials, describing an
interval:

�x12
0

�x12
i

( )

�

�
�

�

�
� =

�X12
0

�X12
i

( )

�

�
�

�

�
� =

�w12

�r12

�

�
�

�

�
� =

c0�t12 + �g12

�r12

�

�
�

�

�
� . (43)

Here, as above, the correction term �g12 is ordinarily negligible except
in the case of cosmological magnitudes.

E. The Independent Roles of Space and Proper Time

In the doubly hyperbolic universe one of the most profound physical
symmetries is that between the vector three-spaces of position and
velocity, with the one-dimensional manifold of universal proper time
orthogonal to them all and invariant both to boosts in velocity space and
to translational shifts in position space. A signature of the deep physical
independence of this cosmic time variable is the difference in sign
between the quadratic temporal and spatial terms in the metric
expressions of Eqs. (4) and (13). Spatial intervals 
r and temporal
intervals 
� are always separated from one another by a rotation through
� / 2 in the complex plane. It is useful to adopt a notation that emphasizes
this important distinction between the spatial and the time coordinates.
For this reason it is convenient to employ the Minkowski real-and-
imaginary notation for four-vectors and tensors. Position and velocity
four-vectors can therefore be written in the form

X t,�( ) = � t( )
cosh�

i sinh� �̂ �
�
,�

�( )

�

�
�

	



� =

� t( )cosh�

ir

�

�
�

	



� and (44)

U t,�( ) = c t( )
cosh�

i sinh� �̂ �
�
,�

�
( )

�

�
�

�

	

 =

c t( )cosh�

iu

�

�
�

�

	

 . (45)
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IV. The Vectors of Position and Velocity in Hyperbolic Kinematics

The group theory of the geometry of a hyperbolic three-space is just
that of the six-parameter Lorentz group. The addition of vectors in that
geometry can be recognized as one of the primitive group operations. In
preparation for studying kinematics in the pair of interrelated hyperbolic
geometries of the spaces of position and velocity it will be useful first to
review the case of a single hyperbolic geometry and establish the
principles in a notation that can be carried over to the case of the paired
curved geometries. The relationship between the intrinsic six-parameter
structure of the Lorentz matrix and the three-parameter description of the
location of a point in a hyperbolic three-space, as expressed in Eq. (6)
above, exhibits important features of the geometry of a curved space that
are not present in flat space. An appropriate formulation including these
effects will provide an essential foundation for the extension to the doubly
curved system.

A. Translations and their Lorentz Parameters

The symmetry group of translations and rotations in a hyperbolic three-

space is just the six-parameter Lorentz group. The Lorentz matrices

realizing this group can be expressed in a standard form (see, for instance,

reference [4]). Its parameters fall into two sets of three, a vector

� = �,�
�
,�

�( ) describing a pure hyperbolic translation through the

geodesic arc � in the direction �̂ �
�
,�

�( ) and a rotational pseudovector

� = �,�
�
,�

�
( ) through the angle � around the direction �̂ �

�
,�

�
( ) . We

first define the displacement matrix K �( ) of a pure hyperbolic translation,

L �, 0( ) = K �( ) =
cosh� �isinh� �̂

T
�
�
,�

�( )

i sinh� �̂ �
�
,�

�( ) I3 + cosh��1( )�̂�̂
T

�

�

�

	




� , (46)

and the Lorentz rotation matrix R �( ) of a pure three-space rotation

L 0,�( ) = R �( ) =
1 0T

0 R3 �( )

�

�
�

�

�
� . (47)

The matrices K �( ) and R �( ) have the useful property that
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K �1
�( ) = K ��( ), R�1

�( ) = R ��( ) . (48)

The general Lorentz matrix L �,�( ) can be defined as the product

L �,�( ) := K �( )R �( ) = L �,0( )L 0,�( ) . (49)

Because of noncommutativity, the order of the product must be

respected.

The variables � = �,�
�
,�

�( ) in the displacement matrix K �( ) are those

of the position four-vector of Eq. (6). When that four-vector X t,�( ) is

normalized it can be identified with the leading column (and row) of the

displacement matrix or of the corresponding irrotational Lorentz matrix:

X μ t,�( ) /� t( ) = Kμ

0 �( ) = Lμ0 �,0( ) . (50)

The location of a point in hyperbolic space with respect to a local

origin at �0 = 0 can be expressed either by the vector � or by the

displacement matrix K �( ) , i.e. by the irrotational Lorentz matrix L �,0( ) .

The addition of vectors as the sum of sides in a triangle remains
applicable in hyperbolic geometry, where it is carried out by the rules of
hyperbolic trigonometry. Hyperbolic vector addition will be identified
here by the special summation notation +̂ . In the triangle

�1 +̂ �2 +̂ �3 = 0 (51)

the addition of sides follows the hyperbolic law of cosines

cosh�3 = cosh�1 cosh�2 + sinh�1 sinh�2 cos� ��1,�2( ) . (52)

This can be supplemented by the hyperbolic law of sines to obtain the
necessary angles. In velocity space this vector addition in a hyperbolic
triangle reproduces the results of Einstein vector addition of velocities.

B. The Rotations of Parallel Transport

As in spherical trigonometry, a sequence of non-collinear translations

induces a rotation. In the product of Lorentz matrices

K �1( )K �2( ) = L �1,0( )L �2,0( ) = L �3,�123( ) = K �3( )R �123( ) (53)
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the second order rotation �123 adjusts for the angular defect of the

hyperbolic triangle, measured by its directed area. This area can be

expressed as a hyperbolic vector product, for which we can use the

symbol "�̂":

�123 = �1 �̂ �2[ ] / 2 = �2 �̂ �3[ ] / 2 = �3 �̂ �1[ ] / 2. (54)

This rotation arises in any curved space as a consequence of the

parallel transport of a local vector describing the orientation of an

infinitesimal test body carried over a nongeodesic path. Its exact

magnitude �123 is given by Euler’s formula,

cos �123 / 2( ) =
1 + cosh�1 + cosh�2 + cosh�3

4cosh �1 / 2( )cosh �2 / 2( )cosh �3 / 2( )
, (55)

and equivalently by an expression that illustrates the connection with the

area of the triangle and establishes the sign of �123:

sin �123 / 2( ) =
sinh�1 sinh�2 sin� ��1,�2( )

4cosh �1 / 2( )cosh �2 / 2( )cosh �3 / 2( )
. (56)

In velocity space a similar rotation is responsible for the well-known

Thomas precession correction in atomic hyperfine spectra. This is a

physical consequence of the velocity-space rotation:

�� vel = � �̂ d�� / 2 � v � dv� / 2c2
( ) . (57)

The rotation factor R �123( ) in Eq. (53) appears in the important

product and commutator relationship

K �1( )K �2( ) = K �1( ),K �2( )[ ] / 2 = K �1 +̂ �2( )R �1 �̂ �2 / 2( ) . (58)

In practice, the induced rotation will be very small, because it contains

the curvature-dependent factor �1�2 � r1r2 / �2
( ) . Its role is nonetheless

very important for an understanding of the physics of the system. In

describing the effect of displacements in a hyperbolic position or velocity

space we shall therefore make use of Lorentz matrices of the general form

L �,�
�( ) = K �( )R �

�( ) , (59)
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where the subscript on the rotation vector �
�

identifies its association

with � as part of the six-parameter entity �,�
�( ) .

C. Position and Velocity as Four-by-Four Tensors

In Eq. (50) the position four-vector is seen to be identifiable with a
column of the Lorentz displacement matrix K �( ) . The addition of
position vectors can be expressed through products of such matrices

K � i( ) . The occurrence of the induced rotations R � j( ) in these products

leads to the conclusion that hyperbolic vector addition will be
noncommutative. This can be accepted, but the associative law must still
be fulfilled. This requires amplifying the parameter space of hyperbolic
position variables from the three variables of � space to the six variables
of a space of �,�( ) and representing position not by a four-vector

X μ

= � t( )K μ

0 �( ) but by a Lorentz matrix which we shall usually take as

X μ

� t,�( ) = � t( )K μ

� �( ) = � t( )Lμ� �,0( ) , (60)

but may occasionally write in the more extended form

X μ

� t,�,�( ) = � t( )Kμ

� �( )R�

� �( ) = � t( )Lμ� �,�( ) . (61)

This generalization to the four-by-four tensor form makes it possible to
demonstrate the almost completely commutative nature of the addition of
hyperbolic position and velocity vectors. This is supplemented only by an
extremely small second-order anticommutative contribution, which is
entirely of a rotational nature. It can be displayed if we write out the
addition of two pure translations in the form

K��

�1( )X�� t,�2( ) = X�μ t,�1 +̂ �2( )Rμ�

�1 � ��2 / 2( ) � X�μ t,�1 +̂ �2( ) . (62)

The addition of velocities behaves in an identical fashion. Its rotation
factor is of the same nature as the Thomas precession correction in atomic
spectroscopy, and the resulting rotation through the angle
�� 3 = �1 �̂ �2 / 2 � �1� 2v1 � v2 / c0

2 can be identified as the classical
analogue of a spin rotation. The final velocity matrix then has an
expression similar to Eq. (62)

K��

�1( )U �� t,� 2( ) =U�μ t,�1 +̂ � 2( )Rμ�

�1 � ��2 / 2( ) �U �� t,�1 +̂ � 2( ). (63)
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The first, commutative, term in this equation generates exactly the
results of Einstein velocity addition, and the second term is the
anticommutative correction connected with the Thomas factor. The
second term vanishes identically in the addition of collinear velocities. Its
effect is so small that it is not surprising that its practical consequences
are recognized mostly in the quantum context of hyperfine spectra. In
principle, however, it exists classically as well as quantally.

The second-rank tensor expressions for position and velocity, together
with their rotational contributions, will be used further below. In addition
to their involvement in terms like the Thomas precession, they play an
important part in the structure of the generalization of the Poincaré group
to hyperbolic space, the new hyperbolic Poincaré group. In this
hyperbolic system position space and velocity-momentum space each
carry three rotational dimensions of their own in the phase space of any
particle.

D. The Operators and Matrices of Velocity Boosts and Positional Shifts

It is useful to recognize the addition of vectors in the hyperbolic spaces
of position and velocity as the results of the geometric and kinematic
operations of translation in those respective spaces. The operation of
translation in velocity can be identified as a boost, and a translation in
hyperbolic position space will be identified as a “shift”. The rapidity � is
the geodesic vector of hyperbolic arc in velocity space. The dimensionless
geodesic arc � of a hyperbolic vector in position space is the separation.
We shall denote the operator of a boost through a rapidity interval �1 by

the notation K̂ boost �1( ) and the corresponding operation of a translational

shift in hyperbolic position through the separation �1 by K̂ shift �1( ) . The
result of each of these operations operating on a four-vector or four-by-
four tensor in its appropriate space is to multiply that four-vector or tensor
by a Lorentz matrix with the appropriate hyperbolic vector argument:

K̂ boost �1( )U t,�2( ) = K �1( )U t,� 2( ) = c t( )K �1( )K � 2( )

= c t( )K �1 +̂ � 2( )R �1 �̂ �2 / 2( ) =U t,�1 +̂ � 2( )R �1 �̂ �2 / 2( ),
(64)

K̂ shift �1( )X t,�2( ) = K �1( )X t,�2( ) = � t( )K �1( )K �2( )

= � t( )K �1 +̂ �2( )R �1 �̂ �2 / 2( ) = X t,�1 +̂ �2( )R �1 �̂ �2 / 2( ).
(65)
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The principal consequence of these operations is the hyperbolic vector
sum �1 +̂ � 2 or �1 +̂ �2 respectively, and their secondary effect is the
second order rotation R �1 �̂ � 2 / 2( ) or R �1 �̂ �2 / 2( ) .

The operation of a velocity boost on a position vector in hyperbolic
space K̂ boost �( )X t,�( ) is a straightforward generalization of the Lorentz
transformation of special relativity, and will be presented in the next
Section. The converse operation, that of a position shift on a velocity
vector, K̂ shift �( )U t,�( ) , can be recognized as describing the Hubble effect,
as will be quantitatively confirmed in the same Section.

V. The Lorentz Transformation and the Hubble Effect in a
Hyperbolic Universe

In a hyperbolic geometry the Lorentz matrices and the Lorentz group
provide the natural mechanism for dealing with issues of translational
symmetry and the compounding of vectors in the curved space. In the
preceding Section a notation has been presented for these purposes in the
homogeneous situation of a velocity boosts operating in velocity space,
and also of translational shifts operating in position space. The sign
convention in the off-diagonal sinh� elements in the Lorentz matrix of
Eq. (46) and in the definition of four-vectors in Eqs. (44) and (45) is
required to ensure that the addition of vectors in those spaces is correctly
expressed.

The Lorentz transformation was initially developed in connection with
the kinematics of an object in interaction with an electromagnetic signal,
in the situation that can now be recognized as describing the effect of a
velocity boost operating inhomogeneously on an observed position vector
and time interval. In the next subsection, the familiar expressions of the
Lorentz transformation of position vectors in Minkowski space under a
velocity boost will be transcribed into the more general form applicable in
hyperbolic position space. In this case, the kinematics of the Lorentz
effect leads to the opposite choice of sign in the off-diagonal sinh�
elements from what is found in the homogeneous case of velocity
addition. This is a characteristic and important feature in the structure of
the kinematic system that will be described by the hyperbolic Poincaré
group.

In addition to the homogeneous operations resulting in vector addition
in the two spaces and the inhomogeneous operation of the Lorentz effect,
the hyperbolic kinematic system must include a second inhomogeneous
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operation, that describing the effect of a shift in position space on a
velocity vector. This can readily be identified with the Hubble effect. The
transcription of the Hubble effect into the coordinates of the doubly
hyperbolic universe will be given in Subsection B.

A. The Lorentz Effect of Velocity on Length and Time in the Hyperbolic
World

The reconciliation of electromagnetics with particle kinematics
achieved by the Lorentz transformation has two essential features. The
feature most frequently stressed is the introduction of the electromagnetic
upper bound c in velocity space. This electromagnetic condition makes
velocity space hyperbolic, and it is responsible for the orthogonality
requirement satisfied by the Lorentz transformation matrix. The
electromagnetic condition is quadratic in form, as shown in the velocity
requirement v2

� c2 and in the metric conditions (13) and (4). When an
orientation in space is fixed it offers two roots differing in sign. The
choice of sign requires an additional condition. In the Lorentz
transformation this choice is established by the linear kinematic condition
connecting position, time and velocity between a stationary and a moving
frame. That condition fixes the sign of the correction terms in the Lorentz
transformation.

The essential features of the Lorentz effect in the Einstein-Minkowski
world can be seen in the collinear case of the Lorentz transformation,
where the direction of observation is collinear with both the velocity of
motion v and the orientation of the vector being observed, �r . In this
case, a local interval of length and time ��,�r( ) , moving at a velocity v
in the direction �r̂ , is seen by the observer as the interval � �� ,� �r( ) :

c0� �� = � c0�� � �rv / c0( ), � �r = � �r � v��( ),   where � = 1� v2 / c0
2

( )
�1/ 2

.(66)

The electromagnetic condition is quadratic, and is responsible for the
factor � in Eq. (66). The kinematic condition is linear in form, and is
responsible for the length correction � ��rv / c0 in the temporal term
c0� �� and the temporal correction � �v�� in � �r . The negative sign of
this correction term in each member of Eq. (66) is an essential signature
of the physical process of the Lorentz velocity boost which that equation
describes.

We can take advantage of the hyperbolic structure of velocity space
and rewrite the equations (66) using the rapidity variable � in the
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expressions � = 1� v 2 / c0
2

( )
�1/ 2

= cosh� and �v / c0 = sinh� . Eq. (66) then

becomes

c0� �� = c0�� cosh� � �rsinh�, � �r = �rcosh� � c0�� sinh�. (67)

We see that a boost through the velocity v or its equivalent rapidity �

results in an orthogonal linear transformation of the Minkowski space-

time vector
c0��

i�r

�

�
�

�

�
	 by a Lorentz matrix:

c0� ��

i� �r

�



	

�



� =

� i�v / c0

�i�v / c0 �

�



	

�



�

c0��

i�r

�



	

�



� =

cosh� isinh�

�isinh� cosh�

�



	

�



�

c0��

i�r

�



	

�



� . (68)

The general definition given in Eq. (46) of the Lorentz matrix as a
function of the hyperbolic parameters of position space is applicable
unchanged to the rapidity parameters � of velocity space. Its sign
convention insures the correct behavior of the addition of vectors in their
own space. When specialized to one-dimensional motion it reduces to

K �( ) =
cosh� �i sinh�

isinh� cosh�

�

�
�

�

�
	 . (69)

The effect of a velocity boost operation on a Minkowski position
vector, Eq. (68), is therefore expressed by the Lorentz matrix K ��( )

where the argument has a negative sign,

c0� ��

i� �r

�

�
	




�
� =

cosh� i sinh�

�i sinh� cosh�

�

�
	




�
�

c0��

i�r

�

�
	




�
� = K ��( )

c0��

i�r

�

�
	




�
� . (70)

This change in sign characterizes the difference between the operation
of a velocity boost on a position vector and its operation on a velocity or
momentum vector, and is a systematic feature of kinematics in special
relativity. Utilizing the operator notation of Eqs. (64) and (65), Eq. (70)
implies

c0� ��

i� �r

�

�
	




�
� = K̂ boost �( )

c0��

i�r

�

�
	




�
� = K ��( )

c0��

i�r

�

�
	




�
� . (71)
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In Eqs. (66) to (71) the position and time variables are expressed in the
local coordinates of a flat Minkowski space-time. They can be connected
with the space and time coordinates of an expanding hyperbolic universe
by the relationships of Section III.B above. The Minkowski vector can be
recognized as a difference vector between two complete hyperbolic four-
vectors with collinear spatial components, expressible therefore as
hyperbolic space-time two-vectors:

c0��

i�r

�

�
	




�
�
=

�w

i�r

�

�
	




�
�
=

w2

ir2

�

�
	




�
�
�

w1

ir1

�

�
	




�
�

= � t2( )
cosh�2

i sinh�2

�

�
	




�
�
� � t1( )

cosh�1

i sinh�1

�

�
	




�
�

= X t2 ,�2( ) � X t1,�1( )

. (72)

The interval as seen by the observer can be described in the same way
as the difference between two hyperbolic four-vectors in his velocity
frame,

c0� ��

i� �r

�



	

�



� =

� �w

i� �r

�



	

�



� =

�w2

i �r2

�



	

�



� �

�w1

i �r1

�



	

�



� = X �t2, ��2( ) � X �t1, ��1( )

= � �t2( )
cosh ��2

i sinh ��2

�



	

�



� � � �t1( )

cosh ��1

isinh ��1

�



	

�



�.

(73)

Combining Eqs. (68), (71) and (72) we also find

� �w

i� �r

�



	

�



�
= K̂boost �( )

�w

i�r

�



	

�



�
= K ��( )

�w

i�r

�



	

�



�
= K ��( )X t2 ,�2( ) � K ��( )X t1,�1( )

= � t2( )
cosh �2 � �( )

i sinh �2 � �( )

�



	

�



� � � t1( )

cosh �1 � �( )

i sinh �1 � �( )

�



	

�



� .

(74)

This pair of equations are both satisfied provided that we have, for any
value of i ,

X �ti , ��i( ) = � �ti( )
cosh ��i

i sinh ��i

�

�
	




�
�
= K̂boost �( )X ti ,�i( ) = K ��( )X ti ,�i( ) = � ti( )

cosh �i � �( )

i sinh �i � �( )

�

�
	




�
�

. (75)

We can now generalize this relationship from the special case of one-
dimensional motion to the full three-spaces of position and velocity. We
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can write this as the operation of a velocity boost on a hyperbolic position
tensor, the natural generalization of the position four-vector:

K̂boost e1( )X t,h2( ) = K �e1( )X t,h2( ) = � t( )K �e1( )K h2( )

= � t( )K �e1 +̂h2( )R �e1 �̂h2 / 2( ) = X t,�e1 +̂h2( )R �e1 �̂h2 / 2( ).
(76)

We can expand the rotational matrix and take advantage of the
extremely small magnitude of its angular argument to ignore that
correction and get the simplified hyperbolic space version of the Lorentz
transformation

K̂boost e1( )X t,h2( ) = K �e1( )X t,h2( )

= X t,�e1 +̂h2( ) 1+O
�� v1( )v1 �̂ r2

2c0
2H 0

�1

�

�
�




�



�

�

�

�

�

�

�

�

� X t,h2 �̂ e1( ).
(77)

B. The Hubble Effect in Hyperbolic Space

When the redshift of an astrophysical object is used as a measure of its
velocity away from the observer, the Hubble effect is responsible for a
component of velocity vH representing a rate of expansion that increases
linearly with the distance vector r0i from the observer at 0 to the object i ,
vH = Hr0i . In the doubly hyperbolic system we must replace vH by the
relativistic velocity uH and introduce the time-dependent Hubble
coefficient,

vH = Hr0i � uH = H t( )r0i . (78)

When we describe uH and r0i by their appropriate hyperbolic
coordinates of rapidity and separation this becomes

uH = c t( )sinh�H �̂ H �
�
,�

�
( ) = H t( )r0i = H t( )� t( )sinh�0i �̂0i ��

,�
�( )

= c t( )sinh�0i �̂0i ��
,�

�( ).
(79)

In the natural curvilinear coordinate variables of the hyperbolic spaces
of position and velocity the Hubble relationship can then be expressed in
the particularly simple form

� H = �0i . (80)
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i.e., the Hubble contribution � H to the hyperbolic rapidity of the object
with respect to the observer is identically equal to the vector distance
between the two as expressed in the hyperbolic separation �0i .

The observed velocity vobs,i of a given object can be treated as the sum
of its Hubble velocity vH,i and its peculiar velocity vpec,i , the velocity it

would have had relative to the observer if it were transported back to that
observer’s local neighborhood. If the object i is a member of a group or
cluster in a limited astronomical region its peculiar velocity can be treated
as predominantly a local velocity with respect to some average
background of the cluster itself. Astrophysical observations have

confirmed the vector addition of a single Hubble velocity for the cluster to

the peculiar velocities of individual members of a galactic or stellar

population in a given region to give the observed velocity [5,6]:

vobs,i = vpec,i + vH,C = vpec,i + Hr0C . (81)

We can then treat the peculiar velocity as predominantly a local
velocity, vpec,i � v loc,C , and replace Eq. (81) by

vobs,i = v loc,i + vH,C = v loc,i +Hr0C . (82)

We can now follow the pattern of Eqs. (78) to (80) and make the
substitutions vi � c� i, ri � cH �1 r( )� i , with the result

� obs,i = � loc,i +̂ �0C . (83)

This result can be expressed as describing a position shift through the
separation vector �0C operating on a local rapidity vector � loc,i and
producing the resultant rapidity � obs,i . It can be seen to justify a general
relationship conjugate to Eq. (76),

K̂ shift �1( )U t,� 2( ) = K �1( )U t,�2( ) = c t( )K �1( )K � 2( )

= c t( )K �1 +̂ �2( )R �1 �̂ �2 / 2( ) =U t,�1 +̂ �2( )R �1 �̂ �2 / 2( ).
(84)

As usual, the very small rotational correction can be evaluated by
expansion, leading to the simpler final result:

K̂ shift �1( )U t,� 2( ) = K �1( )U t,�2( ) =U t,�1 +̂ �2( ) 1+O
r1 � v2� v2( )

2c0
2H 0

�1

�

	



�

�



�

�

�

�

�

�

�

�

�U t,�1 +̂ �2( ).(85)



216 F. T. Smith

VI. The Hyperbolic Poincaré Group

The ordinary Lorentz and Poincaré groups embody the accepted
symmetry principles of special relativistic kinematics and geometry in
Minkowski space-time. When that space-time is replaced by the more
general expanding hyperbolic space-time of a universe expressing the
position-velocity and Hamiltonian symmetries that were lost in special
relativity, notable changes in symmetry follow. They are expressed in the
new hyperbolic Poincaré group.

In Sections IV and V we have developed on the basis of physical
experience, including the Hubble effect as well as the Lorentz
transformation, the properties of two sets of Lorentz operators, the
operators of positional shifts K̂ shift �( ) and of velocity boosts K̂ boost �( ) , as

each of them operates on the tensors of position X �( ) and of velocity
U �( ) . These provide the fundamental information that must be embodied
in a multiplication table for the group. We provide here the most
important relationships and structural features of the group, especially the
structure of its translational operations in position and velocity and the
contrasting form of its time translation operator.

A. The Operators of Position Shifts and Velocity Boosts in the Hyperbolic
Poincaré Group

We can assemble the principal results of Section IV, Eqs. (64) and
(65), and Section V, Eqs. (76) and (84). They describe the effects of the
operators of shifts and boosts, K̂ shift �( ) and K̂ boost �( ) , on position and

velocity tensors, X t,�( ) and U t,�( ) :

K̂ shift �1( )X t,�2( ) = K �1( )X t,�2( ) = X t,�1 +̂ �2( )R �1 �̂ �2 / 2( ),

K̂ shift �1( )U t,� 2( ) = K �1( )U t,�2( ) =U t,�1 +̂ �2( )R �1 �̂ � 2 / 2( ),

K̂ boost �1( )X t,�2( ) = K ��1( )X t,�2( ) = X t,�2 �̂ �1( )R ��1 �̂ �2 / 2( ),

K̂ boost �1( )U t,�2( ) = K �1( )U t,� 2( ) =U t,�1 +̂ �2( )R �1 �̂ �2 / 2( )

, (86)

We now take advantage of the fact that the spaces of � and � in which
the shift and boost operators operate are orthogonal to the cosmological
time variable t in the dimensional factors � t( ) and c t( ) in the position
and velocity four-tensors X t,�( ) and U t,�( ) . Operators that depend only
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on the hyperbolic variables � and � and their associated secondary
rotation variables �

�
and �

�
all commute with � t( ) and c t( ) . We can

thus multiply the Eqs. (86) by the appropriate factor �
�1 t( ) or c �1 t( ) and

use identities like

�
�1 t( )K̂ shift �1( )X t,�2( ) = K̂ shift �1( )�

�1 t( )X t,�2( ) = K̂ shift �1( )K �2( ) , (87)

converting those equations into the set

�
�1 t( )K̂ shift �1( )X t,�2( ) = K̂ shift �1( )K �2( ) = K �1( )K �2( )

c �1 t( )K̂ shift �1( )U t,� 2( ) = K̂ shift �1( )K �2( ) = K �1( )K �2( ),

�
�1 t( )K̂ boost �1( )X t,�2( ) = K̂boost �1( )K �2( ) = K ��1( )K �2( ),

c �1 t( )K̂ boost �1( )U t,�2( ) = K̂boost �1( )K � 2( ) = K �1( )K � 2( ).

(88)

It is clear from the sign change in the inhomogeneous elements of this
array (the second and third equations) that the shift and boost operators
cannot be represented by four-by-four Lorentz matrices. Instead, the
operators K̂ shift �( ) and K̂ boost �( ) must be represented by block-diagonal
eight-by-eight matrices, and their position and velocity operands must be
part of an eight-by-eight tensor. These will generate a larger group, the
double Lorentz group.

We can represent the generating operators of this group by the shift and
boost matrices

Kshift hshift( ) =
K hshift( ) 0

0 K hshift( )

�

�
�

�

	
�  and Kboost eboost( ) =

K �eboost( ) 0

0 K eboost( )

�

�
�

�

	
�

. (89)

The equations of the array (86) or (88) are reproduced if these
operators operate on an eight-by-eight double tensor of position and
velocity,

� t;�sep,� rap( ) =
X t,�sep( ) 0

0 U t,� rap( )

�

�

�

	




� =
� t( )K �sep( ) 0

0 c t( )K � rap( )

�

�

�

	




� . (90)

This in turn can be factored into a time-dependent part and a matrix
with the structure of a member of the double Lorentz group itself,
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� t;�sep,� rap( ) =
� t( )14 04

04 c t( )14

�

�
�

	



�

K �sep( ) 0

0 K � rap( )

�

�

�

	




� . (91)

The effect of the operators K̂ shift �( ) and K̂ boost �( ) on the position-
velocity double tensor is now expressed through multiplication by the
matrices of Eq.(89):

K̂ shift �1( )� t;�2,� 2( ) =K shift �1( )� t;�2,�2( ) , (92)

K̂ boost �1( )� t;�2,� 2( ) =K boost �1( )� t;�2,� 2( ) . (93)

The sign alternation that occurs between the heterogeneous second and
third equations in (86) or (88) can be recognized as a new appearance in
physics of the symplectic sign reciprocity that characterizes the
Hamiltonian equations of dynamics and the quantum commutators. It is
fully incorporated in the operations of the new hyperbolic Poincaré group
as exhibited in Eq. (89). It gives additional support for the Reciprocity
Principle advocated by Born in response to the extraordinary fruitfulness
of the Hamiltonian symmetries in the development of quantum mechanics
and justifies treating it as a structural principle of the physical universe.

Eq. (91) displays the separability of the position-velocity tensor into a
one-parameter time-dependent part and a Lorentz double tensor
depending explicitly on the parameters of a configuration space described
by the rapidity and separation variables �,�( ) supplemented by the three-
dimensional rotation spaces associated with each of them. Its time-
dependent factor can be looked upon as a matrix representing a time
translation operator that generates a one-parameter normal subgroup of
the hyperbolic Poincaré group. That group is therefore the direct product
of the one-parameter time-translation subgroup and the twelve-parameter
double Lorentz subgroup. We can discuss separately the structure of these
two subgroups.

B. Time Dependence and its Subgroup

The time-dependence matrix, occurring as a factor in the position-
velocity tensor � t;�,�( ) , Eq. (91), can be taken as the product of a

normalizing constant, which will be denoted �
1/2 , and an orthonormal
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matrix Z t( ) that expresses the time-dependence of the position and
velocity scaling factors � t( ) and c t( ):

� t( )14 04

04 c t( )14

�

�
�

�



�
= �

1/2Z t( ) = �
1/2 exp � t( )�	 
�14 04

04 exp �� t( )�	 
�14

�

�
�

�



� . (94)

We find immediately that

exp 2� t( )[ ] = � t( ) / c t( ) = H �1 t( ),  i.e., � t( ) = � lnH t( )[ ] / 2 (95)

and

� = c t( )� t( ) = c 2 t( )H �1 t( ) = c0
2H 0

�1. (96)

This fundamental constant can be evaluated, � � 4 �1034 m2 / s . We can
now write the position-velocity tensor as

� t;�sep,� rap( ) = �
1/ 2Z t( )

K �sep( ) 0

0 K � rap( )

�

�

�

	




�

= �
1/ 2 H �1/ 2 t( )14 0

0 H 1/ 2 t( )14

�

�
�

	



�

K �sep( ) 0

0 K � rap( )

�

�

�

	




�

= c0H0
�1/2 H �1/ 2 t( )14 0

0 H1/2 t( )14

�

�
�

	



�

K �sep( ) 0

0 K � rap( )

�

�

�

	




� .

(97)

As long as the function H t( ) , and therefore � t( ) , is monotonic, we can

take Ẑ ��( ) as a time displacement operator operating through � as a
transform of the time. This will provide a generalization of the time
translation operation of the ordinary Poincaré group. The operator Ẑ ��( )

and its matrix representation Z t( ) in Eq. (94) generate a one-parameter
translational group, the time-translation subgroup of the hyperbolic
Poincaré group. This is a normal subgroup, and the hyperbolic Poincaré
group is its direct product with the double Lorentz subgroup generated by
the operators K̂ shift �( ) and K̂ boost �( ) .

A simple and illuminating example of the time-translation operator is
encountered if we take the simplifying assumption that the linear time
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dependence of H �1 t( ) that dominates near the present time t0 can be
extrapolated indefinitely. In the expression of Eq. (94) we then write
� t( ) = t1/ 2 . Then

Z t( ) =
t1/2 14 04

04 t�1/214

�

�
�

�

�
� (98)

and the time displacement operator can be written as Ẑ � ln t[ ]( ) , with the
matrix representation

Z � ln t[ ]( ) =
e� ln t( ) /214 04

04 e�� ln t( ) /214

�

�
�




	
� . (99)

C. The Translational Operators of the Double Lorentz Group

The double Lorentz matrix of Eq. (91) can be recognized a product of a
shift matrix and a boost matrix:

K �sep( ) 0

0 K � rap( )

�

�

�

�




	 = Kboost �
�sep

2
+̂
� rap

2

�

�
�

�



	K shift

�sep

2
+̂
� rap

2

�

�
�

�



	 . (104)

It is a member of the principal subgroup of the hyperbolic Poincaré
group, the double Lorentz group, a twelve-parameter group. This group
can be generated by the shift and boost operators K shift �( ) and K boost �( )

and their products. Each of them separately generates its own Lorentz
subgroup of the double Lorentz group, the shift and the boost subgroups.
Because these operators act not only homogeneously as translation
operators within their respective fields, but interactively, with shifts acting
on velocities in the Hubble effect and boosts acting on position space in
the Lorentz transformation, their subgroups can be called the “interactive
subgroups.”

In addition to the interactive operators of shifts and boosts, we can
form from them the translational operators of two other Lorentz
subgroups, the geometric subgroups of position and of velocity, with the
matrices:
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K pos �sep( ) = Kshift �� sep / 2( )K boost �sep / 2( ) =
K �sep( ) 0

0 1

�

�
�

�



	 ,

K vel � rap( ) =K shift � rap / 2( )K boost � rap / 2( ) =
1 0

0 K � rap( )

�

�
�

�



	 .

(105)

The converse relationship is

Kshift hshift( ) = Kpos hshift( )Kvel hshift( ), Kboost eboost( ) = Kpos �eboost( )Kvel eboost( ) . (106)

In each case these operators generate a corresponding set of rotational
operators. The geometric operators K pos �( ) and K vel �( ) and their

subgroups commute with each other. The double Lorentz subgroup has in
total four simple Lorentz subgroups, these two geometric subgroups and
the two interactive subgroups generated by K shift �( ) and K boost �( )

respectively.
In the geometric representation of the double Lorentz group the mutual

commutation of is position and velocity subgroups makes it possible to
identify a six dimensional manifold of pure double translations,
represented by the matrices

K �,�( ) =
K �( ) 0

0 K �( )

�

�
�




	
� =K pos �( )K vel �( ) = Kvel �( )Kpos �( ). (107)

With the help of Eq. (105) these matrices can also be described in the
interaction representation as products of pure boost and pure shift
operations, but the lack of commutativity prevents further simplification
of the quadruple product that results.

D. Rotational Structure in the Double Lorentz Group

The shift and boost operators K̂ shift �shift( ) and K̂ boost � boost( ) of the
interactive family require introducing a comparable pair of double
rotational matrices, constructed in the same way from the rotational
matrices R �( ) , Eq. (47), of the ordinary Lorentz group:

Rint � int( ) =
R � int( ) 0

0 R � int( )

�

�
�

�



	   and Q �( ) =

R ��( ) 0

0 R �( )

�

�
�

�

�
� . (108)
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Their associated operators are R̂int 	 int( ) and Q̂ �( ) . Each of these has

its own angular momentum operator. The operator R̂int 	 int( ) is the
representative of the usual rotational and spin operator in the hyperbolic
domain. In both of the interactive Lorentz subgroups the same
rotational operator R̂int 	 int( ) is generated by products of shifts or boosts:

K shift �1( )Kshift �2( ) =K shift �1 +̂ �2( )Rint �1 �̂ ��2 / 2( ),

K boost �1( )K boost �2( ) = Kboost �1 +̂ �2( )Rint �1 �̂ �2 / 2( ).
(109)

The geometric operators K̂ pos �sep( ) and K̂ vel � rap( ) similarly have their

own rotational operators

Rpos 	 pos( ) =
R 	pos( ) 0

0 1

�

�



�

�
�   and Rvel 	 vel( ) =

1 0

0 R 	vel( )

�

�



�

�
� . (110)

They are connected with the interactive rotation operators by the
equations

Rint � int( ) =Rpos � int( )Rvel � int( ), Q �( ) = Rpos �( )Rvel �( ) , (111)

with their inverse,

Rpos wpos( ) = R int wpos / 2( )Q �wpos / 2( ), Rvel wvel( ) = R int wpos / 2( )Q wpos / 2( ) . (112)

The rotation operator Q̂ �( ) is new, representing effects that are
undetectable when either position or velocity space is strictly flat. It has
the novel property of generating rotations in opposing senses in the spaces
of position and velocity. It will be called the “contrarotation” operator.
Like ordinary rotations, this contrarotation will be quantized, and it may
make a contribution to particle physics.

The contrarotation operator Q̂ �( ) is generated only by the
inhomogeneous product of a shift and a boost. In such a product we also
encounter the double translation matrix of Eq. (107). The cross product of
shifts and boosts is then



Hamiltonian Symmetry in Special Relativity… 223

In a similar way, we can form products of the rotation operators Rint

and Q ,

Rint � int( )Q �( ) = �Q �( )Rint � int( ) = F � int ,�( )Q �� �̂ � / 2( ) , (114)

where

F � int ,�( ):= Rpos � int �̂ �( )Rvel � int +̂ �( ) . (115)

The full double Lorentz group in the doubly hyperbolic three-spaces of
position and velocity has twelve independent parameters. In the
interactive representation they are best taken as �shift ,� boost ,� int,�( ) . In the
geometric representation they fall into two sets corresponding to the

normal subgroups of position and velocity, �sep,�pos( ) and � rap ,� vel( ) .

E. The Connection between the Geometric and Interactive
Representations

The full double Lorentz group in the doubly hyperbolic three-spaces of
position and velocity has twelve independent parameters. In the
interactive representation they are best taken as �shift ,� boost ,� int,�( ) . In the
geometric representation they fall into two sets corresponding to the

normal subgroups of position and velocity, �sep,�pos( ) and � rap ,� vel( ) .

Any operation in the double Lorentz group can be expressed as a product
of the four primary operators of either the interactive or the geometric
representation. These can be put in the form, respectively, of

� = � int �shift,�boost ,� int ,�( ) =K shift �shift( )Kboost �boost( )R � int( )Q �( ) (116)

and

� = � geom �sep,� pos,� rap,�vel( ) = Kpos �sep( )K vel � rap( )Rpos �pos( )Rvel � vel( ) . (117)

It is important to find the relationship between these two representations,
so as to express the variables of either one in terms of the other. This can
be done as follows.
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Using the identities of Eqs. (106) and (111), taking advantage of the
commutation properties of the geometric operators, and defining the new
rotation vector

� = �sep �̂ �� rap / 2( ) , (118)

we can convert the translational factors on the right hand side of Eq. (116)
into the expression

K shift �shift( )Kboost �boost( ) = Kpos �shift �̂ � boost( )K vel �shift +̂ � boost( )Rpos ��( )Rvel �( ) (119)

and the rotational factors into

Rint � int( )Q �( ) =Rpos � int �̂ �( )Rvel � int +̂ �( )Rpos �� int �̂ � / 2( )Rvel � int �̂ � / 2( ). (120)

If we use the commutation properties again we can write Eq. (116) as

� int �shift ,� boost ,� int,�( ) = Kpos �shift �̂ � boost( )K vel �shift +̂ � boost( )

� Rpos ��( )Rpos � int( )Rpos ��( )[ ] Rvel �( )Rvel � int( )Rvel �( )[ ].
(121)

We can now identify the expressions of Eqs. (117) and (121) factor by
factor. The parameters of hyperbolic arc in the two representations are
connected by the simple expressions

�sep = �shift �̂ � boost , � rap = �boost +̂ �shift . (122)

Their inverse is

�shift = �sep +̂ � rap( ) / 2, �boost = � rap �̂ �sep( ) / 2. (123)

The angular coordinates have the connection formulas

Rpos � pos( ) =Rpos ��( )Rpos � int( )Rpos ��( ),

Rvel � vel( ) = Rvel �( )Rvel � int( )Rvel �( ).
(124)

so that we can write their relationships as

� pos =� int �̂ �, � vel =� int +̂ � , where (125)
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�vel �̂� pos( ) / 2 = � = � +̂� +̂ � int �̂ � �̂�[ ] / 2( )… , and (126)

	pos +̂	 vel( ) / 2 = 	 int . (127)

The relationship of Eqs. (122) and (123) connecting the hyperbolic arcs
of position and velocity with those of shift and boost is independent of the
angular coordinates. It is the hyperbolic equivalent of a linear
combination to form the sum and difference of two vectors. It can be used
to rewrite the product relationship of Eq. (119) in the useful form:

K shift �shift( )Kboost �boost( ) = Kpos �sep( )Kvel � rap( )Q �( ) , (128)

where � can now be expressed in either of two forms,

� = �sep �̂ � rap / 2( ) = �shift �̂ � boost( ) . (64)

The connections of the angular coordinates are given by Eq. (124)
depend not only on the angular variables 	 int and � but also on the
hyperbolic arcs through their product � . Because � and � are both
usually very small it is particularly convenient to use them as the
parameters of the expansion, Eq. (126).

F. Finite Symmetries in the Hyperbolic Poincaré Group

In the Lorentz group the finite subgroup D2 can be based on the four-

by-four matrices of parity and time-reversal as generators:

P =
1 0T

0 �I3

�

�



�

�
�

, T =
�1 0T

0 I3

�

�



�

�
�

. (130)

The corresponding finite subgroup in the double Lorentz group has the

structure D2 �D2 . Two of its four generators are operators that formally

resemble P and T . They can be realized by the matrices

Pint =
P 0

0 P

�

�
�

�

�
� , Tint =

T 0

0 T

�

�
�

�

�
� . (131)

These obey the usual relationships
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Pint
2
= Tint

2
= I8, PintTint = TintPint = �I8 = C. (132)

To these operators we can add as a third generator the operator of

kinematic symmetry

K =
I4 0

0 � I4

�

�
�

�

�
� = Ch= hC , (133)

where h is the operator

h =
�14 0

0 14

�
�
�

�
�
�

. (134)

A fourth generator of D2 �D2 is still needed. It can be taken as any

one of the four operators

Pvel =
I4 0

0 P

�

�
�

�

�
� , Tvel = KPvel = PvelK =

I4 0

0 T

�

�
�

�

�
�,

Ppos = PIIPvel = PvelPII =
P 0

0 I4

�

�
�

�

�
� , Tpos = hPpos = Pposh =

T 0

0 I4

�

�
�

�

�
� .

(135)

These four are just the parity and time-reversal operators of the

respective Lorentz geometric subgroups of position and velocity.

The operator known as “time-reversal” appears in the twelve-parameter

double Lorentz group whose domain of operation is position and velocity

space but not the space of time itself. Its role in the reversal of time is

seen more fully in the full hyperbolic Poincaré group and in the Poincaré

group of Minkowski space as the vehicle for the local description of

hyperbolic space in the asymptotic limit. It operates on the local,

differential variables of observer time � , and not on the absolute proper

time itself.

VII.The Time-Dependent Light Speed and its Consequences

In the doubly hyperbolic kinematic system the usual Poincaré group
must be replaced by the larger hyperbolic Poincaré group. The larger
group must connect with the more familiar one by an appropriate limiting
process that leads to the flat space Minkowski limit. An important feature
that must be maintained in the matrices of both groups is the orthonormal
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property. In the hyperbolic Poincaré group this property must also subsist
in the matrices Z t( ) of the time-translation subgroup. It is this condition
that enforces the constancy of the product c t( )� t( ) = � , Eq. (96). From
that in turn, combined with the Hubble condition c t( ) / � t( ) = H t( ) , Eq.
(95), the cosmological time-dependence of c necessarily follows.

By Noether’s theorem, the constancy of mass can be taken as
connected with the time-translation symmetry of the system. The
invariance of angular momenta is similarly associated with the spatial
homogeneity and isotropy of the system. The dimensionality of the
Hubble-Lorentz constant � , l2t�1

[ ] , show that it is a coefficient of

proportionality between mass and angular momentum or action. Since
these are both conserved quantities, � is appropriately constant. It
follows from this proportionality that quantized angular momentum is
associated with its own rest mass,

m
� /2 = � / 2� � 2 �10�76g � 2 �10�49me . (136)

Photons will then carry a minute rest mass associated with the angular
momentum of the transition generating them.

In symmetric special relativity we can maintain the assumption that
mass is constant. Energy then is not. Interaction energies are better
presented as interaction masses. The electromagnetic mass of the
Coulomb interaction can be written

�Me.m. =
e2

r12c
2 =

e2

� t( )c2 t( )sinh�12

=
e2

c t( )� sinh�12

, (137)

from which it follows that e2 / c t( ) must be constant and that e must be
decreasing cosmologically as t�1/2 . The electromagnetic fine-structure
constant �e.m. = e

2 /�c t( ) remains constant.
Similarly the interaction mass of the gravitational interaction can be

presented as

�Mgrav = �
m1m2G
r12c

2 =
�m1m2G

c t( )� sinh�12

. (138)

Here, if masses are constant G / c t( ) must be constant and G must be
decreasing cosmologically as t�1 . It follows also that the Planck length
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lPlanck = �G / c3
( )

1/2
is not constant but expanding as t1/ 2. The

cosmologically time-invariant Planck parameters are the Planck time

tPlanck = lPlanck / c = �G / c5
( )

1/2
= 5.37 �10�44 sec and the Planck mass

mPlanck = �c /G( )
1/2

= 1.22 �1019GeV .
In the expanding hyperbolic system the geometry of the light cone is

usefully presented in terms of the hyperbolic separation variable �,
invariant to the changing length scale � t( ) . The relevant differential
equation is � t( )d� = c t( )dt . Its integral

�� = c t( )��1 t( )dt� = H t( )dt� (139)

does not require separate knowledge of the time dependence of c t( ) . It
can be evaluated if we use the simple approximation H �1 t( ) = t of the
linear Hubble expansion:

� t2( ) � � t1( ) = t�1dt
t1

t2

� = ln t2 / t1( ) . (140)

As has long been known, a cosmologically decreasing speed of light
can provide an alternative answer to the horizon problem of cosmology.

VIII. The Structure of the Hyperbolic Poincaré Group

The hyperbolic Poincaré group is the direct product of a one-
dimensional time-translation subgroup Ttime 1( ) , whose parameter is the
cosmological proper time, and the twelve-parameter double Lorentz
subgroup L

2.

PH = Ttime 1( )�L
2 . (141)

The double Lorentz subgroup itself can be written as a direct product
of the two ordinary Lorentz subgroups of the geometric representation,
Lvel in hyperbolic velocity space and Lpos in hyperbolic position space:

L
2
=Lpos �Lvel =�O 3,1( )pos �O 3,1( )vel . (142)

The full hyperbolic Poincaré group can then be expressed as the triple
direct product
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PH = Ttime 1( )�L
2
= Ttime 1( )�O 3,1( )pos �O 3,1( )vel . (143)

The Lie algebra of the double Lorentz group L
2 is most simply

developed in this geometric representation. However, the operators of two
additional Lorentz subgroups, the boost and shift subgroupsLboost and Lshift

of the interactive representation, are of great physical importance, being
required for both the Lorentz transformation and the Hubble effect.

Each of the geometric Lorentz groups is itself the semidirect
product of its own rotational subgroup Rpos 3( ) or Rvel 3( ) , which I will

now express as J pos and J vel , and its translational manifold of hyperbolic

three-space,
�

Kpos 3( ) or
�

Kvel 3( ) , a subset but not a group:

Lpos =

�

Kpos � J pos; Lvel =

�

Kvel � J vel. (144)

We can now reexpress the double Lorentz group as the semidirect
product

L
2

geom =Lpos �Lvel =

�

K
2

geom �R
2

geom (145)

of a six-parameter translational double manifold
�

K
2

geom =

�

Kpos 3( )�
�

Kvel 3( ) (146)

and a double rotation subgroup

R
2

geom = J pos � J vel . (147)

In the geometric representation not only are there six dimensions of
translation, three in position and three in velocity, but we must also
recognize three rotational degrees of freedom in each of these three-
spaces. When position and velocity spaces are both curved the subgroups
J pos and J vel are clearly distinguished, but as one or both of them

approaches the pure flat space limit the difference between them becomes
tenuous and they both appear to approach a single common limit J . This
is the reason for the reduction of the thirteen-parameter Poincaré group in
curved position space to the ten-parameter ordinary Poincaré group when
position space is flat.
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The interaction representation of the double Lorentz group is formed
by choosing a new set of generating operators for the group in the form of
the products

K̂shift hshift( ) := K̂pos hshift( ) K̂vel hshift( ), K̂boost eboost( ) := K̂pos �eboost( ) K̂vel eboost( ),

Ĵ w( ) := Ĵpos w( ) Ĵvel w( ), Q̂ u( ) := Ĵpos �u( ) Ĵvel u( ).
(148)

These are the operators of the interactional rotational subgroup
Rint 3( ) = J , the contrarotational submanifold

�

Q 3( ) and the two

translational submanifolds
�

Kshift 3( ),
�

K boost 3( ) . From these we can form as
semidirect products the double rotational group

R
2

int = J �
�

Q (149)

and the double translational manifold
�

K
2

int =

�

Kshift �

�

Kboost . (150)

The interactive form of the double Lorentz group is then

L
2

int =

�

K
2

int �R
2

int =

�

Kshift �

�

Kboost � J �
�

Q . (151)

This explicitly displays the presence of the two interactive Lorentz
subgroups

Lshift =

�

Kshift � J , Lboost =

�

Kboost � J , (152)

which share the same rotational subgroup J .
Unlike the geometric form of the double Lorentz group, the interactive

form is not a direct product of its two Lorentz subgroup. Their
overlapping product

Lshift �Lboost =

�

Kshift �

�

Kboost � J (153)

must be supplemented by the contrarotational manifold
�

Q to make up the
entire group L

2. This can now be presented as a product of its Lorentz
subgroups in the two forms

L
2
=Lpos �Lvel = Lshift �Lboost( )�

�

Q . (154)
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The hyperbolic Poincaré group is the direct product of L2 with the one-
dimensional translation group in cosmological time,

PH = Ttime 1( )�L
2 . (155)

To examine the transition between the full hyperbolic Poincaré group
and the degenerate Poincaré group of ordinary use in Minkowski space
we can write PH in the less symmetric form

PH = Ttime 1( )�L
2
= Ttime 1( )� Lboost �

�

Kshift 3( )�
�

Q( ) . (156)

In the flat space limit the translational manifold becomes a subgroup,
�

Kshift 3( )�Tpos 3( ) , while the contrarotational manifold degenerates to the

identity,
�

Q � 1 , and can be omitted:

PH �Ttime 1( )� Lboost �Tpos 3( )( ) =P . (157)

In the description of the ordinary Poincaré group the four operations of
translation can be represented in a combined subgroup, but the real-and-
imaginary character of Minkowski four-space must be recognized by this
as T 3,1( ) , so that

P = T 3,1( )�O 3,1( ) . (159)

IX. The Lie Algebra of the Hyperbolic Poincaré Group

1. The Lie Algebra of the Operators of the Geometric Representation

The Lorentz matrices of rank 4, from which we shall build the
operators of the eight-by-eight matrices of the double Lorentz group, can
be represented in a standard notation (see [7,8,9], for example). They will
be parametrized here by the hyperbolic translation vectors of rapidity

� = �,�
�
,�

�
( ) or separation � = �,�

�
,�

�( ) with their associated rotations of

parallel transport �
�
= �

�
;�

�
,�

�
( ) or �

�
= �

�
;�

�
,�

�( ) , expressed as

vectors in the angle and axis notation. Infinitesimally these can be can be
expressed in rectangular coordinates, 
� = 
�

j
{ } , 
� = 
�

j
{ } and


�
�
= 
�

�

j
{ } , 
�

�
= 
�

�

j
{ } . Their Lie algebra is based on differential

expressions of the form
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L̂ ��,��
�

( ) = 1� i�� jK̂ j � i���

j Ĵ j , (159)

where the translational three-vectors K̂m{ } and Ĵm{ } are composed of

four-by-four matrix operators. These matrices are the generators of the
homogeneous Lorentz group:
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From these expressions we can obtain the usual commutators of K̂m

and Ĵm ,

K̂m ,K̂n[ ] = �i�
mnl Ĵl , K̂m , Ĵn[ ] = i�

mnlK̂ l , Ĵm , Ĵn[ ] = i�
mnl Ĵl . (161)

In the double Lorentz group we must deal with matrices of rank eight.
In position-velocity representation the generators are the eight-by-eight
matrices

K̂pos,m =
K̂m 0

0 I4

�

�
�

��

�

�
�

��
, Ĵpos,m =

Ĵm 0

0 I4

�

�
�

��

�

�
�

��
,

K̂vel,m =
I4 0

0 K̂m

�
�
�

�
�
�

, Ĵvel,m =
I4 0

0 Ĵm

�
�
�

�
�
�

.

(162)

The infinitesimal operations that generate these subgroups can be
expressed as

Lpos �� sep,��pos( ) = exp �i�� sep
jK̂ pos, j � i��pos

j Ĵpos, j( ),

Lvel �� rap,�� vel( ) = exp �i��rap
jK̂vel, j � i��vel

j Ĵvel, j( ).
(163)
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The Lie algebra of each of the two subgroups is just that of the
elementary Lorentz group, and the operators of the position subgroup
commute with those of the velocity subgroup. In this geometric
representation almost all the relationships of the Lie algebra can be
obtained by inspection immediately from those of the elementary Lorentz
group.

2. The Lie Algebra of the Shift and Boost Operators

We can now establish the Lie algebra of the double Lorentz group L
2,

in the physically useful interactive representation, using the eighth-rank
matrix form of the operators L̂ shift and L̂boost .

In this representation of the double Lorentz group the translational
matrices of rank eight are expressed as

K̂shift �hshift( ) =
K �hshift( ) 0

0 K �hshift( )

�

�
�

��

�

�
�

��

, K̂boost 	eboost( ) =
K �	eboost( ) 0

0 K 	eboost( )

�

�
�

��

�

�
�

��

, (164)

and the associated rotational matrices are those of the angular momentum
of the entire system, which will now be denoted simply as Ĵ , together
with the contra-angular momentum Q̂ :

Ĵ 	�( ) =
Ĵ 	�( ) 0

0 Ĵ 	�( )

�

�
	

�	






	

�	
, Q̂ 	�( ) =

Ĵ �	�( ) 0

0 Ĵ 	�( )

�

�
	

�	






	

�	
. (165)

The full Lorentz operators of the shift and boost subgroups share the
same angular momentum operator Ĵ , and are independent of Q̂ :

L̂ shift �� shift,��( ) = K̂ shift �� shift( )Ĵ ��( ), L̂boost ��boost,��( ) = K̂ boost ��boost( )Ĵ ��( ).

(166)

The manifold of the operator Q̂ is populated only by cross products
between the shift and boost operators like K̂ shift �shift( )K̂boost �boost( ) and
lies entirely outside the shift and boost Lorentz subgroups themselves.

In the interactive representation the infinitesimal transformations of the
double Lorentz group become

L̂ int 	� shift,	� boost ,	�,	�( ) = 1 � i	�shift
jK̂ shift, j � i	�boost

jK̂ boost, j � i	�
j Ĵ j � i	�

jQ̂ j .

(167)
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It is easy to see that the generators are twelve matrices of rank eight,
occurring as four three-vectors (with i = 1,2,3):

K̂shift,j =
K̂ j 0

0 K̂ j

�

�
�

��

�

�
�

��

, K̂boost,j =
�K̂ j 0

0 K̂ j

�

�
�

��

�

�
�

��

, Ĵ j =
Ĵ j 0

0 Ĵ j

�

�
�

��

�

�
�

��

, Q̂ j =
� Ĵ j 0

0 Ĵ j

�

�
�

��

�

�
�

��

. (168)

The commutators belonging to the shift and boost subgroups are in
each case isomorphic with those of the ordinary Lorentz group. They
include the usual angular momentum commutator

Ĵm , Ĵn[ ] = i�
mnl Ĵl , (169)

the shift commutators

(a) K̂ shift,m,K̂ shift,n[ ] = �i� mnlĴ l , (b) K̂shift,m , Ĵn[ ] = i�
mnlK̂shift,l , (170)

and the boost commutators

(a) K̂ boost,m ,K̂ boost,n[ ] = �i�mnl Ĵl , (b) K̂ boost,m , Ĵn[ ] = i�
mnl K̂boost,l . (171)

The remaining commutators involve the vector operator Q̂ and are
outside the Lorentz subgroups. They are

(a) K̂ shift,m,K̂ boost,n[ ] = �i�mnlQ̂ l ,

(b) K̂shift,m ,Q̂n[ ] = i�
mnlK̂ boost,l , (c) K̂boost,m ,Q̂n[ ] = i�

mnlK̂ shift,l,

(d) Ĵm ,Q̂n[ ] = i�mnlQ̂ l , (e) Q̂ m ,Q̂n[ ] = i�mnlĴ l .

(172)

For the angular momentum algebra of the system we can also define
the operators
Ĵ2 and Q̂2 . These are Casimir operators for the entire double rotation

group R
2 , the rotational subgroup of the double Lorentz group L

2, with
the vanishing commutators

Q̂2, Ĵ2
[ ] = Ĵ j , Ĵ

2
[ ] = Ĵ j ,Q̂

2
[ ] = Q̂ j , Ĵ

2
[ ] = Q̂ j ,Q̂

2
[ ]= 0 . (173)

In addition, by Eq. (6)(d) we also have
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Ĵ j ,Q̂ j[ ] = 0. (174)

The four operators Ĵ2, Ĵ j ,Q̂
2,Q̂ j( ) thus form a mutually commuting

set.
We can now define the usual raising and lowering operators for the

ordinary angular momentum Ĵ together with a set of analogous operators
constructed from the contra-angular momentum Q̂ as well:

Ĵ
±

:= Ĵ1 ± iĴ2( ), Q̂
±

:= Q̂1 ± iQ̂2( ) , (175)

They have various commutation relations:

(a) Ĵ3, Ĵ±[ ] = ±Ĵ
±

(b) Ĵ
+
, Ĵ

�[ ] = 2Ĵ3 ; (176)

(a) Q̂3,Q̂±[ ] = ±Ĵ
±

(b) Q̂
+
,Q̂

�[ ] = 2Ĵ3 ; (177)

(a) Q̂3, Ĵ±[ ] = ±Ĵ
±
, (b) Q̂

�
, Ĵ

+[ ] = 2Ĵ3, (c) Ĵ
�
,Q̂

+[ ] = 2 Ĵ3, (d) Ĵ3,Q̂±[ ] = ±Ĵ
±

. (178)

We can now evaluate also

Ĵ1
2
+ Ĵ2

2
= Ĵ

+
Ĵ
�
+ Ĵ

�
Ĵ
+( ) / 2 = Ĵ

+
Ĵ
�
+ Ĵ3 = Ĵ�

Ĵ
+
� Ĵ3 , (179)

Q̂1
2
+ Q̂2

2
= Q̂

+
Q̂

�
+ Q̂

�
Q̂

+( ) / 2 = Q̂
+
Q̂

�
+ Ĵ3 = Q̂�

Q̂
+
� Ĵ3 , (180)

The operators of Ĵ
±

and Q̂
±

are seen to behave for the most part like
other angular momentum operators. However, because of Eq. (4)(e) and
its consequences Eq. (40)(a), the raising and lowering operators for Q̂3

are not components of Q̂ itself, but they are identically Ĵ
±
, those of the

ordinary angular momentum.
As usual the operators Ĵ2 and Ĵ3 have the quantum numbers j,m j and

the eigenvalues j j +1( )�
2,m j� . By using the raising and lowering

operators Ĵ
±

we get for the operator Q̂3 the integrally spaced quantum
numbers mq and eigenvalues mq� . It can then be shown that the

eigenvalues of Q̂2 are q q +1( )�
2 , and its quantum numbers are q , integer

or half-integer, with the usual rules.
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In a doubly hyperbolic geometry and kinematics, each particle may be
labeled by all four of these spin and contraspin quantum numbers
j,m j ,q,mq . In the classical limit, correspondingly, dynamics in a doubly

hyperbolic universe has available for each particle additional three
degrees of freedom and three additional integrals of the motion, beyond
those usually known, those associated with the contra-angular momentum
vector Q̂ .

We can now refer to the commutators to review the routes by which
the various subsets in PH are populated. Rotation of a member of any of

the subsets R,
�

Kshift ,
�

Kboost ,
�

Q produces effects inside the subset
exclusively, and can be neglected. The rotational subgroup R is
populated directly by rotations and quadratically by the products
K̂ shift �

ˆ �K shift,K̂boost �
ˆ �K boost ,Q̂ � ˆ �Q . The translational subset

�

Kshift is
populated directly by translations and quadratically only by the product
K̂ boost � Q̂ . The boost subset

�

Kboost is populated directly by velocity

boosts and quadratically only by the product K̂ shift � Q̂ . For the

quasirotational subset
�

Q a direct process of population does not occur

within PH, but the quadratic process K̂ boost � K̂ shift will populate it. The
existence of this process is a fundamental consequence of three-space
curvature, and makes it necessary to go beyond the apparatus of the
ordinary Poincaré group. The hyperbolic Poincaré group provides a
starting point for the study of other geometries in this regard.

3. Time Displacement and the Mass Operator

In the hyperbolic Poincaré group the twelve generators of the double
Lorentz group are supplemented by the generator of time displacement.
This displacement is in cosmological proper time, and the generator is a
mass operator. It can be expressed through the elementary displacement

� �t( ) = 18 +
�t
2t0

�

�
�

�

	

M; M =

14 0

0 �14

�

�
�

�

	

 . (181)

Unlike P0 in the ordinary Poincaré group, M commutes with all the
operators of the double Lorentz group. The complete infinitesimal
displacement can now be written
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� �t;��shift ,�� boost,��,��( )

= 1 + �t / 2t0( )M̂� i��shift
jK̂ shift, j � i��boost

jK̂boost, j � i��
j Ĵ j � i��

jQ̂ j

. (182)

In the flat space limit the equivalent expression is

� �t;�r,��,��( ) = 1 + c�tP̂0 � i�r
j P̂j � i��

j K̂ j � i��
j Ĵ j . (183)

Comparing Eqs. (47) (13) and (6), we can immediately connect the
generators of the hyperbolic Poincaré group one to one with those of the
ordinary Poincaré group, with the exception that the three contrarotation
generators Q̂ j effectively disappear in the transition to flat space.

4. The Casimir Operators of the Hyperbolic Poincaré Group

In the ordinary Poincaré group the Casimir operators are the total
energy invariant and the Pauli-Lubanski invariant. Their generalization to
the hyperbolic Poincaré group is facilitated by the identification of the
generators illustrated by the parallels between Eqs. (47) and (6) above.
However, since the Casimir operators must commute with all the
operators of the group, it is important to employ the elements of the group
in their simplest and most symmetrical form. For this purpose, we must
look to the geometric representation of the double Lorentz group and not
the interaction representation in which Eq. (4) is expressed.

The operators Pj are generators of translation in position space. In the

geometric representation we must generalize from this and associate them
with a subset of the operators L̂pos,μ� of the entire Lorentz subgroup Lpos .

This leaves the operators L̂vel,μ� of the subgroup Lvel to be identified with

the operators L̂
μ�

of the homogeneous Lorentz subgroup of the ordinary

Poincaré group, an obviously satisfactory arrangement.

a. The Invariant of Action and Mass

The first Casimir invariant is

W = �
μ�
�

μ�

= Lpos
μ�Lpos,μ� + Lvel

μ�Lvel,μ� = wpos + wvel , (184)

where wpos and wvel are the invariants of the subgroups they belong to.

Because all the elements of each of these geometric subgroups commute
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with those of the other, wpos and wvel are each Casimir invariants of the

larger group.
If we multiply W by its associated mass and by the Hubble-Lorentz

constant � we get the mass or action invariant.

b. The Pauli-Lubanski Vector and its Invariant

In flat space the Pauli-Lubanski four-vector is the antisymmetric
product

�
�

= �
�μ��L

μ�
P
�

/ 2. (185)

Replacing L by Lvel and P by Lpos, and recognizing that four-vectors

must be replaced by second-rank tensors, we can propose the structure

�
��

= �
��μ���Lvel,μ�Lpos,�� (186)

for the Pauli-Lubanski tensor. Its invariant magnitude is

wPL
2
=�

��

�
��

. (187)

The commutation properties of this invariant, as well as the possible
role of a third Casimir invariant arising from wpos and wvel , deserve

further investigation.

5. The Operator Q: Possibilities of Measurement.

The development of the hyperbolic Poincaré group has brought to light
a new type of angular momentum associated with the operator Q and the
angular variables � or � in the kinematics of a universe with curvature in
the geometry of its position and velocity spaces. This angular momentum
and its angular coordinates is hidden in a perfectly flat geometry, and has
not been noticed in our human view of the universe from a location in
which the curvature is very small. Its role can be elucidated from the
information revealed by the Lie algebra of the group.

To examine the possibility of finding an observable associated with it
we can start with the analogy between the occurrence of the ordinary

angular momentum in Eq. (45)(a), a) K̂ boost,m ,K̂ boost,n[ ] = �i�mnl Ĵl , and the

parallel appearance of the contra-angular momentum Q̂ in Eq. (17)(a),
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K̂ shift,m,K̂boost,n[ ] = �i� mnlQ̂ l . In the former case we are familiar with the

associated operation �v i ��v j / c 2
( ) and its consequence in the Thomas

precession. In the latter case we can construct the operator

� = � 	̂ � � �ri 	 �v j� j / c�( ) = �ri 	 �u j / c�( ) on a similar plan.

Observable consequences might be sought either in astrophysical systems
at high redshifts and moderate values of v / c or under terrestrial
conditions with a system involving velocities approaching c . In view of
the very small factor of 	r /� = 	r / c0H0

�1 in � any such effect will be
very hard to detect in a region of the universe where gravitational
curvature is very small. As an effect of such curvature, however, its
properties and the possibility of their measurement should be explored.

X. Compatibility of Kinematic Symmetry with General Relativity

A satisfactory symmetric special relativity should be compatible with a
relativistic theory of gravitation that retains the principal results of the
description of gravitational fields in General Relativity. Born showed how
the Principle of Reciprocity could be applied to gravitation when he
developed his proposal to reconcile General Relativity and quantum
mechanics with its help [1]. However, his implementation of this
reconciliation was incomplete, because it neglected the need to bring
special relativity also into agreement with the reciprocity principle.
Born’s modification of General Relativity therefore failed to lead to
physically useful consequences. This failure may in turn have reinforced
the common opinion that Hamiltonian symmetries and methods and the
quantum mechanical structures that are associated with them are
incompatible with relativity, both special and general.

In this work I have shown that the Principle of Reciprocity can be
applied successfully to Special Relativity. To do this requires applying the
reciprocity principle not between the variables of position and ordinary
momentum but rather to a generalized Hamiltonian coordinate-
momentum pair with the mass-weighting q = m1/ 2x,p = m�1/2p = m1/2v .
This form of the Hamiltonian reciprocity exhibits simultaneously a long-
neglected symmetry between position and velocity in kinematics and
dynamics, Kinematic Symmetry. The resulting combination of Born’s
reciprocity with kinematic position-velocity symmetry and Hamiltonian
coordinate-momentum symmetry leads to an improved and symmetric
form of special relativity provided we make several additional
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modifications which conform with observed features of the universe but
sometimes differ from previously accepted assumptions:

(1) The position space of special relativity is not the flat space of a
Minkowski metric but rather the expanding hyperbolic space of an open,
homogeneous FRW universe.

(2) The curvature length of the hyperbolic position space is the time-
dependent Hubble length � t( ) = cH �1 t( ) .

(3) The velocity c establishing the curvature of the hyperbolic velocity
space of special relativity is cosmologically time dependent, c t( ) , in
symmetry with � t( ) in such a way that their product is constant,

c t( )� t( ) = c0
2H 0

�1
= � , the Hubble-Lorentz constant, while their ratio

c t( ) / � t( ) = H t( ) is the measurable Hubble function.
(4) The Hubble effect—the effect of distance on an observed

velocity—is to be recognized as the quantitative converse of the Lorentz
transformation—the effect of a velocity difference on an observed length
or time.

The result of these adjustments is a symmetric form of special
relativity with many valuable properties and consequences. Among them
are a symmetric and covariant solution of the problem of the centers of
mass and momentum in special relativity; the construction of a relativistic
Hamiltonian that is fully covariant; and the consequent establishment of
fully covariant expressions for the relativistic Schrödinger equation and
the n-body Dirac equation. Numerous other consequences follow.

This whole development strongly suggests that these symmetry
principles should also be satisfied by a new version of general relativistic
gravitation. A promising line of approach will be to modify Born’s
application of the reciprocity principle to general relativity, by first
incorporating the new features of symmetric special relativity as the
gravitation-free limit of the theory.

The new point of view requires that we recognize the following
conclusions of symmetric special relativity before attempting to follow
Born’s pattern for generalizing the gravitational metric to comply with the
new symmetry requirements:

(a) Application of the symmetry principle to special relativity confirms
Fock’s suggestion that the field-free limit of the general-relativistic metric
should be spatially Lobachewskian (hyperbolic) rather than Minkowskian.

(b) The symmetry of the reciprocity principle is to be taken as applying
not between the ordinary position and momentum spaces, but between
position and velocity, and especially to their hyperbolic representatives,
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the separation � and the rapidity � . The associated Hamiltonian
symmetry can be expressed through the four-by-four tensors
Xi = mi

1/2Xi ,Pi = mi
1/2Ui . Both the position-velocity and the Hamiltonian

symmetries should survive in general relativity.
(c) The fundamental symmetry between the Hubble effect of a change

in position on an observed velocity vector, and the Lorentz effect of a
change in velocity on an observed position vector, shows that both of
these are intimately related and express a deep feature in the structure of
the physical universe. It follows that the Hubble effect is not to be
interpreted primarily as an effect of gravitation. The symmetry that these
phenomena exhibit must be continued unimpaired in the domain of
general relativity.

(d) The Lorentz effect and the Hubble effect differ in a vital change in
sign, the sign alternation that also appears in the symplectic symmetry of
Hamiltonian dynamics and quantum mechanics. This symplectic
symmetry is a characteristic feature of the hyperbolic Poincaré group, and
must carry over into general relativity.

(e) The velocity of light and the Hubble length are both time-dependent
in the universal expansion, obeying the equations c t( )� t( ) = � , a constant,
andH t( ) = c t( ) /� t( ) , the observable Hubble expansion function.

(f) The nonrelativistic concept of “time” turns out to cover an
asymptotic merger of two different concepts that need to be distinguished
and treated differently under relativistic conditions. The time t of the
universal expansion is a universal proper time variable, an invariant under
velocity boosts and position shifts. The local time � appears as one
component of a four-vector or tensor of location or interval, and is
dependent on the velocity and position frame of the object with respect to
the observer.

(g) The properties of a doubly hyperbolic universe together with its
history of a universal expansion from an origin at a finite proper time past
show that the position-space metric in the absence of gravitation does not
have the Minkowski metric’s symmetry, but rather the symmetries
associated with the FRW metric of an expanding hyperbolic space.

(h) Kinematics in a doubly curved universe requires recognition of a
previously unrecognized three additional degrees of rotational freedom
per particle, the degrees of freedom of a contrarotation between position
and velocity space. These degrees of freedom must be recognized
whenever position space is curved.
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In applying these conclusions to the description of gravitating systems
we must take into account the major features that have been observed in
the real universe, but we do not have to accept the theoretical models that
have been advanced in the past to account for some of them. In particular,
we take note of the following circumstances:

(i) While general relativity is traditionally described by a Riemannian
metric in four-dimensional space-time, all the effects of gravitational
curvature accessible to human measurement can be described by a metric
with local inhomogeneities only in the three dimensions of position space.
The principle of parsimony would seem recommend such a procedure.

(j) Cosmological information appears to indicate that the universe
accessible to our observation is on the average extraordinarily close to
flat. At the same time, we know that gravitational inhomogeneities on a
local scale ensure that it essentially nowhere locally flat. If this is the case,
the local positive curvature prevalent in our own galaxy and near mass
concentrations in general must be compensated by negative curvature in
the vast voids revealed by cosmological mapping. It is largely through
these voids that the electromagnetic signals pass that enable us to probe
the most distant galaxies.

In his proposal for a new general relativistic quantum mechanics, Born
[1] proposed introducing two limiting metrics in a quantum-adapted
general relativity, one in usual position-time four-space and the other in a
momentum-energy four-space. Each of these would be applicable in its
own limiting case, and between the two limits quantum uncertainty
conditions would connect the two cases. Drawing on the above
considerations, it can be suggested that Born’s program may be applied
(a) in the geometries of position and velocity rather than position and
momentum, and (b) with the gravitational inhomogeneities confined to
the metric of a position three-space and a countermetric in velocity three-
space, rather than being extended to space-time (or velocity-energy) four-
spaces. The limiting metrics can be supposed to apply in the respective
three-spaces of the separation vector � and its conjugate rapidity vector
� .

A new approach to the problem of applying Born’s Principle to general
relativity is now warranted, based in a thorough development of
symmetric special relativity as a pregravitational approximation.



Hamiltonian Symmetry in Special Relativity… 243

XI. Concluding Remarks

This work was initiated under the impulse of the unsatisfactory lack of
continuity in the boundary zone from low to relativistic energies in the
dynamical theory of two or more spatially separated bodies. These issues
of continuity have been especially recognized in quantized systems, but
their origin turns out to lie in a defect of special relativity itself. Its cure
turns out to have profound consequences propagating into many fields of
physics.

This paper has been devoting to establishing the basic principles of the
new kinematically symmetric form of special relativity and surveying
some of their consequences in the case of the field-free kinematics of a
single particle. Its conclusions can be extended immediately to the
treatment to two-body and many-body systems, relying on the use of a
single cosmological proper time variable applicable to all particles of a
system. This allows the development of a symmetric and thoroughly
relativistic treatment of the center of mass and momentum, establishment
of the relativistic Hamiltonian for n-body systems, and construction of the
relativistic Schrödinger and n-body Dirac equations. These developments
will be reported in a separate paper.

It is a task for the future to develop the extension of general relativity
that will embody the kinematic symmetry between position and velocity
spaces developed here.
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