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An analysis of semiclassical radiation from single particle

quantum currents shows surprising results
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ABSTRACT. Classical electromagnetic radiation from quantum currents
and densities are calculated. For the free Schrödinger equation with no ex-
ternal force it's found that the classical radiation is zero to all orders of the
multipole expansion. This is true of mixed or pure states for the charged
particle. It is a non-trivial and surprising result. A similar result is found for
the Klein-Gordon currents when the wave function consists of only positive
energy solutions. For the Dirac equation it is found that radiation is sup-
pressed at lower frequencies but is not zero at all frequencies. Implications
of these results for the interpretation of quantum mechanics are discussed.

RÉSUMÉ. Cet article présente les résultats des calculs d'un rayonnement
électromagnétique classique provenant de courants et de densités quanti-
ques. Pour l'équation de Schrödinger libre sans force externe, il a été trouvé
que le rayonnement classique est de zéro pour tous les ordres de l'expansion
multipolaire. Cet effet s'avère vrai à l'état normal ou mixte de la particule
chargée. Ce résultat est non trivial et surprenant. Les courants de Klein-
Gordon produisent le même résultat lorsque la fonction d'onde ne se com-
pose que de solutions à énergie positive. Pour l'équation de Dirac, il a été
trouvé que le rayonnement est supprimé à des fréquences plus basses, mais
n'est pas zéro à toutes les fréquences. L'article décrit les implications de ces
résultats en ce qui concerne l'interprétation de la mécanique quantique.

1 Introduction

Semiclassical radiation theory has successfully described many phenom-
ena in quantum optics and quantum electrodynamics where one might have
thought that a description in terms of photons and standard quantum electro-
dynamics (QED) would have been more appropriate [1-3]. The consensus is
that semiclassical methods fall far short of describing all of the phenomenon
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successfully calculated with renormalization methods and QED [3]. Never-
theless, there is a great deal of interest in applying and extending semiclassi-
cal methods. It is surprising then that there does not seem to be in the litera-
ture an analysis of the radiation that would be produced by a quantum single
particle current coupled to the classical electromagnetic field. The present
work grew out of a desire to answer the following simple question. Does a
free electron described by Schrödinger's equation radiate if the electromag-
netic field is treated classically and the charge density and currents are taken
to be proportional to the probability density and currents of the Schrödinger
wave? After checking the literature, it was found that apparently this ques-
tion has not been addressed.

The reader might reasonably ask why is this question interesting. After
all, wouldn't one expect the free particle not to radiate? Isn't this required for
self-consistency of quantum mechanics? Wouldn't one expect the classical
correspondence principle to dictate this? Of course these statements are true.
But it does not at all follow that treating the radiation classically should give
a zero result. Arguing against a null result is the analysis [4] which found
that the electromagnetic self force on a quantum particle is not generally
zero, even for a free particle. One might expect from this result that the ra-
diation from a free-particle Schrödinger current would be non-zero as well.
Moreover, consider the following gedanken experiment. Imagine superim-
posing two wave packets. Let each wave packet be a plane wave modulated
by a broad Gaussian envelope. If the wavefunctions are broad enough, then
their energy and momenta can have a small uncertainty. Assume this to be
the case, and let the mean energies of the two waves be different. When
these quasi-plane waves are superimposed they will interfere similar to laser
beams interfering in optics. The wave function would have the form (treating
the quasi-plane waves as perfect plane waves for the sake of argument)

� (x, t) = A exp(ivAt � ikA �x) + B exp(ivBt � ikB �x) (1)

And the density would then be

�(x, t) = q�
*
� =

q A
2
+ q B

2
+ 2q Re A

*
B exp i �

B
� �

A( ) t � i k B � k
A( ) � x( )�� 	


(2)

This expression for the density clearly shows an oscillatory time depend-

ence with frequency �
B
��

A( ) . A similar oscillation is found in the

Schrödinger current. One would expect then from this sinusoidal dependence
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in both the density and the current that the radiation calculated would be
non-zero. In fact, one can imagine adding more plane waves to the mix and
getting quite complex time dependence. Looked at this way, one expects
radiation even for a free particle. So which argument is correct?

It is shown here that there is no radiation whatsoever from the charge
density and current of a free Schrödinger particle to all orders of the multi-
pole expansion and for any state whatsoever provided certain regularity
assumptions are satisfied. Then it is shown that if there are forces present,
the radiation agrees with Larmor's formula to lowest order, but that there are
also extra correction terms which depend on the wave function.

Another reason why these results are interesting relates to the desire to
obtain a deeper realistic understanding of quantum mechanics. In the model
of De Broglie [5] for example, the Schrödinger wave is related to a real
physical wave which has a soliton-like singularity. The soliton motion is
chaotic, but statistically described by the Schrödinger wave which is a nor-
malized version of a real wave. The results obtained here suggest that elec-
trodynamic forces will play an important role in the ultimate derivation and
understanding of the double solution model of quantum mechanics. They
suggest that the quantum mechanical potential makes a free particle diffuse
in just such a way that there is no net radiation when the Schrodinger prob-
ability and charge currents are treated as real currents. Surely this is not a
coincidence that the radiation vanishes, as we show below, to all orders of
the multipole expansion.

2 Radiation Analysis for a free Schrödinger particle

Consider first the free particle Schrödinger equation. It shall be assumed
that the wave function in momentum representation has no support for any
values of momentum which would correspond to motions faster than the
speed of light c. This is not ensured by Schrödinger's equation automatically.
Without this constraint the current and charge distribution for the particle
would not be sufficiently localized and the non-radiation result would not
follow. It shall first be demonstrated that there is no classical radiation in this
case, provided liberal regularity assumptions are made about the wave func-
tion, and where the charges and current densities from Schrödinger's equa-
tion

�
�

2

2m
�� = i�

��

�t
(3)
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are used as sources for classical electromagnetic fields. The charge and cur-
rent densities are

�(x, t) = q�
*
�; J(x, t) =

q�

2mi
�

*
�� � ���

*{ } (4)

J
μ
= c� ,J( ) , x

μ
= (ct ,x) (5)

Now consider the electromagnetic field generated by these sources.

�
μ
F
μ�

=
4�

c
J
�

; F
μ�

= �
μ
A
�
� �

�
A
μ

(6)

A
μ
= �,A( ) (7)

(the metric is timelike, ie. g00=1). The fields are determined up to ad-
dition of an arbitrary free field, but this free field will not contribute
to any radiation, and so it can be chosen to be zero for convenience.

Working in the Lorentz gauge ( �μ
A
μ
= 0 ) one then has the classical

result

A
μ

(x, t) =
1

c

J
μ

(x', t �
R

c
)

R
d

3
x '� ; R = x � x' (8)

The constraint on the momentum is

�(p) = �
*
(p)�(p) = 0, for

p

m
> (1� �)c for some �>0 (9)

With this constraint, the phase velocities of the waves making up the
wavefunction have a maximum absolute value of

v
max

= (1� �)c < c (10)
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It is still possible to localize the Schrödinger particle with this constraint
on the phase velocity, and all the higher moments calculated below can be
finite provided the wave function is infinitely differentiable as a function of
p. The magnetic field is derived from the vector potential by

B(x, t) = � � A = � �
1

c

J(x', t �
R

c
)

R
d

3
x '� (11)

Define a unit vector

n̂ =
x � x'

x � x'
(12)

The curl can now be evaluated as follows

B(x, t) =
1

c
n̂ �

�

�R

J(x', t �
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)
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d

3
x '� (13)
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2
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1

Rc
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� d

3
x ' (14)

In evaluating the radiation emitted, the limit where x �� is taken, and

therefore the leading behavior of B is all that need be kept.

R = x
2
+ x'

2
� 2x � x' (15)

Define

R
0
= x (16)

And so to leading order in R0

ˆ =n
x

x
(17)
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R = R
0
� n̂ � x' (18)

And so to leading order in R0

B(x, t) = �n̂ �
1

c
2
R

0

�J(x', t �
R

0
� n̂ � x '

c
� )d

3
x ' (19)

Now expand in a Taylor series. It is assumed that J is infinitely differenti-
able as a function of time and that the Taylor series converges

B(x, t) = �n̂ �
1
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� (20)

This is essentially the multipole expansion for the field. Now insert the
Schrödinger current (4) into this equation, and assume that the order of
summation and integration can be interchanged. One must evaluate the fol-
lowing integrals

I
m

(t
0

) = J(x', t
0

)
n̂ � x '

c

�

�
�

�

�
	

m�1

d
3
x '� ,  where t

0
= t � R

0
/ c (21)

In terms of which B may be written to leading order in R0
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Im takes the form
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this may be written as

I
m
=
q

2m
�

*
(x', t

0
) P n̂ � x'( )

m�1
+ n̂ � x'( )

m�1
P{ }�(x', t

0
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3
� x ' (24)

where

P = �i�� (25)

Now comes a marvelous surprise. Transform (22) by switching to the
Heisenberg representation. The time-dependent Heisenberg operators are

( ) , ( ) /= = +t t t mP P x x P (26)

And the quantum expectations Im are then

I
m
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I
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0

) = Polynomial of order (m-1) in the variable t
0

(28)

Therefore it follows that

�
m

�t
m
I
m

(t
0

) = 0 (29)

And hence to leading order in R0

( , ) 0=tB x (30)

More precisely one has that

lim
x ��

x
2��
B(x, t) = 0,  for all � > 0 (31)

The electric field in a region which is far from any charges or currents can
be calculated by
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E = �n̂ � B (32)

And therefore the integrated Poynting vector over a spherical surface S of
radius R0 vanishes in the limit

lim
R

0

��

4�

c
E � B � dS
S�� = 0 (33)

And so it can be concluded that the classical radiation calculated for the
free Schrödinger particle is zero.

The free particle wave function will spread out as time passes and eventu-
ally would reach any finite radius in extent. Thus, if one were to wait long
enough, there there would eventually be electromagnetic energy flowing
through any sphere whose radius is finite but fixed in time. But this is clearly
not electromagnetic radiation, because it is propagating at the group velocity
of the Schrödinger wave which is less than c by assumption. The electro-
magnetic radiation must propogate at c, and therefore one can choose the
integration sphere to be large enough so that the radiation has had time to
reach it but the spreading wave function has not had sufficient time.

3 Mixed States also gives zero radiation in semiclassical approxima-

tion

The preceding analysis showed that both E and B fall off more quickly
than 1/R for all orders of the multipole expansion. If we were to simply add
several such currents together, as in a mixed state, then E and B would still
fall off more quickly than 1/R and so the result of no radiation in this semi-
classical calculation would still hold for mixed states like this. As a mathe-
matical curiosity, it follows that adding mixed states with different values of
� together would also give a zero result. It is an interesting question as to
whether this exhausts all non-trivial time varying currents that have the
property that they don’t radiate.

4 Radiation Analysis for an accelerating Schrödinger particle – Lar-

mor’s formula and higher order terms

Consider the first term in the expansion for B (22)

I
1
=
q

m
P(t

0
) (34)
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and again using (32) one has
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and the total power radiated is

P
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which simplifies to

P
R
=

2

3

q
2

c
3
a

2 (39)

This is just Larmor's formula. Keeping the higher order terms in the ex-
pansion for B (22) yields correction terms to the Larmor formula. These
corrections depend on the specific functional form of the wave function
through the Im. But even the lowest order term already differs from QED [6].

5 Radiation analysis for a Newtonian ensemble

Next consider an ensemble of Newtonian particles which are constrained
to move with constant velocity. Such a system can be described by a phase
space distribution function �(x,v,t) which satisfies the Liouville equation
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��(x, v, t)

�t
+ v � ��(x, v, t) = 0 (40)

Since by assumption the velocities of the particles don’t change with
time. The current density and charge density in this case are given by

�(x, t) = �(x, v, t)d
3
v� ; j(x, t) = v�(x, v, t)d

3
v� (41)

The Im may be calculated by making the substitution

x(t) = x(0) + vt (42)

into the integrals for Im. Again, as for the free particle Schrödinger case, the
Im are polynomials of order (m-1) in the time variable and thus the radiation
will again be zero. This is not a particularly surprising result however since
there is no interference in this Newtonian case, and it is the interference
terms that give rise to oscillations in the Schrödinger case. In both the New-
tonian and the Schrödinger case, we see that it is the fact that position enters
as a first order function of time that leads to the zero radiation result. In the
Schrödinger case the coordinate x(t) is an operator which is linear in time
whereas in the Newtonian case it is simply a classical vector.

A more realistic problem would be a Newtonian ensemble in which the
particles are allowed to accelerate under their mutual interactions. Such a
system would undoubtedly radiate.

6 Semiclassical radiation analysis for the Klein-Gordon equation

Consider the free Klein-Gordon equation
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The four current is given by
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The constraint (9) need not be imposed on the Klein-Gordon case since
the velocities are automatically subluminal. The wave function is in general
a superposition of positive and negative energy terms

� = �
+
+�

�
(45)

The time evolution for these two components is

�
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2
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2
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2
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2
t
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/ �)�
�

(x, 0)

(46)

Where p is again given by (25).
If the wavefunction has only a positive energy term, then in this case one

can write a Heisenberg time dependent position operator

x
+

(t
0

) = exp(+ic p
2
+ m

2
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2
t
0

/ �)x exp(�ic p
2
+ m

2
c

2
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0
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Which simplifies to

x
+

(t
0

) = x +
p

p
2

c
2
+ m

2

t
0

(48)

And once again, because x+(t0) is linear in t0, the Im will be polynomials of
order (m-1) in t0, so that if the wavefunction contains only positive energy
terms, there will again be no radiation. Likewise if the wavefunction con-
tains only negative energy terms the classical radiation will vanish.

When the wave function contains both positive and negative energy
terms, it appears that there will be classical radiation, or at least the previous
arguments which lead to zero radiation are no longer valid and there does
not seem to be another mechanism to suppress the radiation. Even for mixed
wavefunctions however, the radiation at lower frequencies will be sup-
pressed if one considers time averaged currents over a time long compared

to � / 4�mc2( ) . In this case the cross terms involving + and – wavefunctions

in the expression for the current density will average out to be nearly zero.
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7 The Dirac Equation

The free-particle Dirac equation may be written (using the notation of [7]
chapter 1.4).

i�
�	

�t
= c� � p + �mc

2( )� (49)

The Hamiltonian is given by the operator

H = c� � p + �mc
2( ) (50)

And the charge and current densities are

� = q �
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*

� =1

4

� �
�

; j
k
= cq �

�

*
�
k

� =1

4

� �
�

(51)

The time dependent form for the coordinate x(t) shows oscillatory motion
(zitterbewegung). Both H and p are independent of time though, and the
coordinate satisfies the equation

x(t) = x(0) + c
2
pH

�1
t +
�

2

4
��x(0)H

�2
(1� e

� i2Ht /�
) (52)

Where

��x(0) =
2c

i�
�H � cp( ); �x(0) = c� (53)

Equation (22) can be used to calculate B in this case provided the current
density for the Dirac equation is used. The expression for Im becomes
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The operators �� and x commute, and thus in the Heisenberg representa-
tion where they become time dependent, they must also commute at the
same time. Therefore, one may shift the time dependence to the operators
without regard to their order and obtain

!

I
m

(t
0

) = cq �
�

*
(x ', 0)x(t

0
)

� =1

4

� n̂ � x '(t
0

)( )
m�1

�
�

(x ', 0)d
3
x '� (55)

It is clear from this expression that all of the Im have exponential behavior
in time, and therefore the previous argument cannot be used to argue that the
Dirac equation will not radiate classically. The oscillatory zitterbewegung

term has an angular frequency of at least !4�mc
2 / !, the same as the oscilla-

tion between the cross terms for the Klein-Gordon equation, and so one
expects some radiation here at this and higher frequencies. For much lower
frequencies the oscillatory term can be safely ignored and the classical radia-
tion will be greatly suppressed.

8 Conclusion

It has been shown that the charge density and currents for a free particle
Schrödinger equation do not radiate when taken as the source for a classical
electromagnetic field, and when liberal regularity assumptions are made
about the differentiability and localizability of the densities. Larmor's for-
mula is also derived as a first approximation to an infinite series when the
Schrödinger particle has a non-vanishing acceleration. The same is true for
mixed states of free particles.

It was shown that an ensemble of Newtonian charged particles moving
with constant velocity also do not radiate as expected.

For the free Klein-Gordon equation it was shown that there is no classical
radiation when the wavefunction is purely positive energy or purely negative
energy, and that even for mixed wavefunctions the radiation is suppressed at
lower frequencies.

For the Dirac equation it was shown how the radiation is suppressed at
lower frequencies, but that the zitterbegung seems to lead to radiation at high
frequencies. Perhaps this could be cancelled by a spin contribution that was
not included in the analysis.

The schrödinger equation and to a lesser extent the relativistic wave equa-
tions seem to belong to a very special class of fluid-like models for which,
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though the charged flow is quite time dependent, the classical radiation is
nevertheless zero for the free particle.

These results are consistent with the classical correspondence principal,
and so they are reassuring from the point of view of the logical consistency
of quantum mechanics. One might argue that the two cases found where the
free particles do seem to radiate, the Klein-Gordon equation with mixed
states and the Dirac equation both at high frequencies, are simply examples
where the semiclassical radiation picture breaks down.

It is tempting to argue that the results of this paper add support to the hy-
pothesis that the origins of quantum behavior are somehow deeply connected
to classical electromagnetic theory and to the self interaction of charged
particles as in [8-11]. As has been shown here, the extremely complex time
dependence of the densities and currents in quantum mechanics are just such
as to provide for complete cancellation of all radiation no matter what the
wave function is for a free particle.
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