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ABSTRACT. It is shown that Landau-Lifshitz equation of motion for a
charged particle presents similar behaviors to Lorentz-Dirac equation.
Indeed the reaction force obtained for the uniform electric field vanishes
when the motion is parallel to it. A discusson of this unphysical result
is exposed.

RÉSUMÉ. On démontre que l’équation de Landau-Lifshitz pour une
particule chargée presente des solutions similaires à celles de l’équation
de Lorentz-Dirac. En effet, la force de réaction obtenue pour un champ
électrique constant quand le mouvement est parallèle a lui, disparâıt.
Une discussion, à propos de ce résultat nonphysique, est exposée.

1 Introduction

Since Dirac [1] obtained in 1938, the so-named Lorentz-Dirac equation
(LDE) of motion for a charged point particle, many discussions about its
validity have appeared. Indeed, it is one of the most controversial equa-
tions in the history of physics [2]. The third order time derivative term
leads to runaway and preaccelerated solutions. Asymptotic conditions
or appropriate boundary conditions are imposed to the equation in or-
der to neglecting the non-classical results [3] leaving then the corrections
to the quantum domain. Moreover, the development of quantum elec-
trodynamics by the middle of the last century, left aside this problem.
Nevertheless, during the seventh decade of the last century, Shen [4, 5]
showed that there is a region over an Energy vs Field diagram where
quantum effects can be neglected and a classical equation of motion is
required. Indeed, this region corresponds to the order of magnitude ana-
lyzed in Plasma Physics and Astrophysics. Moreover, in this same order



284 G. Ares de Parga, R. Mares and S. Dominguez

of ideas, this region permits us to design an experiment to know which
is the equation of motion of a charged particle [6].

New proposals have appeared in the last four decades but none with
an appreciable impact, except the Sphon’s one[16]. As an example, Mo
and Papas equation [7] has been criticized by Shen [8], and Cook series
representation [9] was rejected by Peter [10] and Ares de Parga [11].
Bonnor proposed a radiating mass [12] and the idea was criticized by
himself in the same paper and discarded by Ares de Parga [13] later
on. The list of such examples is uncountable, but the summary is that
each time a promising idea appears, there is always a counterpart and
the problem remains open. The failure of an alternative equation and
the formal works realized by Synge [14] and Teitelboim [15] supporting
the LDE, indicate that the solution consists on an adequate interpre-
tation of it. Recently, Sphon [16] has presented a mathematical work
where he proved that the old LDE must be restricted to its critical sur-
face yielding the Landau-Lifshitz [17] equation (LLE). Indeed, Dirac’s
asymptotic condition forces the solution to be on the critical manifold.
So even if Landau and Lifshitz deduced their equation as the first or-
der iteration of the LDE, it has to be considerated that the solutions
to this last equation are the exact solutions to the old problems of the
LDE, within the Shen region[5]. It must be noticed that Herrera [18]
obtained a particular equation which coincides with the LLE for fields
with ∂Fµν

∂xσ = 0. The Herrera equation has been solved for different cases
[18, 19] giving apparently physical results. In the same order of ideas
Rorlhich [20] asserts, about the LLE, “The result is an equation free of
unphysical solutions. The deeper mathematical meaning of this approx-
imation can be learned from Kunze and Spohn [21]”. Finally, we can
conclude that nowadays the LL, within the Shen [5] region, supported
by the mathematical work done by Kunze and Sphon [16, 20], repre-
sents the solution for the description of the motion of a classical charge.
Unlike LDE, an important result is that LLE eliminates the runaway
solutions and the preaccelerations. Preaccelarations survive even if we
consider asymptotic conditions for the LDE. So the solutions for the LLE
or the LDE with asymptotic conditions, are different. In this order of
ideas, although we know that the physical solutions will correspond to
the LLE, it will be interesting to consider the differences between both
equations for critical situations. One of the critical situation, where un-
physical results may appear, is for the simple case of a constant electric
field. Indeed, the LDE [22, 23] reaction force vanishes when a constant
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electric field is applied in the same direction of the initial motion. It has
to be noticed, as Parrott mentioned [23], that the LDE and other equa-
tions present the same problem. It will be expected that for the LLE,
the result will be repeated. We shall discuss why this is an unphysical
result and propose that the problem may not consist of considering the
solution on a critical manifold of the LDE, but to analyze the classical
deduction of the LDE.

2 Landau-Lifshitz equation

The Lorentz-Dirac [1] equation of motion for a charged particle is:

m
duµ

ds
= eFµνuν +

2
3
e2

[
d2uµ

ds2
− uµuν d2uν

ds2

]
. (1)

Here u is the four-velocity of a charged particle of mass m and charge
e, s denotes its proper time, F is the field tensor for an external electro-
magnetic field and the velocity of light is taken as unity. Solutions of
this equation for some physical situation appear physically unreasonable.
Many authors have proposed modifications which might result in physi-
cally reasonable solutions, among these are an equation proposed in the
classical text of Landau and Lifshitz[16, 17, 19, 21]. As we mentioned
above, although Landau and Lifshitz deduced the equation by means of
an iteration, for Sphon the solutions of the equation, have to be consid-
erated as the exact physical results. The Landau-Lifshitz equation for a
charged particle is:

m
duµ

ds
= eFµνuν + gµ

LL , (2)

where gµ
LL represents the Landau-Lifshitz reaction force and it is ex-

pressed by:

gµ
LL =

2
3

e3

m

∂Fµν

∂xγ
uνuγ − 2

3
e4

m2
FµγFνγuν +

2
3

e4

m2
(Fνγuγ) (F ναuα) uµ .

(3)

For a constant electric field
(

∂F µν

∂xγ = 0
)
, the last expression reduces

to Herrera [18] reaction force,

gµ
LL = gµ

H =
2
3

e4

m2
(−FµγFνγuν + (Fνγuγ) (F ναuα)uµ) . (4)
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Since Fµν is antisymmetric, for any vector uν ,

Fµνuνuµ = Fνµuνuµ = 0 (5)

Thus the first tensor of Eq. (2), eFµνuν , is orthogonal to u. The left
side of Eq. (2), m duµ

ds is also orthogonal to u. Hence for consistency
gµ

LL must also be orthogonal to u. If we consider a charged particle
moving in the direction of a constant electric field, (∂F µν

∂xγ = 0), for
purposes of calculating the motion, Minkowskian space is effectively two
dimensional. From Eq. (5), it follows that the first term of the Landau-
Lifshitz reaction force, Eq. (4), namely

2
3

e4

mc3
FµγFνγ uν (6)

must be in the direction of u, that is, a multiple of u. This is because of

ω := Fαβuβ

is orthogonal to u by Eq. (5), so that

FµγFνγuν

is orthogonal to ω. In a two-dimensional space with nondegenerate inner
product, as it is the case, if ω is orthogonal to u and v is orthogonal
to ω, then v must be a multiple of u. Since the second term of the
Landau-Lifshitz reaction force is in the direction of u, we can conclude
that gµ

LL is multiple of u which is also orthogonal to u. Hence it must
vanish. In others words, the reaction force vanishes in this special case.
As we mentioned above, the same result is obtained for the LDE and
other equations. In the next section we will explain why we consider this
result as an unphysical behavior.

3 Unphysical result

If a classical charged particle is accelerated, a momentum is transferred
to the field, thus from momentum balance, a reaction force must act on
the charged particle. Indeed, a reaction force will be needed to describe a
Bremsstrahlung effect (“braking radiation”) which is physically observed
when charged particles are decelerated by a force in the direction of their
motion (e.g. when a beam of charged particles hits a target). Even if
the electric field is not constant, it can be considerated as constant for a
small time or simply to expose the beam of particles in a uniform electric
field.
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4 Conclusion

After more than a century that Abraham, Lorentz, Planck and later on
Dirac claimed for a third order derivative equation of motion, it is time
to think that drastic changes must be done to deal with the problem.
Indeed, the hyperacceleration is the responsible of all this problematic.
Although the mathematical work realized by Sphon is undeniable, it
doesn’t mean that the result is physically acceptable since the point of
departure maybe wrong. Indeed, the reasoning for obtaining the LDE is
founded in the use of the Maxwell stress tensor. This last one is defined
from electric and magnetic fields which are meaningful by the use of an
equation of motion. This equation of motion is Lorentz equation and not
the LDE. So we depart from Lorentz equation of motion for a charged
particle and after a mathematical process, we obtain another equation
of motion for the charged particle. Something is misunderstood. In this
order of idea, it is convenient to mention Galeriu’s comment[24]: “The
physical origin of this 4-force, which gives the accelaration energy, is not
clear, and the mechanism by which a charged particle acquires rest mass
from the field needs more investigation”.
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