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ABSTRACT. The energy of a system is defined precisely. A non-linear

Schrödinger equation accounting for friction is thereafter presented. The

equation could be of importance in nano-technology where friction prob-

lems abound. The solutions are for special cases of the harmonic oscillator

examined numerically. The solution is shown numerically to approach the

stationary zero-point solution of the conventional Schrödinger equation

when time approaches infinity.

KEYWORDS. Differential equations, Schrödinger equation, quantum me-

chanics, energy, wave function

1 Introduction

Sliding friction has been studied macroscopically for several hundred

years, and is one of the oldest and most important problems from a practical

point of view. The ability to produce durable low-friction surfaces has be-

come an important factor in the miniaturization of moving components in

many technological devices [1], but in some cases one wants to maximize

the friction rather than to minimize it. Without friction it would be impossi-

ble to walk or to drive a car. Also during fast compression of explosives by

impact, the friction between microscopic grains creates hot areas causing the

explosive to ignite [2],[18].
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The classical and quantum mechanical analyses of systems in general

share the property of symmetry when time changes direction. This time

symmetry relates to the possibility of formulating the fundamental equations

of Nature by using the Lagrangian approach. Thus an exact treatment of the

fundamental equations appears to dispense with the use of friction forces,

since friction forces involve time asymmetry. An exact treatment of the

fundamental equations for large objects is, of course, a very complicated

mathematical problem, and the introduction of the concept of friction has

been a convenient way of avoiding the complications associated with an

exact microscopic mathematical approach.

Friction arises from the transfer of collective translational kinetic energy

into nearly random motion, and can formally be considered as resulting from

the process of eliminating, classically or quantum mechanically, the micro-

scopic degrees of freedom in a systematic manner. Accounting for the mi-

croscopic degrees of freedom, the standard algorithm within the quantum

mechanical approach is to construct an effective quantum mechanical field

theory. Our approach is different. We assume that the microscopic degrees

of freedom are integrated out classically, and that the classical equation is

given to us as an equation involving friction. Given the existence of this

classical differential equation, a way of constructing the corresponding quan-

tum mechanical equation is provided. Of course, this new equation must in

some limit approach the classical equation, using some appropriate corre-

spondence principle. Surprisingly, a direct way of constructing the equation

is found. The constructed non-linear quantum mechanical equation should be

of interest in the field of nano-technology where friction is very important to

control [1]. Of special interest are situations where small objects (e.g. atoms

and molecules) interfere with larger objects (e.g. macroscopic surfaces)[3],

probably stressing a quantum mechanical approach for the smaller object.

Instead of providing examples from the field of nano-technology, the first

focus in this article is on the classical and quantum mechanical energy con-

cept, which from our point of view is imprecise, causing problems in the

construction of quantum field equations. Different re-normalization tech-

niques are introduced to compensate for the imprecise definition. Many of

the problems are indeed solved, but not all of them, which await future

study. By first focusing on the classical energy concept, a line of arguments

is constructed, and by following the same line of thoughts for the quantum

mechanical systems, a precise energy definition is constructed. It is found

that both the so-called zero point energy and the arbitrary constant always

following the classical potentials are cancelled out and do not contribute to

the energy.



A non-linear Schrödinger equation used to describe friction 311

Although the studies of the non-linear modifications of the Schrödinger

equation are not new [4]-[14], handling friction in association with the

Schrödinger equation has to our knowledge not been done. The numerical

solutions of the proposed non-linear Schrödinger friction equation are, as

illustrated with some examples for the harmonic oscillator, shown numeri-

cally to approach the stationary zero-point solution of the conventional

Schrödinger equation when time goes to infinity. This seems very natural

since it is expected that friction reduces the energy of the solution, causing

an expected threshold at the corresponding zero-point solution.

Section 2 discusses the classical energy concept, proposing a classical en-

ergy definition. Section 3 presents the non-linear Schrödinger equation with

friction, supplemented with the quantum mechanical energy definition. Sec-

tion 4 shows various numerical examples of the equation. Section 5 con-

cludes.

2 The classical energy

Assume as an example that the classical equation is given by the har-

monic oscillator, i.e.
1

��N (t)

mod

= � N (t), �t, (2.1)

where N(t) is position and “mod” means model assumption. To find the

energy e(t) of this system at time t, the literature provides the following

quantity,

1
We chose units such that the mass is one and the frequency is 1.
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e
l
(t)

def

= e
k
(t)+ e

p
(t) = (1/ 2) �N (t)2

+ (1/ 2)N (t)2

� �e
l
(t) = �N (t) ��N (t)+ N (t) �N (t)

= �N (t) ��N (t)+ N (t)( ) = 0, e
k
(t)

def

= (1/ 2) �N (t)2 ,

e
p
(t)

def

= (1/ 2)N (t)2
�t,

(2.2)

where “def” means definition and e
l
(t) is a constant through time (also

called a constant of motion). e
k

(t) is called the kinetic energy and e
p
(t) is

called the potential energy. A measurement of the energy of the system

should give the energy e
l
(t) , but there are of course other constants through

time that a measuring process in principle could reveal, e.g.

e
a
(t)

mod

= (1/ 2) �N (t)2
+ (1/ 2)N (t)2

+ a �t, (2.3)

where the constant a is arbitrary. If the empiricism rules out other possibili-

ties implying e(t) = e
l
(t) , which we refer to as the classical result, and ad-

hoc postulate of the nullity of the constant must be provided. In order to

reduce the number of axioms as much as possible, and at the same time

searching for a mechanism that could give a unique energy for a given equa-

tion of motion, the following procedure to measure the energy is proposed:

Assume that the process of measuring means to impose an interaction be-

tween the system and the measuring device, where the interaction is de-

scribed by friction, i.e. substituting (2.1) with
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��N
m

(t)

mod

= � N
m

(t)�� �N
m

(t), t � t
m

, (2.4)

where � is a constant and the measurement starts at time
m
t . Thus (2.4)

applies for the system after the measuring process is started. Define the en-

ergy by

e
m

(t
m

)

def

= � ��N
m

(t) + N
m

(t)( ) �N
m

(t)dt
t
m

�

�

= � (1 / 2) �N
m

(t)2
+ (1 / 2)N

m
(t)2

�
�

�
	t
m

�

= (1 / 2) �N
m

(t
m

)2
+ (1 / 2)N

m
(t
m

)2

= e
l
(t
m

), Lim
t��

N
m

(t) = 0.

(2.5)

The result of the integration from
m
t to infinity is almost independent of

the exact nature of the measuring process since result follows as long as

Lim
t��

N (t) = 0 . Also the result is independent of the time
m
t for the start of

the measuring process in this example where the force is only dependent on

N(t).

The general algorithm for finding the classical energy of a system at time

t can now be constructed. Assume that in general the equation of motion is

given as

��N (t)

mod

= f N (t)( ) �t. (2.6)

The measuring process involving linear friction is described by

��N
m

(t)

mod

= f N
m

(t)( )��vm (t), �N
m

(t) = v
m

(t), t � t
m

. (2.7)
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The energy at time
m
t is then given by

e
m

(t
m

)

mod

= � ��N
m

(t) � f N
m

(t)( )�
�

�
	
�N
m

(t)dt
t
m

�

�

= � (1 / 2) �N
m

(t)2
+V N

m
(t)( )�

�
�
	t
m

�

= (1 / 2) �N (t
m

)2
� V N

m
(t)( )�

�
�
	t
m

�

, Lim
t��

�N
m

(t) = 0,

DV (n)

def

= � f (n), N
m

(t
m

) = N (t
m

),

(2.8)

where “D” means derivative with respect to the position n. Observe that the

energy is independent of
m
t , i.e. �e

m
(t
m

) = 0, �t
m

. This means that the

measurement process of the energy completely eliminates the energy so that

it equals zero after completion of the measurement process. (This does of

course not mean that a classical measurement process of something else than

energy (e.g. momentum, position), completely eliminates the energy after

completion of the measurement process.) The arbitrary constant of the po-

tential V (n) is now cancelled out, but still the energy e
m

(t
m

) is ill posed if

the potential happens to be singular such that Lim
t��

V N
m

(t)( ) = 0 does not

exist.

The energy in (2.8) can in general be defined also for a system where the

force depends on the rates. Thus we in the most general case provide

e
m

(t
m

)

mod

= � ��N
m

(t) � f N
m

(t), �N
m

(t)( )�
�

�
	
�N
m

(t)dt
t
m

�

� ,

Lim
t��

�N
m

(t) = 0,N
m

(t
m

) = N (t
m

),

(2.9)

Although integrating the path after the interaction between the system and

the measuring device gives the proposed measurement of the energy, the

energy left after the measurement is zero. So in this respect a classic meas-

urement of the energy is very different from a measurement of the position.
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The classical position can be measured without destroying or interfering

with the position.

3 The quantum energy

Introducing
2

�(t,n)

def

= �(t,n)1/2
Exp[i s(t,n)], D s(t,n)

def

= v(t,n) (3.1)

and inserting into the familiar Schrödinger equation gives the de Broglie

version of the Schrödinger theory [4], to read

�v(t,n)+ v(t,n)D v(t,n)( ) = f (n)+ (1/ 2)D D
2
�(t,n)1/2

( ) �(t,n)1/2�
�

�
�
,

��(t,n)+D �(t,n)v(t,n)( ) = 0,
(3.2)

where the classical system is given by (2.6).

We propose the following two criteria as the most plausible to design a

quantum system that best corresponds to the classical system with linear

friction in (2.7). The first criterion is the expectation equation

��E(N ) = E f (N )( )��E v(t,N )( ) , �E(N ) = E v(t,N )( ) , (3.3)

where “E(�)” means expectation value. We believe that equation (3.3) is

one of the basic relations that a quantum equation should fulfil. A second

and more obvious criterion is that �(t,n) is a proper density function fulfill-

ing the standard criteria of weak positivity and integration to one. We thus

propose the quantum system

2
We have chosen unit such that m =1,� =1
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�v(t,n) + v(t,n)D(v(t,n)
mod

= f (n) � � v(t,n) +

                  (1 / 2)D D
2
�(t,n)1/2

( ) / �(t,n)1//2�
�

�
�

,       (a)

��(t,n) + D(�(t,n)v(t,n) =

mod

0,             (b)

(3.4)

where the friction term or velocity term ��v
m

(t) in (2.7) is substituted by

��v(t,n) . It is easily shown by using (3.4a) and (3.4b) that (3.3) follows.

Multiplying (3.4) with �(t,n) , integrating by parts, applying the identity

relation

h(t,n)(1/ 2)D D
2
h(t,n)1/2

( ) h(t,n)1/2�
�

�
�

= (1 4)D D
2
h(t,n

1
)� Dh(t,n)( )

2

h(t,n)
�

��

�

��
,

(3.5)

where ( )h � is an arbitrary function, subsequent integration and application

of the boundary conditions

D
2
� � D�( )

2

� = 0 at boundaries, (3.6)

imply (3.3). Using (3.1), one integration of (3.4) gives

�(1 2)D2
� (t,n) +V (n)� (t,n) + � (1 (2i))

�Log � (t,n) � (t,n) *�
�

�
	
� (t,n) = i �� (t,n),

(3.7)

which is the crucial equation of this article, hereafter referred to as the

non-linear Schrödinger friction equation, or the quantum friction equation

[15].
3

Observe the extra non-linear “friction” term

�(1/ (2i))Log �(t,n) /�(t,n)*�
�

�
��(t,n) in (3.7) compared with the conven-

3
In (3.7) Log means the principal value or principal branch of the logarithm

where the phase is between minus Pi and plus Pi [16, page 63]. When the

denominator �(t,n)* in the logarithm in (3.7) equals zero, then we define

the logarithm multiplied with � (t,n) to be equal zero.
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tional Schrödinger equation. Although one may theoretically think of many

ways of adding friction terms to the Schrödinger equation so that it reduces

to the standard Schrödinger equation in spezial circumstances (when friction

approaches zero), we believe that our proposal is the most plausible one for

linear friction. We do not claim that equation (3.3) together with the classical

equation uniquely determine (3.4). But, by focusing on Poincaré’s [17] crite-

ria for mathematical theory, symmetry, harmony, balance, we believe that

(3.4) is the most plausible choice. Of course, empirics will over time termi-

nate all discussion. Observe that the classical friction equation which was

linear, gives a non-linear quantum mechanical term. Our numerical exam-

ples in the next section show for the harmonic oscillator that the solutions of

(3.7) asymptotically approach the stationary zero-point solutions of the con-

ventional Schrödinger equation when time t approaches infinity.

We now proceed to measure the energy of the quantum system. Before

the measurement is started, the following expected energy is a constant thor-

ough time, i.e.

e (t) = �(t,n)* �(1 2)D2
�(t,n)+V (n)�(t,n)( )dn

��

�

� . (3.8)

The classical potential ( )V n is only given at a constant near, so therefore

the equation in (3.8) does not give a unique value. In order to define the

energy precisely, the same lines of thoughts as in the classical situation are

followed. Assume that the measurement starts at time
m
t . Thereafter the

friction equation (3.7) is descriptive, and the released energy is given by

e
m

(t
m

)

def

= � �
m

(t,n)* �(1 2)D2
�
m

(t,n)+V (n)�
m

(t,n)( )dn
��

�

�
�

�

�

	




�

t
m

�

, (3.9)

where ( , )
m
t n� satisfies the friction equation (3.7). Assuming that the

solution ( , )
m
t n� approaches a stationary solution when time approaches

infinity, which is likely to be the stationary zero-point solution if it exists

gives that

e
m

(t
m

) = �
m

(t
m

,n)* �(1 2)D2
�
m

(t
m

,n)+V (n)�
m

(t
m

,n)( )dn� e0

��

�

�

= e (t
m

)� e
0
,

(3.10)
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where

e
0

def

= Lim
t��

�
m

(t ,n)* �(1 2)D2
�
m

(t,n)+V (n)�
m

(t,n)( )dn
��

�

� . (3.11)

Using the approach in this section, both the zero-point energy 0e in equa-

tion (3.11) and the arbitrary constant of the potential is cancelled out for the

expected energy e
m

(t
m

) . In order to have a well-posed description the limit

Lim
t��

�
m

(t ,n)* �(1 2)D2
�
m

(t,n)+V (n)�
m

(t,n)( )dn
��

�

� must exist.

4 Simulations and comparisons

This section compares the quantum equations with and without friction

for various scenarios. The initial probability densities are as examples given

by Gaussian distributions of the form

�( t
0
,n )= ( 2�� 2

)
�1/2
e
�( n�a )

2
/ ( 2� 2

)
, v( t

0
,n )= 0, a = constant, (4.1)

or as a sum of two initial Gaussian distributions of this form. The analytical

solution of the Schrödinger equation is for one initial Gaussian distribution

given as

�(t,n) = (i)�1/2 (2�� 2 )�1/4
�

1/2
i�Cost + Sint / (2� )( ) �

2
Cos

2
t +1/ (4� 2 )Sin2

t( ){ }
1/2

� Exp �(n� aCost)2 (1+ i2� 2
Cost / Sint) /{4[� 2

Cos
2
t +1/ (4� 2 )Sin2

t]}�
�

+ i(n� aCost)2
Cost / (2Sint)	



, t

0
= 0,

s(t,n) = (1/ 2)(n� aCost)2
Cost 1/ (4� 2 )�� 2

( )Sint [� 2
Cos

2
t +1/ (4� 2 )Sin2

t],

v(t,n) = Ds(t,n),


(t,n) =�(t,n)*�(t,n)

= (2� )�1/2
�

2
Cos

2
t + (4� 2 )�1

Sin
2
t( )

�1/2

e
�(n�aCost )2 /[2(� 2

Cos
2
t+(4� 2 )�1

Sin
2
t )] .

(4.2)
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Inserting a=0 and � = 2�1/2
into (4.2) gives the so-called zero-point sta-

tionary solution. The variance is �
2
=1/ 2 . Two different values of a will be

used. For two initial Gaussian distributions it follows from the linearity of

the Schrödinger equation that the solution is given as the average of the

wave functions corresponding with the two initial values of a.

Stationary solutions of the friction equation (3.7) are found by setting
��( t ,n )= 0 in (3.7), and classes of stationary solutions are found by

�( n ) �( n )*�
�

�
�= const, i.e.�( n )= �( n )

1/2
Exp[ i b], b = constant.(4.4)

Defining
i

b e� = � , inserting (4.4) into (3.7) gives

�(1 2)D2
�(n)1/2

( )+V (n)�(n)1/2
= e

i
�(n)1/2 . (4.5)

Observe that the proposed classes of stationary solutions of the non-linear

Schrödinger friction equation (3.7) also are solutions of the conventional

Schrödinger equation.

Fig. 4.1 shows the square root of the variance (Stand) as functions of time

(Time) for tree different cases denoted as A, B, C. The expectations are zero

at all times in all cases.

1 2 3 4
Time

0.8

1.2

1.4

1.6

Stand

C

B

A

Fig. 4.1. Different standard deviations as functions of time t, a=0, � = 4.0 in

all cases. A: Stand(0) = � = 1.73 ,

B: Stand(0)=� = 1.22 , C: Stand(0)=� = 0.87 .

The quantum solutions in the figure are found by solving (3.7) numeri-

cally. These solutions approach a limit equal to the stationary variance



320 J. F. Moxnes, K. Hausken

�
2

=0.5, i.e. Stand= 0.5 = 0.71 (commented in the text after equation (4.2))

as time t approaches infinity. The limit density function Lim
t��

�(t,n) seems to

have a Gaussian form, and is always the same for all initial conditions.

Fig. 4.2 shows the density �( t ,n ) without friction (�=0) referred to as

Sim1 as a function of time t and position n.

Fig. 4.2: Quantum solution without friction as a function of time,

�
2
=1/ 2,a =1.5,� = 0 .

The variance �
2

in Fig. 4.2 stays stable through time. The solution is

found numerically, but equation (4.2) can also be used directly.

Changing from a=1.5 to a=-1.5 to generate the mirror solution (i.e. start-

ing to the left rather than to the right), Fig. 4.3 shows the density �( t ,n )

without friction referred to as Sim2 when �
2
= 1 / 2, a = �1.5,� = 0 .
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Fig. 4.3: Quantum solution without friction as a function of time,

�
2
= 1 / 2, a = �1.5,� = 0 .

Fig. 4.4 shows the average of the two mirror solutions in Figs. 4.2 and

4.3, referred to as (Sim1+Sim2)/2. (Note that the average of the densities

�( t ,n ) is plotted and not the squared average of the two wave functions

�( t ,n ) .) This is not an exact solution.

Fig. 4.4: The average solution (Sim1+Sim2)/2 without friction of the two

initial Gaussian distributions as a function of time.

�
2
=1/ 2, Abs(a) =1.5,� = 0 .
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Fig. 4.5 shows the quantum solution as a function of time using the two

initial Gaussian distributions.

Fig. 4.5: Quantum solution without friction as a function of t,

�
2
= 1 / 2, Abs(a) = 1.5,� = 0 .

Observe the difference between the average solution in Fig. 4.4 and the

quantum solution in Fig. 4.5. The interference pattern is clearly visible in the

quantum solution in Fig. 4.5. Fig. 4.6 shows the quantum solution with the

two initial Gaussian distributions with friction with the magnitude of �=4.0,

is found by solving (3.7) numerically.

Fig. 4.6: Quantum solution with friction as a function of

time,�
2
= 1 / 2, Abs(a) = 1.5,� = 4.0 .
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Observe how the two Gaussian distributions in Fig. 4.6 coalescence when

time t increases, in the sense that the density eventually approaches a narrow

Gaussian distribution with variance �
2
=1/ 2 . We believe that this effect is

caused by the strong non-linearity of the friction equation (3.7). Reducing

the magnitude of the friction from �=4.0 to an arbitrarily small but positive

number (e.g. �=0.01) still causes the density �( t ,n ) to eventually reach a

Gaussian distribution with �
2
=1/ 2 after a sufficiently long time period t.

We observe no interference pattern in Fig. 4.6. Fig. 4.6 stands in stark con-

trast to Fig. 4.5 without friction, where there is an alternating narrowing and

broadening of the density through time.

5 Conclusion

A quantum equation with friction is discussed. A precise energy defini-

tion is given by first focusing on the classical energy concept. A sequence of

arguments is constructed, and by following the same sequence of thoughts

for the quantum mechanical systems, a precise energy definition is con-

structed with the implication that introducing an explicit re-normalization

technique is unnecessary. We see especial potential for the non-linear fric-

tion equation in the field of nano-technology where friction is important to

control. Quantum solutions with friction are for the harmonic oscillator

shown numerically to approach the stationary solutions of the conventional

Schrödinger equation when time goes to infinity. We believe this to be a

general result, although we have not shown this for other processes than the

harmonic oscillator.
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