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ABSTRACT This article pinpoints the interpretation of the uncertainty 
relation in quantum mechanics.  Interestingly, uncertainty relations are 
shown to be mathematical relations that follow without using the quantum 
mechanics. They are exclusively based on the definitions of the associated 
probability densities using the theory of Fourier analysis. To increase the 
conceptual understanding of the quantum theory, we analyze various 
relationships between the Schrödinger equation and the Liouville equation. 
A solution to the operator problem in quantum mechanics is provided such 
that quantization of the kinetic energy in a curved space can be achieved. 
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1 Introduction 

The Liouville equation [10] is present in most standard textbooks of 
statistical physics. The partial differential Liouville equation for the joint 
probability density for position and velocity follows exclusively from the 
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given deterministic ordinary differential equations. It is well known that the 
Liouville equation follows when one uses the deterministic classical 
equation and introduces the stochastic nature by only assuming that the 
initial values of position and velocity are of stochastic nature. By “counting 
up” the independent and different tracks (realizations), i.e. position and 
velocity versus time, the joint probability densities for the position and 
velocity can be constructed and is a solution of the Liouville equation. By 
inserting an initial Dirac delta distribution into the Liouville equation, the 
distribution remains a Dirac delta distribution for all times. The Liouville 
equation supported the Laplace world view; that the future can be foreseen 
and the past can be recovered to any desired accuracy by finding sufficiently 
precise initial data and finding sufficiently powerful laws of nature1. 

In the early 1900s Poincaré supplemented this view by pointing out the 
possibility that very small differences in the initial conditions may produce 
large differences in the final phenomena2. Poincaré further argued that the 
initial conditions are always uncertain [8]. He reasoned that “a very small 
cause which escapes our notice determines a considerable effect that we 
cannot fail to see, and then we say that the effect is due to chance”. He thus 
early on grasped the foundation for modern deterministic chaos theory [17]. 

In the early 1900s Markov introduced a new kind of stochastic theory [7]. 
In contrast to the Liouville approach, where drawing from a probability 
                                                             
1 Laplace [28] on determinism: “We ought to regard the present state of the universe 
as the effect of its anterior state and as the cause of the one which is to follow. Given 
for one instant an intelligence which could comprehend all the forces by which 
nature is animated and the respective situation of the beings who compose it- an 
intelligence vast to submit this data to analysis- it would embrace in the same 
formulae the movements of the greatest bodies of the universe and those of the 
lightest atom; for it, nothing would be uncertain and the future, as the past, would be 
present to its eyes.” 
2 Poincaré [8] on chaos: “A very small cause which escapes our notice determines a 
considerable effect that we cannot fail to see, and then we say that the effect is due to 
chance. If we knew exactly the laws of nature and the situation of the universe at the 
initial moment, we could predict exactly the situation of that same universe at the 
following moment. But, even if it were the case that the natural laws had no longer 
any secrets for us, we could still only know the initial conditions approximately. If 
that enabled us to predict the succeeding situation with the same approximation, that 
is all we require, and we should say that the phenomenon has been predicted, that is 
governed by laws. But it is not always so; it may happen that small differences in the 
initial conditions produce very great ones in the final phenomena. A small error in 
the former will produce very great ones in the final phenomena. Predictions become 
impossible, and we have the fortuitous phenomenon”. 
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distribution happens only once initially, in the Markov approach there is 
drawing from a probability distribution at each new time interval. It may be 
argued that for a so called Markov process, the chaos aspect is so dominant 
that the predictably of state n+1 given state n is impossible for all arbitrarily 
small positive time differences between the states. However, the probability 
of remaining in state n increases to one when the time step approaches zero. 
By “counting up” the independent and different tracks (realizations) the 
probability density can again be constructed.  

Influenced by Einstein’s [12] explanation of the photoelectric effect in 
terms of particle-like properties associated with light waves, Louis de 
Broglie [11] proposed in 1924 that wavelike properties are associated with 
moving particles. Davisson and Germer [27] presented the first experimental 
verification of the existence of such wavelike properties. In 1926 
Schrödinger [13] proposed a differential equation for the associated matter 
wave. Born [14] thereafter suggested that the square of the length of the 
wave function could be thought of as a probability density in time and space.  

It is easily shown that the Liouville approach and the Markov approach 
give linear equations for the joint probability density. Hence a linear 
combination of two solutions of either one of these equations is also a 
solution of the equation. It is easily found that the same applies for the 
marginal densities, i.e. linear combinations of marginal density solutions are 
also solutions. 

The linearity is caused by the possibility of generating the density by 
“counting up” the independent and different tracks (realizations), i.e. 
position and velocity versus time. Such summation, with equal or unequal 
weight to each realization, by its very nature generates linearity. The name 
stochastic process is the familiar name as a subcategory for such stochastic 
theories. 

The Schrödinger equation gives non linear solutions for the probability 
densities. Hence the equation does not allow for constructing a method for 
generating independent realizations such that the density can be found by 
counting up independent and different tracks. Since independent realizations 
can not be identified, we are not dealing with a stochastic process in 
particular, though we are of course dealing with a stochastic theory. The non 
linearity leads to interference results, of which the double slit experiments 
are the most famous example. The interference phenomenon is complicated 
to handle since by measuring state variables, e.g. position at one or several 
points in time, the received quantum theory states that the interference 
pattern disappears [9].  
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Although the quantum theory has proven to be very successful, the 
conceptual foundation of quantum mechanics has been widely discussed [1]. 
Feynman [15] developed the concept of interfering alternative tracks, which 
may prove useful, particularly in developing conceptual understanding. 
Nelson [18] gave a description based on classical concepts applying 
Brownian motion. De Broglie [20] also addressed various deficiencies and 
paradoxes. Based on de Broglie’s conception that certain wavelike properties 
are associated with moving particles, Fitzgerald [26] proposed that wave 
mechanics should be supplemented by a differential equation for momentum 
transfer where the interaction term is due to relative velocity and not relative 
position. 

The article intends to increase our conceptual understanding of quantum 
theory. One objective is to pinpoint relations that are valid for most 
stochastic theories, where we define what is meant by “most”, and relations 
that are specific for quantum theory. Of special interest is the relationship 
between the quantum theory and the Liouville process. In developing these 
relations we provide a solution to an operator problem, i.e. how to quantize 
terms of the type H(q) p^2 where q is position, p is momentum, and H() is a 
function. Different quantization rules give different answers since the 
common procedure is to let ( )/p i q! " # #!  through quantization, but the 
answer depends on the algebraic order of the term that is to be quantified 
[1],[19]. Thus for instance the algebraic orders q p p q and p q q p give 
different results when quantization is applied. The operator ordering has to 
be specified if quantization of the kinetic energy in a curved space is to be 
achieved. 

Section 2 presents interpretations of the uncertainty relation and analyzes 
these. Section 3 presents various operator relations. Section 4 gives a 
solution to the operator problem. Section 5 concludes. 

2 The uncertainty relation  

The double slit experiment and the interpretation of the uncertainty 
relation in quantum mechanics are widely discussed [1]. The literature offers 
many different interpretations of the inequality   !q !p " 1 / 2 , where q 
means position, p means momentum, and Δ means an increment. The two 
most important interpretations are in our view the following, where we 
choose the mass, time and length unit such that m=1,   ! = 1 . 

1. The standard deviation of the momentum times the standard deviation 
of the position is larger than one half. The problem with this interpretation is 
that according to the interpretation of the double slit experiments there are 
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no paths in quantum mechanics, and certainly no derivative path, which 
means that the momentum concept is not defined. 

2. The attempt to measure the position with some given accuracy 
 
!q  

implies an uncontrolled disturbance 
 
!p  of the momentum, where 

  !p " (1 / 2) / !q . The problem with this interpretation is that it disconnects 
the theory and the experimental measuring process. That is, an algebraic 
manipulation of an inequality is not sufficient to explain the connection 
between a theoretical statement and an empirical observation. 

Assume as an example that the classical equation is given by 

    

!!N1t

mod

= ! f2 (N1t
) " !N1t

= N2t
, !N2t

mod

= ! f2 (N1t
)

#
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'
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%
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 (2.1) 

where “mod” means model assumption,   f2 ()  is a function,   N1t
 and   N2t

 are 

stochastic variables which do not need to be position or velocity, and t is 

time. Drawing only the initial values at time t0 of 
  
N1t0

, N2t0
, 

 

!N1t0
, 

 

!N2t0
 

randomly3, the Liouville equations follow for the joint probability density 

  !
L (t, n1, n2 ) , i.e. 

    
!!L (t, n1, n2 ) = "D1 n2!

L (t, n1, n2 )( ) + D2 f2 (n1)!L (t, n1, n2 )( ) ,
 (2.2) 

                                                             
3 Taylor and Karlin [21] state that “a stochastic process is a family of random 
variables 

 
X

t
, where t is a parameter running over a suitable index set T,” where “an 

old-fashioned but very useful and highly intuitive definition describes a random 
variable as a variable that takes on its values by chance.” For ease of presentation we 
take the liberty in this article of using 

 
N

t
 also for classical processes traditionally 

conceived as “deterministic”, where the “chance” element is introduced by allowing 
the initial value 

  
N

t0
 at time   t0  to be drawn from a probability distribution. Readers 

are free to interpret 
 
N

t
 as the conventional   N (t)  for the classical equations in this 

article. Thus the Liouville equation follows from a special stochastic process where 
the change element is only introduced initially. 
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where 
 
D

i
 means derivation w.r.t. 

 
n

i
. The marginal densities are defined by 

   

!1
L (t, n1)

def

= !L (t, n1, n2 )dn2
"#

#

$ , !2
L (t, n2 )

def

= !L (t, n1, n2 )dn1
"#

#

$ ,

 (2.3) 

where “def” means definition. Applying (2.2) and integrating each of the 
variables separately give 
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where   vi

L (t, n1) are the so-called stream velocities, i=1,2. Equation (2.2) 
implies 

   

!E
L

N1t( ) = E
L

N2t( ) , !E
L

N1t( ) = !E
L

f2 (N1t
)( ) , (a)

E
L

N1t
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N2t
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)( ) , (b)
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2( ) = (1 2) !!E L
N1t

2( ) + E
L

f2 (N1t
)N1t( ) , (c)

!Var
L

N1t( ) = 2Cov
L

N1t
, N2t( ) , !Var

L
N2t( ) = !2Cov

L
N2t

, f1(N1t
)( ) , (d )

!Cov
L

N1t
, N2t( ) = Var

L
N2t( ) ! Cov

L
N1t

, f2 (N1t
)( ) , (e)

!E
L

h N1t( )( ) = E
L

H N1t( ) N2t( ) , D1h N1t( ) = H N1t( ) , ( f )

(2.5) 

which is a closed set of equations for the expectations, variances and 
covariance when   f2(N1t )  is linear in   N1t .  H ()  is an arbitrary function. 

Generalizing beyond the Liouville process, we consider the arbitrary 
density function   !1(t, n1) , which could be the Liouville density or some 

other density, where   n1  is a variable. We now define the complex function  
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def

t n t n e t n t n t n! " " ! != # =

 

(2.6) 

where   s1(t, n1)  so far is any arbitrary real function. This means that   !1(t, n1)  

and   !1(t, n1) *  are arbitrary functions. The Fourier transform is defined by 

 

( ) 1
1 1 1( , ) 1 (2 ) ( , ) ,in uf

def

t n t u e du! " !
#

$
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= %
 

(2.7) 

The inverse Fourier transform follows when using that 

  
! (x) = (1 / (2" )) e

ixy

#$

$

% dy , to read 

 

1
1 1 1( , ) ( , ) .iunf
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"
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(2.8) 

where u is a dummy variable. 

Theorem 1. The function 

 

1 1 1 1 1 1( , ) ( , )* ( , )f f f

def

t n t n t n! " "=

 

(2.9) 

is a probability density. 
Proof. Note first that !1

f (t,n1 ) " 0.  Inserting (2.6) and (2.7) into (2.9) 
gives 
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That is, defining an arbitrary density function   !1(t, n1)  in a specific 
manner, as in (2.6), it follows in Theorem 1 that the Fourier 
transform  !1

f (t, m1)  is also a density function. We could define   M1t
 as the 

stochastic variable drawn from this density. 

Theorem 2. 

( ) ( )1 1 1 1( , )* ( , ) ,nn

t
E M t u iD t u du! !

"

#"

= #$
 

(2.11) 

Proof. Applying the definition for expectation and (2.6)-(2.8) give 

( ) ( ')
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E M u t u du t y t y i y e dy dydu

t y t y i y y y dy dy t y iD t y dy
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# # $ # #

%
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&
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= ' ' & = &

( (

( (
  (2.12) 

Theorem 2 states that the expected value 
  
E M1t

n( )  of the Fourier 
transformed raised to the power n can be expressed as an integral which 
involves the arbitrary functions   !1(t, n1)  and   !1(t, n1) *  defined in (2.6), and 

  
!iD1"# $%

n

 . Equation (2.11) does not assume or require any special stochastic 
theory.  

Theorem 3. The uncertainty relation. 

   
Var(N1t

) Var( M1t
) ! 1 / 2.

 (2.13) 

Proof. Define 
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I(! )
def

= i! u"1(t,u) # E(N1t
)"1(t,u)$% &' + (1 i)D1"1(t,u) # E( M1t

)"1(t,u){ }
#(

(

)

* i! u"1(t, n1) # E(N1t
)"1(t, n1)$% &' + (1 i)D1"1(t,u) # E( M1t

)"1(t,u){ }* du + 0.

 (2.14) 

Expansion of (2.14) and integration by parts give 

( )2
1 1 1 1( ) ( ) ( ) 0 ( ) 1 ( ) ,
t t t t

I Var N Var M Var M Var N! ! ! ! != + + " # " $ +   
 (2.15) 

where the RHS has a maximum when 
  
! = "1 2Var(N1t

)( ) , implying (2.13). 
Qed. 

Theorem 3 is purely of mathematical nature and can be interpreted as an 
uncertainty relation. It states that the uncertainty relation between the 
standard deviation of the arbitrary probability density   !1(t, n1)  and the 
standard deviation of the corresponding Fourier transformed probability 
density   !1

f (t, m1) , is exclusively a mathematical relation that does not need 
quantum mechanics to be developed. Heisenberg’s formulation is that “The 
more precisely the POSITION is determined, the less precisely the 
MOMENTUM is known” [16]. In Heisenberg’s formulation, position and 
momentum have specific physical interpretations. In Theorem 3, in contrast, 

  !1(t, n1) does not have to be the position density and    !1
f (t, m1) does not have 

to be a momentum density. 

3 The operator relations and joint probabilities 

Interesting relations appear when   s1(t, n1)  is connected with the stream 

velocity   v1(t, n1) , defined by the general conservation equation for a general 

stochastic theory in space, where   n1  is the position for the remainder of this 
article. The conservation of probability gives 

    

!!1 (t, n1) + D1 !1 (t, n1)v1(t, n1)( )
mod

= 0

 (3.1) 
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Assuming the specific model 

   

s1(t, n1)
mod

= v1(t,u)
!"

n1

# du,$1(t, n1) = %1(t, n1)1/2
e

i s1(t ,n1 ) ,

%1(t, n1) = $1(t, n1) *$1(t, n1),  (3.2a) 

it follows from (3.1) and (3.2a) 
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1
2i

D1 Ln
!1(t, n1)
!1(t, n1) *

"

#$
%

&'
=

1
2i

D1!1(t, n1)
!1(t, n1)

(
D1!1(t, n1) *
!1(t, n1) *

)

*
+

,

-
. (3.2b) 

Theorem 4. When h is arbitrary, 
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Proof. 

Using the definitions and (3.1) and (3.2) give 

   

!E h(N1t
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d

dt
h(n1 )!1(t,n1 )dn1

"#

#
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(3.4) 
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Theorem 5. First connection between position distribution and Fourier 

transformed distribution. 

    
!E(N1t

) = E( M1t
),  (3.5) 

Proof. Follows directly from Theorems 2 and 4 by choosing   h(n1) = n1 . 
Theorem 5 states that the time derivative of the expectation is equal to the 

expectation of the Fourier inverse constructed density. Observe from (2.5a) 
and (3.5) that for the Liouville process we additionally get 

  
E( M1t

) = E N2t( ) . Thus the Fourier transformed density gives the same 

expectation as the expectation of the velocity, for the Liouville process. But 
be aware that (3.5) as such does not demand any Liouville process or the 
Schrödinger equation. 

Lemma 1.  

 ( )2 1 2( ) ( )
t t

E f N E M= !  (3.6) 

Proof. Applying (2.1) gives 1 2( ) ( )
t t

E N E N=!  and ( )2 2 1( ) ( )
t t

E N E f N= !! . 

Further it is easy to show that 
   
!E(N2t

) = E M2t( ) . Qed. 

Theorem 6. Second connection between velocity distribution and Fourier 

transformed distribution.  

   
Schr!!odinger equation ! E( M1t

2 ) = (1 2) !!Esc
N1t

2( ) + E
Sc

f2 (N1t
)N1t( ).

 (3.7) 

Proof. The Schrödinger equation is given by 

   

!(1 2)D1
2"1

Sc (t, n1) + V (n1)"1
Sc (t, n1) =

mod

i !"1
Sc (t, n1), (a) (3.8)

"1
Sc (t, n1) = #1

Sc (t, n1)1/2
e

i s1(t ,n1 ) , D1s(t, n1) = v1
Sc (t, n1), D1V (n1)

def

= f2 (n1), (b)
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which implies 

   

(1 2) !!ESc
N1t

2( ) = (1 2) !2

!t
2 n1

2

"#

#

$ %1
Sc (t, n1) *%1

Sc (t, n1)dn1

= %1
Sc (t, n1)

"#

#

$ * D1(1 / i)( )
2
%1

Sc (t, n1)dn1 " %1
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"#

#

$ (n1)n1dn1
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Sc

M1t

2( ) " E
Sc

f2 (N1t
)( )

(3.9) 

where (3.8a) is used twice. Qed. 
Theorem 6 is established by explicitly using the Schrödinger equation. 

For the special case of the Liouville process in (2.1), the RHS in (3.7) is 
equal to   E(N2t

2 ) . This does not mean that 2
1( )
t

E M = 2
2( )
t

E N  for the 
Liouville process since we used (3.8a) to establish Theorem 6. It is well 
known that for some special solutions of the Liouville equation the solution 
is equal with a corresponding Schrödinger solution. For those cases we 
accordingly get 2

1( )
t

E M =  E(N2t

2 ) . 

4 The operator problem in quantum mechanics 

The Schrödinger equation in (3.8a) does not provide the complete 
solutions to problems in quantum mechanics. Additionally, the operator of 
physical quantities is often needed. Introducing an operator of physical 
quantities is one way of providing complete solutions. This section applies a 
rule to find the operator corresponding to the term 2

1 1( ( ) )
t t

E H N M  which 
covers the terms necessary to quantize the kinetic energy in a curved space.  

The most familiar operator rules are the Weyl rule in (4.1a), the symmetry 
rule in (4.1b), and the Born-Jordan rule in (4.1c). According to the familiar 
notation and our notation these are given by 
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The substitution is 1 1,
t t

q N p M= = . The Weyl and symmetry rules keep a 
constant power of the momentum operator. The symmetry and Born-Jordan 
rules keep a constant power of the position operator.  Thus only the 
symmetry rule keeps a constant power of both the momentum and position 
operators. 

Theorem 2 defines operator relations, which are valid for any stochastic 
theory in general. Quantum theory states in addition to the Schrödinger 
equation the following relation 

    
E

Sc
H (N1t

)M1t( ) = !E
Sc

h(N1t
)( ) , D1h = H

 (4.2) 
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Equation (2.5f) implies that stating the same for the Liouville process 
gives 1 1( ( ) )L

t t
E H N M = 1 2( ( ) )L

t t
E H N N , thus relating   M1t

 and   N2t
. 

Equation (4.2) and Theorem 4 give 
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 (4.3) 

It is easily observed from (4.1) and (4.3) that 

( ) ( ) ( )1 1 1 1 1 1( ) ( ) ( )Sc Sc Sc

t t S t t BJ t t
E H N M E H N M E H N M= =  (4.4) 

The Weyl rule is more difficult to relate but we readily find from (4.1a) 
that 
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(4.5) 

In general the Weyl rule, the rule of symmetry and the rule of Born-
Jordan give the same answer when only the first power (m=1) of   M1t

 
applies in the expectation.  

One question is whether the relations in (4.3) are valid for the Liouville 
process. Is ( ) ( )1 1 1( ) ( )L L

t t t
E H N M E h N= ! ? The answer is yes, if we want! 

We can construct almost whatever relation we want for ( )1 1( )L

t t
E H N M . 

The reason is that the Liouville theory does not specify any relations for the 
joint distribution. Only the marginal densities are defined according to (2.7) 
and (2.8).  

It easily follows from traditional stochastic theory that there is a one to 
one relation between a joint distribution and the corresponding operator 
ordering. Thus the Weyl rule corresponds to the Wigner function, while the 
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symmetry rule corresponds with the Margenau–Hill function. The Born and 
Jordan rule also give a specific joint distribution. The Dirac and the rule of 
von Neumann rule are shown to be internally inconsistent [29]4. See 
reference reference [1]-[6], [19], [21]- [25] for further discussions 
concerning this matter. 

From the Liouville equation in (2.2) it follows by integration that  
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 (4.6) 

By multiplying (4.6b) with 1 1( , )L
t n!  and using (4.6a) it also follows that 
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(4.7) 

When the initial position is a Dirac function it follows from the 
definitions in (4.7c) that 2 2

1 1 1 1( , ) ( , )L L
v t n v t n= , which gives agreement with 

the Hamilton-Jacobi formalism in classical mechanics in (4.6). We cannot 
                                                             
4 The Dirac rule is 

  
{A, B}! ("i / /h)[A

op
, B

op
] .  The  rule of von Neumann 

is
  
A! A

op
,g( A)! g( A
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) . 
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freely choose the initial values of   v1
L (t0 , n1)  in (4.7b) since   v1

L (t0 , n1)  follows 

exclusively from the initial values of the joint probability   !1
L (t0 , n1, n2 ) .  In 

addition, when the joint probability is given,   !1
L (t0 , n1)  follows. The 

opposite implication is not is valid. That is, for given functions   !1
L (t0 , n1)  

and   v1
L (t0 , n1) , it is easy to show that the joint probability does not follow. 

Thus if we choose (4.7a) and (4.7b) as our only constitutive equations, this 
enlarges our equation set and in general disconnects the theory from the 
Liouville theory since the relation to the joint probability is disconnected. 
The disconnection requires providing a relation for   v1

L2 (t, n1)  to close the 
equation set. Such closure is exactly what the quantum theory provides. 

 
The linearity is not easily observed in (4.7), but it is shown when using 

  !1
L (t, n1)  and   !1

L (t, n1)  multiplied with   v1
L (t, n1) as the unknown functions.  

Moving onto the quantum mechanics, the de Broglie expression of 
quantum mechanics follows when inserting (3.8b) into the Schrödinger 
equation (3.8a), which gives after some algebraic manipulations  
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Observe the analogy between (4.8a)-(4.8b) and (4.7a)-(4.7b). But while 

the joint probability defines   v1
L2 (t, n1)  in the Liouville process, the 

Schrödinger equation gives (4.9) for this analogous quantity. Although the 
Liouville equation in general does not give (4.9), but instead gives 2

1 1( , )L
v t n  

from a joint probability, some special cases allow   v1
L2 (t, n1) to be written as 

(4.9). 
Multiplying (4.8b) with   !1

Sc (t, n1)  and using (4.8a) gives the analogous 
expression to (4.7e), that is 
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Analogously to the quantum postulate in equation (4.2), we propose as a 
supplement to the quantum theory the following operator relation 
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which supplements the more familiar postulate in (4.2). The rationale behind 
(4.11) is (4.6d) for the Liouville approach.  

(4.9) gives that  
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Then (4.11) and (4.12) imply  
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When H() =1 (4.13) is in agreement with Theorem 2 as a special case. 
The three rules in (4.1a)-(4.1c) is in general different from (4.13). 

Inserting   H (n1) = n1
2  into (4.13) gives 
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The Weyl rule gives from (4.1a) 
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The symmetry rule gives from (4.1b) 
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The Born-Jordan rule gives from (4.1b) 
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The rule in (4.13) is in correspondence with the Weyl rule in this special 

case where 2
1 1( )H n n=  but not in correspondence with the symmetry rule 

and the Born-Jordan rule. These three rules are treated in more detail in [1]-
[6]. 

5 Conclusion 

This article pinpoints the interpretation of the uncertainty relation in 
quantum mechanics. Uncertainty relations are shown to be mathematical 
relations that follow without using the quantum mechanics. They are 
exclusively based on the definitions of the associated probability densities 
using the theory of Fourier analysis. To increase our conceptual 
understanding of quantum theory, we analyze various relationships between 
the Schrödinger equation and the Liouville approach. Theorem 2 shows that 
the rule where 

 
p

n
! p

op

n  where 
   
p

op
! "i!# / #q( )  follows from most 

general stochastic theories. The rule that 

  
pH q( )! (1 / 2) p

op
H q( ) + H q( ) p

op( )  follows from the familiar additional 

quantum postulate. This rule is equivalent to what follows from the Weyl, 
symmetry, and Born-Jordan rules. We additionally find that 

  
p

2
H q( )! p

op

2
H q( ) + 2 p

op
H q( ) p

op
+ H q( ) p

op( ) / 4 . This rule is 

generally different from what follows from the  Weyl, symmetry, and Born-
Jordan rules. For one specific example we demonstrate correspondence 
between this rule and the Weyl rule, but not with the symmetry and Born-
Jordan rules. The closed solution given to this operator problem in quantum 
mechanics can be used to quantize the kinetic energy in a curved space. 
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