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ABSTRACT. The probability of finding the energy of a particle in the vicin-
ity of a given energy is determined introducing the existence of perturba-
tions. The thermal radiation already studied with this approach suggests that 
it is the origin of the perturbations. The introduction of these, leads to sup-
pose that the maximum of the statistical weight is obtained in the vicinity of 
an M value slightly higher to the mean value U of the system. Several appli-
cations are proposed in particular new the velocity distribution in a gas first 
proposed by Maxwell is revisited. 

1 The word perturbation is used with the meaning of anomaly, trouble, irregularity in 
the functioning of a system without reference to the mathematical method with the 
same name. It is interesting to underline that this word comes of the French perturber 
coming from Latin per for excess and turbare disturbed (troubler in French) from 
turba crowd (cohue in French) » having given tourbe that is peat a pejorative old word 
in French for crowd, multitude.

2 English translation of “Les Perturbations et la Distribution Statistique de l’Energie 
Thermique”, Ann. de la Fondation Louis de Broglie, 31,  53-74, (2006),  http://www.-
ensmp.fr/aflb/AFLB-311/aflb311m388.htm, with an introduction modified to insist 
upon the hazard in statistics introduced by Boltzmann but the need of which is insuf-
ficiently underlined.  
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1 Introduction

In statistical thermodynamics the great number of particles responsible of 
the phenomena, leads to use the statistical methods to determine for example 
the number of particles in the vicinity of a given energy. The set of possible 
values leads to the notion of statistical distribution of the energy. Concerning 
the probabilities the coherency between theory and experiment justifies hy-
pothesises. But the use of statistics supposes implicitly in some extend a part 
of hazard in the distribution, part introduced by Boltzmann [1] with the hy-
pothesis of molecular disorder. It is possible to shed light on this hypothesis 
supposing that they are the thermal exchanges with the external space to the 
studied set which originate the molecular disorder. Indeed there is no system 
fully isolated and each experiment even the best isolated one is perturbed by 
a flux of thermal energy exchanged with the atoms of the gas or solid studied. 
In good experimental conditions this flux is constant in mean value and gen-
erally small before the mean thermal energy U. On the other hand for great 
accuracy it appears that the thermal radiation slightly modified the thermal 
equilibrium of the solids. It is that the study of the blackbody from the distri-
bution D(E,U) shown [2]. The purpose of this work is to determine how this 
flux introduces perturbations on the distribution of the energy of the atoms or 
electrons. In this view we will use the essential of our previous study simpli-
fying it when it is possible and completing it to show the general character of 
the distribution D(E,U) in the study of the physical phenomena.

2 Temperature and energy

The statistical thermodynamics is born from the works of a great number 
of researchers during the 19th century. Among those works we are more con-
cerned with those of Maxwell [3] and Boltzmann [1] for the study of the 
distribution of the thermal energy among N particles of a given system. This 
branch of the physics in its beginning was built mostly from the study of the 
perfect gas which led to the notion of absolute temperature T. Quite naturally 
this new notion was used as statistical variable. Indeed it is natural to follow 
the variation of a property of a compound as a function of the temperature 
and at the beginning we can understand it use as statistical variable. But how 
much important the absolute temperature T may be, it is the mean thermal 
energy U per particle which play a fundamental role in statistics as we have 
already discussed [4], [5]. This point leads to determine D(E,U) the density 
of probability per unit of energy for the energy E of the particles. To deter-
mine this function we have supposed that the most important number of ex-
changes of energy takes place around the mean value U. This hypothesis 
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gives good results for several applications [6], [7]. In the case of metallic 
conductivity of sodium just few conduction electrons appear to be really 
present in the metal [7]. This confirms that the properties of a metal do not 
need special quantum property as suppose in the Fermi-Dirac statistical ap-
proach. Further confirmation has been proposed with the study of the specific 
heat of the conduction electrons [8].  

3 Notion of probability density

Consider a set of N identical particles, for example the atoms of a gas or a 
solid. Let U be the mean thermal energy per particle. The particles are sup-
posed to exchange energy but without hypothesis about the way to do it. We 
suppose that there is no quantum property able to modify the distribution of 
the energy. Consider a segment i of energy [Ei, ∆Ei] defined by the energy Ei
and its width ∆Ei. During the time there are numerous exchanges of energy. 
As a result the particles are continuously changing of segments of energy. 
But in mean value we can suppose that each particle leaving one segment is 
replaced by another one. This means that the number ni of particles which 
occupy a segment is stable in the time that is at the scale of the time of the 
measures 3. The statistical problem is to determine this number for all the 
possible values of Ei on a segment ∆Ei. This number is necessarily propor-
tional to the total number N of the particles and to the width ∆Ei of the seg-
ment. This last aspect introduces the probability per unit of energy that is the 
notion of probability density for the thermal energy. This statistical aspect is 
important because even if we consider a total number N of particles endless, 
it is a countable number, which is not the case of the possible values of the 
energy. In other words the power of the infinity of the possible values of the 
energy is larger than that of the countable. Working like this we avoid the 
need of the partition function to determine the number of particles ni. Thus, 
consider D(E,U) the density of probability. If ∆Ei is small compared to U, ni
is also small compared to N. We can write:

ni = ND(Ei,U) ∆ Ei (3.1)

3 In a previous work [3,4] we have introduce intervals of time [t-(∆t)i ,t] to discuss the 
exchanges of energy. The reason is that the exchanges of energy take place in the 
time. In addition these intervals of time are not equal when [Ei, ∆Ei] varies. But as 
finally the time does not appear, it is better to avoid it. 
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where the index i refer to a series of segments defined by the following ener-
gies:

εi = εi-1 +  ∆Ei    avec ε0 = 0  et  ∆ Ei << U (3.2)

The segment i is the set of values Ei such as:

εi -1 ≤  Ei < εi (3.3)

The next point now is to determine the number νi of particles from which 
the n i have been drawn.

4 The particules ννννi
To determine the number of particles νi from which the particles n i have 

been drawn, people generally imagine the N particles at a given time t. By 
thinking to a given time it seems that the only possibility for the ni is to sup-
pose that they have been drawn among the whole number N of the particles 
of the set. In fact if the ni belong to the set of the N particles, just looking at 
this aspect leads to ignore the exchanges which are at the basis of the statisti-
cal distribution. Indeed let us consider the exchanges of energy which have 
taken place a long time before the considered time t. As a result of the pertur-
bations rapidly there is no correlation between the values of the energy of the 
same particle at two close times. It is thence reasonable to suppose that the 
exchanges distant in time do not have any influence upon the distribution at 
the time t. Furthermore, as a result of the mean time between two exchanges, 
one particle stays just a short interval of time on the segment [Ei, ∆Ei] in 
comparison of the experimental time measurement. These remarks lead to 
suppose that just a small number of exchanges and thus of particles νi, just 
before the considered time, determine the numbers ni. By definition the ni
belong to the νi. It is interesting to remark that the expression “at a given 
time”, from a physical point of view, is not sufficiently accurate since every 
event is produced in an interval of time. To be sufficiently accurate using this 
expression we mean a short interval of time, sufficiently short to can suppose 
that the particles ni do not change of segment and that the νi remain the same.

5 The most probable distribution and the perturbations

Let us consider the particles ni which occupy the segment i at the time t. 
We do not know which they are, so the particles are called undistinguishable. 
Nevertheless it is possible to limit the notion of undistinguishability to this 
aspect of the phenomena. On the other hand at the microscopic scale we 
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suppose that the particles between them have individuality. Consequently this 
means that in certain extent it is possible to distinguish them. For example we 
will assume that the particles have a volume and that two of them cannot 
occupy the same place at the same time.

As a result any exchanges of place between one particle ni and one of the 
remaining particles νi-ni should give the same distribution of the energy. 
Thus there are several exchanges or events able to produce the same distribu-
tion. The number Wi of these different events is the statistical weight to have 
ni particles on the segment i.

To calculate Wi let us consider the thermal equilibrium of the set of parti-
cles. The exchanges of place can be produced by progressive transfer of en-
ergy between the particles of the set. In such a case it is a predictable me-
chanical variation, even if it is not really possible to describe it, such eventu-
ality does not concern the statistics. 

On the other hand the set of atoms or electrons continually exchanges with 
the outside, in particular it absorbs or emits photons which modify the distri-
bution of the thermal energy. Thus there is absorbed or emitted energy which 
constitute positive or negative losses. In fact, one has to bring energy to work 
at stable temperature; indicating that the amount of energy emitted by the 
studied set is always higher to that received. That comes in particular from 
the thermal radiation the energy of which is taken from the studied set. It is 
that that shows the noc turnal drop in temperature when the sky is clear, the 
thermal radiation of the earth makes cool down its temperature when the sun 
is not still there. The role of the thermal radiation as source of perturbations 
has already been underlined by Fer in his study of the irreversibility [9]. To 
balance the losses the set is in thermal contact with a heat bath, that is a large 
thermal mass at a temperature as close as possible from that of the studied 
set. Thus there is a continual flux of energy toward the set. The difficulty to 
work on an isolated system has been discussed in details by Fowler [3].

The perturbations in modifying in an aleatory way the energy of the parti-
cles corroborate the hypothesis of the molecular disorder [1] and make the 
different Wi probable. As a result at the scale of the particles, the evolution of 
the exchanges of energy is disordered. Thus it is not possible to describe the 
evolution of the energy of a particle. Therefore it is the most probable distri-
bution corresponding to the means of ni and of νi that one has to determine.

Now at the scale of the particles the perturbations introduce a positive or 
negative energy. The stable temperature is the result of the balance between 
the perturbations with positive and negative energy. As a consequence at the 
scale of the exchanges, there is no conservation of the thermal energy be-
tween the particles. 
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With such disorder, during the interval of time of the order of magnitude 
of the mean time between two exchanges of energy, just one event among Wi
is realized but all could be realized. As a result the numbers Wi play the role 
of statistical weight for the ni’s taken from the νi’s. In addition we make the 
hypothesis that all the events which belong to Wi, and whatever i may be, 
have the same probability of to be realized. This hypothesis allows a simple 
calculation using the method of the most probable distribution. 

The particles νi determine the Wi, consequently the numbers νi must be 
chosen in such a way that they play their role of statistical weight between 
them. This leads to introduce a dependency between the probabilities on two 
different segments. We will get this result, if for ∆Ei = ∆Ej, the weights Wi
and Wj are obtained from a same number of particles νi and νj whatever i and 
j may be. Thus let consider the same given width ∆E for all the ∆Ei, then 
whatever i may be, all the number νi are equal to the same number ν. Now 
we must keep in mind that if we have νi =  νj, the particles themselves are not 
the same at least for a part of them.

6 The dependences

Let us now calculate the number Wi. The equality of the probability, as-
sumes above, for the different events defining the Wi allows their calculation. 
It is the number of different ways to take ni objects among νi objects. The 
combinative analysis gives:

!
( )! !

i
i

i i i
W

n n
ν

ν
=

−
(6.1)

For a given width ∆Ei invariable with i, we have already imposed to all the 
νi to be equal between them. In this manner the Wi compare as statistical 
weights. But we can still choose the number of particles νi for a given width 
∆Ei. This possibility allows choosing a physical property that the statistical 
weights have to respect.

In this view, let us consider the particles and the mean value U of their en-
ergy. As a result of the perturbations this mean value is not kept at each ex-
change but in average on a great number of exchanges. As a result there are 
necessary more particles with a low energy than particles with a high energy. 
Indeed as soon as there is one particle with an energy E > 2U there are more 
than one particles with E < U to balance the excess of energy of the first in 
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comparison to U. Thus the exchanges are correlated. Furthermore the events 
producing particles with high or low energy are less probable than those 
leaving particles in the vicinity of the mean value. Thus there is a maximum 
of Wi for a given constant width of ∆Ei. We suppose that this maximum cor-
responds to the segment which contains the value M of the energy close of 
the mean value U. As a result of looses this maximum M occurs for a value 
of energy a little higher to U. Thus we can write:

M = U(1 +ε) (6.2)

where the dimensionless number ε is positive but small, that is put in view in 
the study of the black body [2].
The determination of this maximum of the statistical weight replace the hy-
pothesis of Boltzmann which links up the entropy to the maximum of the 
probability through it logarithm. We will show in the section 8.5 the validity 
and the limits of this hypothesis concerning the entropy. 

To determine this maximum consider a given width ∆Ei, the νi are con-
stant. It is an important point to determine the maximum. If Wi has a maxi-
mum its logarithm too and we can write d(ln Wi) = 0. Using the Stirling rela-
tion P! = P(lnP -1), it comes:

lnWi = νiln(νi) -niln(ni) -(νi -ni)ln(νi -ni) (6.3)

By differentiation keeping in mind that dνi = 0 we have:

d(ln Wi) = -niln(ni)dni + ln(νi -ni) dni = 0 (6.4)

that is: d(ln Wi) = 0i i
i

i

n
ln dn

n

ν −
= (6.5)

Let us express that the maximum of Wi takes place on the segment containing 
M. Let ν and n  be the values of νi and n i for this segment and write:

ν = γn (6.6)
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where γ is a dimension less number. The relation (6.5) allows calculating γ. 
This relation must be verified whatever dni may be. According to the relation 
(6.6) this gives:

ln(γ -1) = 0      d’où     γ = 2 (6.7)

Now νi is just a function of ∆Ei. For the segment containing M with a width 
∆Ei from the relations(3.1), (6.6) and (6.7) its follows:

νi = 2ND(M,U)∆Ei i∀ (6.8)

D(M,U) is the density of states for the value E = M. This term introduces 
the dependencies between the probabilities on two different segments. In 
different applications taking M = U we have found theoretical values in good 
agreement with experimental results [6]. The physical meaning of the relation 
(6.7) is that around M, which in good experimental conditions is close to U, 
the exchanges happen mainly between two particles, a quite natural result. 
When M is close to U this means that the flux of energy brought with the 
perturbations is small in comparison of the value U. This can be used to ver-
ify the quality of the experiments.

We have now the relation (3.1) and (6.8) giving ni and νi. The calculation 
of the function of E, D(E,U) is then possible. This calculation is close to the 
classical one.

7 The calculation of D(E,U)

We have already expressed with the relation (6.1) the weight Wi which de-
termines the number of particles ni on the segment i. Let W be the product of 
all the Wi :

W = i
i

W∏ (7.1)

Assume the hypothesis that the most probable density of states is that cor-
responding to the maximum of W, therefore we have:

d(lnW) = 0 (7.2)

In this derivative, the deviations of the energy to consider are those from 
the most probable distribution. They come from the variation of the numbers 
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ni, but not from the numbers νi. Indeed for a given width ∆Ei, we have seen 
that the νi are all equal in such a way that the Wi are statistical weight. Fur-
thermore the νi according to (6.7) also impose the constancy of the mean 
value of the energy. Working to find the most probable distribution, the mean 
energy must be a constant therefore the νi too.

The way to find the conditions giving W maximum is similar to that used 
to find Wi, one has just to replace lnWi by lnW = Σ lnWi. Thus the relation 
(6.4) is replaced by: 

lnW = Σ lnWi = 0i i
ii

i

n
ln dn

n

ν −
=∑ (7.3)

To satisfy this relation we must take into account the restrictive condi-
tions:

Σi ni = N = constant,    leading  Σ dni = 0 (7.4)

Σi  Ei ni = NU = constant,   leading  Σ  Ei dni = 0 (7.5)

The differential aspect of these two relations is taken into account using 
the Lagrange method with the corresponding multipliers. It is also important 
to introduce in the determination of the function ND(E,U) the fact that N and 
U are constant. Their exact values will be expressed through the two relations 
(7.11) and (7.12). Let us first take into account the differential aspects; what-
ever the dni may be, we must have:

Σi (-α + β Ei) dni = Σi i
i

ii dn
n

n
ln

−ν
(7.6)

Introducing -α and β as Lagrange's multipliers.
To have the equality (7.6) whatever dni may be we must have:

i i

i

n
ln

n

ν −
= (–α + β Ei) ∀ i (7.7)

Introducing the relations (3.1) and (6.7) it comes:
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(7.8)

Now allowing the different ∆E to tend to zero, the sequence of D(Ei,U) 
tends to a function of  E :

D(E,U) = 
)(exp1

),(2
αβ −+ E

UMD
(7.9)

To determine the function D(E,U) one has to calculate the parameters: α, 
β and D(M,U) when E = M, which need three equations. The first one is ob-
tained substituting E by M in the expression (7.9). This gives:

α = βM (7.10)

By this way we impose to the function to have the correct value for E = M. 
It is interesting to note that they are the dependencies introduced by the con-
stant D(M,U) in the expression of the νi, (7.8) which allow to get α = βM, a 
new result in statistical thermodynamics.

The second relation is obtained by writing:

0
( , ) 1D E U dE

∞
=∫ (7.11)

Such relation comes from the fact that D(E,U) is a density of probability 
per unit of energy. It express that the probability of finding a particle in all 
the space of energies is always one.

The third relation is obtained writing:

0
( , )ED E U dE U

∞
=∫ (7.12)

This relation imposes that the mean value of the energy of one particle 
among the all possible values is U.

The full determination is given in [4], [5] and in the appendix, we obtain:
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D(E,U) = 1

1 exp 1AM E
M

α  + − 
 

(7.13)

with α = 1.5049  and A = 1.7054 when M can be taken equal to U.

In the general case we have a function of M and U in place of just U. The 
fact that α = 1.5049 is close to 1.5 supposing M and U equal is a good indica-
tion that M is close to U. Indeed for the perfect gas U = 1.5kT and in (7.13) 
the exponential is the Boltzmann factor exp kT

E multiplied by e-α. In fact the 

application in paramagnetism with M = U gives good results, it shows thus 
equally that M is close to U [6]. As a result in many cases we can use the 
function D(E,U) defined by (7.13) replacing M by U. That is:

D(E,U) = 






 −+ 1exp1

1

U
EAM α

(7.14)

Its representative curve is given figure 1. 

When U → 0; D(E,U) → 0  for E > U and D(E,U) ∞→   for E < U, (7.15)

The function D(E,U) which satisfies the relations (7.11) and (7.12) tends 
to that of Dirac. In several application of D(E,U) it is the number P(Eg,U) of 
particles having an energy higher than a given value Eg that one has to know. 
We have:

P(Eg,U) = A-1ln[1+exp –α(Eg/U -1)] (7.16)

The function D(E,U) is a density of probability therefore P(Eg,U) is a 
probability function:

When U → 0, P(Eg,U) → 0  and  when U ∞→ , P(Eg,U) → 1 (7.17)

The representative curve of this function is given figure 2.
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Figure 1. The probability density D(E,U) multiplied by the mean energy U as a func-
tion of the variable E/U.

8 Implications and comparison to the previous works

This study has allows us to find, for the statistical distribution of the ther-
mal energy of the atoms, a more satisfying solution than those proposed up to 
now. Several implications of the distribution D(E,U) have already proposed 
[4]-[8]. To more completely work out the problem it is equally important to 
understand the difficulties that have been obstacles to this determin ation. It is 
the purpose of this section.

8.1 The condensation.

Let us consider the condensation of a gas. When the temperature T of a gas 
decreases the density of probability around zero Kelvin tends to infinity 
(7.15). The corresponding probability tends to one. Let then Eg be the heat of 
vaporization or sublimation. To belong to the gas the atoms must have energy 
higher than Eg. The kinetic energy E of the atoms of the gas is the amount of 
their energy above Eg. When the corresponding mean value U tends to zero, 
the gas will tends to condense in a liquid or a solid. This result is natural and 
can be considered as a necessary condition to which D(E,U) must satisfy.
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8.2 The black body.

With the condensation, characteristic property of the distribution D(E,U),
we do not need to introduce special quantum properties as in the Bose Ein-
stein approach to determine the distribution of the black body. A first ap-
proach was initially proposed by Planck to describe the spectral density of the 
black body. To understand the difficulties of this approach one has to look at 
the historical context. It is Planck the first who has introduced the quantifica-
tion of the light associated to the harmonic oscillator. In this way he was able 
to use the statistical approach of Boltzmann and to avoid the difficulties of 
the classical model which diverges for the high energies. In 1900 there was 
not yet quantum model to explain the emission of the light. One has to wait 
Einstein in 1905 for the hypothesis of the photon and Bohr in 1913 for the 
first atomic model. With the lack of a clear understanding of the emission of 
the photons Planck was supposing the existence of harmonic oscillators that 
we can easily identify with the quantum transitions of the electrons of the 
atoms of the solids building the black body. He was supposing that the oscil-
lator emitted all a series of quanta of energy nhν. Now we know that the 
atoms emit photons of variable energy as a result of the thermal energy. Thus 
the remarkable approach of Planck is perfectible. Furthermore at this time it 
was difficult to suppose that the quanta of energy nhν do not exchange di-
rectly energy between them, as their constant velocity allows supposing it. 
Yet without exchange of energy it cannot have statistical distribution in the 
same meaning than that of the energy of the atoms. Since the photons are 
emitted by the electrons of the atoms their statistical properties must be the 
reflection of that of the atoms of the solids emitting them as it appears in our 
study of the black body [2]. 

8.3 The heat capacity of the conduction electrons to low temperature

It is interesting to recall how the conduction electrons are come to disturb 
the understanding of the statistical distribution of the energy of a set. Dispos-
ing of the model of the perfect gas, all the possible conduction electrons of a 
metal were supposed free and able to contribute to the electrical current flow. 
Their heat capacity tends to zero with the temperature instead of staying 
constant as in the case of the gas. As a result it special quantum properties 
were supposed able to play a role in their statistical distribution and explain 
this property. With a wrong starting departure the chain of hypothesises com-
plicates inevitably the future understanding. The mistake was that of the free 
electron. Just a small number of free electrons are needed to understand the 
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current flow [7], the most important number being localized each one on one 
atom. This is exhibited with the mean free path which can be as high as one 
centimetre or more [11]. Thus the heat capacity of the metals is no longer a 
particular problem [8].

8.4 Velocity-distribution of the kinetic energy.

“The challenge of Maxwell in establishing the velocity distribution was to 
show that numerous collisions between molecules in a gas, instead of tending 
to equalize the velocities of all molecules, as some scientists expected, would 
produce a statistical distribution of the velocities in which all velocities might 
occur, with a known probability” [3], [12], [13]. This hypothesis belongs now 
to the classical approach of the statistical description of the gas. Nevertheless 
one has to keep in mind that this distribution results from perturbations, be-
cause they allow the different probabilities to be realized.

The role of the thermal radiations as source of perturbations shed light 
equally of the origin of the high energies. Indeed by supposing with Maxwell 
that the atoms of a gas can have all the possible energies between zero and 
infinity, one supposes implicitly a fact but without understanding the origin 
of the high values. The extension of our knowledge since Maxwell allows 
attributing to perturbations, as for example the high energy in thermal radia-
tion, the origin of high velocity of the atoms in a gas. Here I wish to under-
line that I have discussed of this statistical aspect with Dembno-Tchaikowsky 
concerned as me with this difficulty. His different approach results of experi-
ences of gaseous expansions exhibiting a difficulty in the statistical approach 
[14].

Maxwell also believed that the probability distribution for each component 
of the velocity is independent of the values of the other components. This 
assumption leads to a different function from D(E,U) and it is important to 
understand why. Regarding the continuous perturbations giving the most 
probable distribution of the thermal energy at the atomic scale, there is no 
conservation of the energy and the second assumption at this scale is not 
correct. The conservation of the energy at the macroscopic scale is the result 
of a mean value of the perturbations, keeping in the mean time, the mean 
value of the thermal energy.

Let v be a positive number representing the velocity.  The distribution of 

the thermal energy is a function of v since E = ½mv2. Thus the probability to 
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have a molecule with a velocity v on a segment of velocity dv is directly 

function of D(E,U) dE. We have dE = mdv, thus:

D(E,U) dE = mvD(½mv2,U)dv (8.1)

Figure 2. The probability function.

Thus the relation (8.1) gives access to the probability to have a molecule with 

a velocity v on the segment of width dv containing v. Writing U = ½m 2v
where v is the velocity corresponding to the mean energy U. Taking M = U, 
the relation (8.1) becomes:

D(E,U)dE = v

v
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The function D(v,v ) is the  density of probability to have the velocity v

on the segment dv in the vicinity of v. In fact in supposing a strictly exponen-
tial form for the velocity distribution, Maxwell obtained the equipartition of 
the energy in the three directions of the space. Thus he introduced a sufficient 
but not necessary condition. It seems reasonable to say that the equipartition 
of the velocities results of that the perturbations.

8.5 The Boltzmann relation.

The determination of D(E,U) having been obtained without using the 
Boltzmann relation: dS = kdlnW it is interesting to show its validity. Consider 
an increase of entropy there is a corresponding increase of the amount of the 
energy: 

dU = Σi Ei dni (8.3)

The Boltzmann relation is used mainly to finalize the determination of the 
distribution of the energy which is generally thought as a function of E and T
that is D(E,T). We are just concern with the maximum of W therefore of lnW.
In a first step let us consider that the increase is obtained by a variation of the 
most probable distribution of the ni. From the relation (7.6) we can write:

Σi i
i

ii dn
n

n
ln

−ν
= Σi (– α + β Ei) dni (8.4)

But from (7.4) we have Σi dni = 0 and from (7.10) taking M = U we have 
α = βU. Thus from (8.4) it comes:

Σi i
i

ii dn
n

n
ln

−ν
= α

U
dQ (8.5)

Let us then consider the maximum of the statistical weight W. From (7.3)
and (8.4) we have:

dlnW = Σi ln i i
ii

i

n
dn

n
ν −∑ = α

U
dQ (8.6)
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For the perfect gas we have U =3/2kT. As α = 1,5049 approximating α to 
1.5 then (8.6) becomes:

dlnW = α
kT
dQ   soit  dS = k dlnW (8.7)

When the Boltzmann' relation is used to find the maximum of the statisti-
cal weight the relation (8.7) is a good approximation in the case of the perfect 
gas. For the solids in the temperature region of the Dulong and Petit law, in 
place of k one has to use 2k. But the correct method is that giving D(E,U). 
Now as soon as we have to take into account a small increase dU of U the 
mean thermal energy, the Boltzmann relation is not sufficient.

Now if in place to take M = U we keep its value using (6.2) and (7.10) giv-
ing α = βU, the differential entropy dS of the relation (8.7) becomes:

dS = k(1 + ε) dlnW (8.8)

The epsilon term is characteristic of the perturbations. This relation shows 
the influence of the perturbations on Boltzmann relation. In all measurements 
taking place with exchanges of thermal energy there are always an influence 
of the perturbations lead by the thermal radiation.

9 Conclusion

The most probable distribution is the result of ceaseless perturbations. 
They are the result of positive or negative losses of thermal energy in the set 
of particles and of a positive or negative flux of heat mainly from the heat 
bath to compensate the losses. This means that the bath is not at a very differ-
ent temperature from that of the set of particles. As a result the maximum of 
the statistical weight is obtained for a value M of the energy not very differ-
ent from U. It seems possible that the perturbations play a role in different 
experiments for example the paradoxical results involving the second law of 
thermodynamics [15] as we have already underlined in a previous work [16].
We hope that this aspect of the thermodynamics statistic will appear as a 
source of new progress in a near future.

To finish let us take again our conclusion in the study of the black body
[2]. We know that the temperature is a macroscopic variable which in accu-
rate experiments stays well defined. We can put M = 3kTeff, the measured or 
effective temperature is Teff. This measured temperature includes the flux of 
energy need to balance the losses. It is always higher than the temperature 
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defined from PV = RT the law of perfect gas allowing to define the mean 
energy of a monatomic gas as U = 3kT/2  or that of a solid as U = 3kT,  values
used to determine the statistical distribution of the energy of the correspond-
ing sets. In particular if we refer to the definition of the temperature stan-
dards: the triple point of water 273.15K that is 0.01°C and the gallium melt-
ing point 29.7646°C [17]-[19], there is, it seems to me, a contribution of the 
perturbations due to the thermal radiation to take into account to improve the 
fundamental measurements.

Annexe

The callculation of D(E,U) given by (7.9).  
We have already got: 

D(E,U) = 
)(exp1

),(2
αβ −+ E

UMD
(7.9)

Using the variable substitution x = β(E -M), the relation (6.10) α = βM

gives x = –α for E = 0. Then the relations (7.9), and (7.11) leads to:

 2 D(M,U) = 
A
β      avec     A =

1 x
xdx

eα

∞

− +∫ (A.1)

The equation (7.12) can be written:

0
( , )ED E U dE Uβ β

∞
=∫ (A.2)

Using (7.11) the equation (A.2) can be written:

0
( , )ED E U dE Uβ β

∞
=∫ 0

( , )D E U dE
∞

∫ (A.3)

It comes:
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( )
0

( , ) 0E U D E U dEβ
∞

− =∫ (A.4)

The total amount of energy M is close to U. To use the same substitution x
= β(E -M) using  (6.2) giving M = (1 +ε)U and the relations (7.9), (7.10) and 
(7.12) it comes:

β(E -U) = β(E -M) + β(M -U) = x + α
ε

ε
+1

(A.5)

For E = 0 the corresponding integration limit in A4 takes the vlue α. The 
equation A4 taking into account A1 and A5 becomes:

1 x
xdx

eα

∞

− +∫ = – αA
ε

ε
+1

(A.6)

This relation is an equation that determines α. It gives:

0 1 x
xdx

e

α−

+∫ =
2

12
π

− αA
ε

ε
+1

(A.7)

Developing 1)1( −+ xex into series with 0<x , we get:

0 1 x
xdx

e

α−

+∫ = ( ) ( )
2

0

1 1
22 1

nxen nx
n n

α
α  ∞

 + − −∑
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(A.8)

From the relation: ( )
∑
∞

=
=

−

1 12

2

2
1

n n

n π (A.9)
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and ( )∑
∞

=
−+=

−+−
1

)1ln(11
n

e
n

nen αα
α

α (A.10)

it follows :

( )
601 2

11)1ln(
2

2 π
ααααα

=∑
∞

= 









 −+−+−++
n n

nene – αA
ε

ε
+1

(A.11)

If one can take ε = 0 then  α is very close to 1.5. A more accurate calcula-
tion gives α = 1.5049. With this value of α we get A = 1.7054. The study of 
the case with ε ≠ 0 is a little longer and is not often need; we will not do it
here. The relation (7.13) gives the expression of D(E,M).
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