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1265 Military Trail, Toronto, Ontario, Canada M1C 1A4

ABSTRACT. The scalar field theory with higher derivatives is con-
sidered in the first order formalism. The field equation of the forth
order describes scalar particles possessing two mass states. The first
order relativistic wave equation in the 10-dimensional matrix form is
derived. We find the relativistically invariant bilinear form and cor-
responding Lagrangian. The canonical energy-momentum tensor and
density of the electromagnetic current are obtained. Dynamical and
non-dynamical components of the wave function are separated and the
quantum-mechanical Hamiltonian is found. Projection operators ex-
tracting solutions of field equations for definite energy and different
mass states of particles are obtained. The canonical quantization of
scalar fields with two mass states is performed, and propagators are
found in the formalism considered.

1 Introduction

It is known that the gravity theory based on the Einstein-Hilbert action
is non-renormalizable in four dimensions [1]. By including curvature
squared terms in the action [2], the theory becomes renormalizable but
the higher derivative (HD) theory. There are also HD fields in general-
ized electrodynamics [3]. HD theories allow us to improve renormaliza-
tion of the theory and to avoid ultraviolet divergences [4]. However, it
was discovered soon that there are some difficulties with negative norm
(ghosts), and unitarity in HD theories [5], [6]. Much attention, therefore,
was made to study the simplest version of the HD theory of scalar fields (
see [7], [8], [9], [10], [11] and references therein). It should be mentioned
that scalar fields play very important role in the theory of inflation of
the universe. So, inflation scalar fields can be candidates of dark matter
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of the universe. HD scalar fields are also present in SUSY field theories
in extra dimensions (see, for example, [12]). Although HD field theories
lead to ghosts, it was shown that problems with negative probabilities
and S-matrix unitarity can be solved [9]. The purpose of this paper
is to formulate the forth order equation for scalar fields in the form of
the first order relativistic wave equation, to obtain the Lagrangian, con-
served currents, the quantum-mechanical Hamiltonian, and to perform
the quantization.

The paper is organized as follows. In Sec. 2, we derive the first
order relativistic wave equation for scalar fields in the 10-dimensional
matrix form, the relativistically invariant bilinear form and the La-
grangian formulation. In Sec. 3, the canonical energy-momentum tensor
and the electromagnetic current density are obtained. Dynamical and
non-dynamical components of the wave function are separated and the
quantum-mechanical Hamiltonian is found in Sec. 4. In Sec. 5 pro-
jection operators extracting solutions of field equations for definite en-
ergy and different mass states of particles are obtained. The canonical
quantization of scalar fields with two mass states is performed, and the
propagators of scalar fields were found in the formalism of the first order
in Sec. 6. We discuss results obtained in Sec. 7. In Appendix, some
useful products of matrices are given. The system of units h̄ = c = 1 is
chosen, Greek and Latin letters run 1, 2, 3, 4 and 1, 2, 3, correspondingly.

2 Scalar Field Equation of the Forth Order

Consider the forth order field equation describing scalar particles pos-
sessing two mass states [7], [9]:(

∂2 −m2
1

) (
∂2 −m2

2

)
ϕ(x) = 0, (1)

where ∂2 ≡ ∂2
ν , ∂ν = ∂/∂xν = (∂/∂xm, ∂/∂(it)). It is obvious that Eq.

(1) has two solutions corresponding to mass m1 and m2.
Let us introduce the 10-dimensional wave function

φ(x) = {φA(x)} =


ϕ(x)
ϕ̃(x)
ϕµ(x)
ϕ̃µ(x)

 (A = 0, 0̃, µ, µ̃), (2)

where φ0(x) = ϕ(x), φ
0̃
(x) = ϕ̃(x), φµ(x) = ϕµ(x), φ

µ̃
(x) = ϕ̃µ(x),

ϕ̃(x) =
1

m1m2
∂2ϕ(x), ϕµ(x) =

1
m1 + m2

∂µϕ(x),
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(3)
ϕ̃µ(x) =

1
m1 + m2

∂µϕ̃(x).

The function φ(x) represents the direct sum of two scalars ϕ(x), ϕ̃(x),
and two four-vectors ϕµ(x), ϕ̃µ(x).

Introducing the elements of the entire matrix algebra εA,B (see, for
example [15]) with matrix elements and products(

εM,N
)
AB

= δMAδNB , εM,AεB,N = δABεM,N , (4)

where A,B,M,N = 0, 0̃, µ, µ̃, Eq. (1) can be cast in the form of the first
order equation

∂µ

[
ε0,µ̃ − ε̃0,µ − σε0,µ − m

m1 + m2

(
εµ,0 + εµ̃,̃0

)]
AB

φB(x)

(5)
+m

[
ε0,0 + ε̃0,̃0 + εµ,µ + εµ̃,µ̃

]
AB

φB(x) = 0,

where

m =
m1m2

m1 + m2
, σ =

m2
1 + m2

2

m1m2
,

and there is a summation over all repeated indices. We define 10-
dimensional matrices as follows:

ρµ = ε0,µ̃ − ε̃0,µ − σε0,µ − m

m1 + m2

(
εµ,0 + εµ̃,̃0

)
, (6)

I10 = ε0,0 + ε̃0,̃0 + εµ,µ + εµ̃,µ̃, (7)

where I10 is a unit 10-dimensional matrix. Then Eq. (5) becomes the
relativistic wave equation of the first order:

(ρµ∂µ + m) φ(x) = 0. (8)

So, we reformulated the higher derivative equation for scalar fields (1) in
the form of the first order Eq. (8). Now, one can apply general methods
to investigate the first order matrix equation [13]. The spectrum of the
particle mass of Eq. (8) is given by m/λi, where λi are the eigenvalues
of the matrix ρ4. It is not difficult to verify that the matrix

ρ4 = ε0,̃4 − ε̃0,4 − σε0,4 − m

m1 + m2

(
ε4,0 + ε̃4,̃0

)
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satisfies the matrix equation

ρ4
4 −

m2
1 + m2

2

(m1 + m2)2
ρ2
4 +

m2
1m

2
2

(m1 + m2)4
Λ = 0, (9)

where
Λ = ε0,0 + ε̃0,̃0 + ε4,4 + ε̃4,̃4 (10)

is the projection operator extracting four-dimensional subspace, Λ2 =
Λ. As the eigenvalue of the matrix Λ is unit, we obtain from Eq. (9)
eigenvalues of the matrix ρ4 as follows:

λ1 = ± m2

m1 + m2
, λ2 = ± m1

m1 + m2
. (11)

So, positive masses of scalar particles described by the first order Eq.
(8) are m/λ1 = m1, m/λ2 = m2.

The Lorentz group generators in the representation space are [15]

Jµν = εµ,ν − εν,µ + εµ̃,ν̃ − εν̃,µ̃, (12)

and obey the commutation relations

[Jµν , Jαβ ] = δναJµβ + δµβJνα − δνβJµα − δµαJνβ . (13)

The relativistic form-invariance of Eq. (8) follows from the relationship

[ρλ, Jµν ] = δλµρν − δλνρµ. (14)

One may verify with the help of Eq. (4), (6), (12) that Eq. (14) is valid.
The Hermitianizing matrix η has to obey the relations [13]

ηρm = −ρ+
mη+, ηρ4 = ρ+

4 η+ (m = 1, 2, 3). (15)

We obtain

η = ε0,0 − ε̃0,̃0 − σ(m1 + m2)
m

(
εm,m − ε4,4

)
(16)

+
(m1 + m2)

m

(
εm,m̃ + εm̃,m − ε4,̃4 − ε̃4,4

)
.

The matrix η is the Hermitian matrix, η+ = η. Introducing the matrix
φ(x) = φ+(x)η (φ+(x) is the Hermitian-conjugate wave function), one
obtains from Eq. (8) the “conjugate” equation

φ(x)
(
ρµ
←−
∂ µ −m

)
= 0. (17)
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The Lagrangian is given by the standard equation

L = −1
2

[
φ(x) (ρµ∂µ + m) φ(x)− φ(x)

(
ρµ
←−
∂ µ −m

)
φ(x)

]
, (18)

so that the relativistically invariant bilinear form is φ(x)φ(x) = φ+(x)ηφ(x).
With the aid of Eq. (2),(3),(16), the Lagrangian (18) becomes

L = − 1
m1 + m2

{
1

2m1m2

[
ϕ∗∂4ϕ +

(
∂4ϕ∗

)
ϕ
]

(19)
−σ

2
[
ϕ∗∂2ϕ +

(
∂2ϕ∗

)
ϕ
]
+ m1m2ϕ

∗ϕ

}
.

Up to total derivatives, which do not influence on an equation of motion,
the Lagrangian (19) takes the compact form

L = − 1
m1m2(m1 + m2)

[
(∂µ∂νϕ∗) (∂µ∂νϕ)

(20)
+
(
m2

1 + m2
2

)
(∂µϕ∗) (∂µϕ) + m2

1m
2
2ϕ

∗ϕ

]
.

One may verify that the Euler-Lagrange equation [14]

∂L
∂ϕ∗

− ∂µ
∂L

∂(∂µϕ∗)
+ ∂µ∂ν

∂L
∂(∂µ∂νϕ∗)

= 0, (21)

for the higher derivative Lagrangian (20), leads to the field equation (1).

3 The Energy-Momentum Tensor and Electromagnetic Cur-
rent

With the help of the general expression [16]

Tµν =
∂L

∂ (∂µφ(x))
∂νφ(x) + ∂νφ(x)

∂L
∂
(
∂µφ(x)

) − δµνL, (22)

we obtain from the Lagrangian (18) the canonical energy-momentum
tensor

Tµν =
1
2
(
∂νφ(x)

)
ρµφ(x)− 1

2
φ(x)ρµ∂νφ(x). (23)

It was taken into account that L = 0 for functions φ(x), φ(x) satisfying
Eq. (8), (17). Using Eq. (2)-(4), (6), one finds from Eq. (23) the
expression as follows:

Tµν =
1

2(m1 + m2)

{(
m2

1 + m2
2

)
[ϕ∗∂µ∂νϕ− (∂µϕ∗) ∂νϕ]− ϕ∗∂µ∂ν∂2ϕ
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(24)
−
(
∂2ϕ∗

)
∂µ∂νϕ + (∂µϕ∗) ∂ν∂2ϕ + (∂νϕ∗) ∂µ∂2ϕ

}
+ c.c.,

where c.c. means the complex conjugate expression. The energy density
and the momentum density are given by E = T44, Pm = iTm4.

The electric current density is [16]

jµ(x) = i

(
φ(x)

∂L
∂
(
∂µφ(x)

) − ∂L
∂ (∂µφ(x))

φ(x)

)
. (25)

Replacing Eq. (18) into Eq. (25), one obtains the electric current density

jµ(x) = iφ(x)ρµφ(x), (26)

so that ∂µjµ(x) = 0. With the help of Eq. (2)-(4), (6), we find

jµ =
i

m1m2(m1 + m2)

{(
m2

1 + m2
2

)
[(∂µϕ∗) ϕ− ϕ∗∂µϕ]

(27)
+ϕ∗∂µ∂2ϕ−

(
∂µ∂2ϕ∗

)
ϕ +

(
∂2ϕ∗

)
∂µϕ− (∂µϕ∗) ∂2ϕ

}
.

For the real scalar fields, ϕ = ϕ∗, the electric current vanishes.

4 Quantum-Mechanical Hamiltonian

Introducing an interaction of scalar particles with electromagnetic fields
by the substitution ∂µ → Dµ = ∂µ − ieAµ, where Aµ is the four-vector
potential of electromagnetic fields (the minimal electromagnetic interac-
tion), Eq. (8) may be represented as follows:

iρ4∂tφ(x) =
[
ρaDa + m + eA0ρ4

]
φ(x). (28)

Let us introduce two auxiliary functions

Ξ(x) = Λφ(x), Ω(x) = Πφ(x), (29)

where the projection operator Λ is given by Eq. (10), and the projection
operator Π is

Π = 1− Λ = εm,m + εm̃,m̃, (30)

so that Ξ(x) + Ω(x) = φ(x). Acting on Eq. (28) by the operator

(m1 + m2)2

m2
1m

2
2

ρ4

[
m2

1 + m2
2 − (m1 + m2)

2
ρ2
4

]
,
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and taking into consideration Eq. (9), we obtain

i∂tΞ(x) = eA0Ξ(x)
(31)

+
(m1 + m2)2

m2
1m

2
2

ρ4

[
m2

1 + m2
2 − (m1 + m2)

2
ρ2
4

]
(ρaDa + m) φ(x).

Multiplying Eq. (28) by the operator Π, one finds

ΠρaDaΞ(x) + mΩ(x) = 0. (32)

We took into account here that Πρ4 = 0, ΠρmΠ = 0. It follows from
Eq. (31),(32) that the dynamical components of wave function are given
by the Ξ(x), and non-dynamical components by the Ω(x). The Ξ(x)
possesses four components, and the auxiliary function Ω(x) has six com-
ponents. To separate the dynamical and non-dynamical components, we
express the auxiliary function Ω(x) from Eq. (32), and replace it into
Eq. (31). As a result, one obtains the equation in the Hamiltonian form:

i∂tΞ(x) = ĤΞ(x), (33)

Ĥ = eA0 +
(m1 + m2)2

m2
1m

2
2

[
m2

1 + m2
2 − (m1 + m2)

2
ρ2
4

]
ρ4

(34)
× (ρaDa + m)

(
1− 1

m
ΠρmDm

)
.

Two components of the function Ξ(x) correspond to the state with the
mass m1 (with positive and negative energy) and the other two - to the
state with the mass m2. With the help of products of matrices, given in
Appendix, the Hamiltonian (34) becomes:

Ĥ = eA0 − σmε̃4,̃0 − (m1 + m2)
(
ε0,4 + ε̃0,̃4

)
+ m

(
ε̃4,0 − ε4,̃0

)
(35)

+
1

m1 + m2

(
ε̃4,̃0 + ε4,0

)
D2

m.

We have omitted the linear term in derivatives L ≡
(
ε4,m + ε̃4,m̃

)
Dm

in the Hamiltonian, because LΞ(x) = 0. Taking into consideration Eq.
(2),(4),(10),(35), we can rewrite Eq. (33) in the component form

i∂tϕ = eA0ϕ− (m1 + m2) ϕ4, i∂tϕ̃ = eA0ϕ̃− (m1 + m2) ϕ̃4,

i∂tϕ4 = eA0ϕ4 −mϕ̃ +
1

m1 + m2
D2

mϕ, (36)
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i∂tϕ̃4 = eA0ϕ̃4 − σmϕ̃ + mϕ +
1

m1 + m2
D2

mϕ̃.

The system of equations (36) may be obtained from Eq. (1), (3), after
the exclusion of components

ϕm =
1

m1 + m2
∂mϕ, ϕ̃m =

1
m1 + m2

∂mϕ̃.

According to Eq. (33) only components with time derivatives enter Eq.
(36), and describe the evolution of fields in time.

5 Mass Projection Operators

Consider solutions of Eq. (8) with definite energy and momentum for
two mass states, τ = 1, 2, in the form of plane waves:

φ(±)
τ (x) =

√
m2

τ

p0V m
vτ (±p) exp(±ipx), (37)

where V is the normalization volume, p2 = −m2
τ (no summation in

index τ). We imply that four momentum p = (p, ip0) possesses the
additional quantum number τ = 1, 2 corresponding two masses. The
10-dimensional function vτ (±p) obeys the equation

(ip̂±m) vτ (±p) = 0, (38)

where p̂ = ρµpµ. It is convenient to use the normalization conditions∫
V

φ
(±)

τ (x)ρ4φ
(±)
τ (x)d3x = ±1,

∫
V

φ
(±)

τ (x)ρ4φ
(∓)
τ (x)d3x = 0, (39)

where φ
(±)

τ (x) =
(
φ

(±)
τ (x)

)+

η. Normalization conditions (39) lead to
relations for functions vτ (±p):

vτ (±p)ρµvτ (±p) = ∓ impµ

m2
τ

, vτ (±p)vτ (±p) = 1. (40)

It is not difficult to verify, with the help of Eq. (4), (6) (see Appendix),
that the minimal equation for the matrix p̂ is

p̂5 −
(
m2

1 + m2
2

)
p2

(m1 + m2)
2 p̂3 +

m2p4

(m1 + m2)
2 p̂ = 0. (41)
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Now we obtain the projection matrices corresponding to definite energy,
momentum, and quantum number τ :

Πτ (±p) =
(m1 + m2)

4
ip̂ (ip̂∓m)

2m2
1m

2
2 (m4

τ −m2
1m

2
2)

[
p̂2 +

m4
τ

(m1 + m2)
2

]
. (42)

The projection operators (42) obey equations as follows:

(ip±m)Πτ (±) = 0, (43)

Πτ (±p)2 = Πτ (±p), Πτ (+p)Πτ (−p) = 0, trΠτ (±p) = 1. (44)

Projection matrices (42) can be represented (see [17]) as matrix-dyads

Πτ (±p) = vτ (±p) · vτ (±p), (45)

so that matrix elements of matrix-dyads are

(vτ (±p) · vτ (±p))MN = (vτ (±p))M (vτ (±p))N .

Projection operators (42) extract solutions of Eq. (38) for definite energy
and different mass states of particles. Eq. (42), (45) allow us to calculate
matrix elements of different processes of interactions of scalar particles
in the covariant form.

6 Field Quantization

One can obtain the momenta from Eq. (18):

π(x) =
∂L

∂(∂0φ(x)
=

i

2
φ(x)ρ4, (46)

π(x) =
∂L

∂(∂0φ(x))
= − i

2
ρ4φ(x), (47)

where the fields φ(x), φ(x) are independent “coordinates”. The Hamil-
tonian density is given by the equation

H = π(x)∂0φ(x) +
(
∂0φ(x)

)
π(x)− L

(48)
=

i

2
φ(x)ρ4∂0φ(x)− i

2
(
∂0φ(x)

)
ρ4φ(x),

It follows from Eq. (23) that the value H = T44 is the energy density.
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In the quantized theory the field operators can be written as follows

φτ (x) =
∑

p

[
aτ,pφ

(+)
τ (x) + b+

τ,pφ
(−)
τ (x)

]
,

(49)
φτ (x) =

∑
p

[
a+

τ,pφ
(+)
τ (x) + bτ,pφ

(−)
τ (x)

]
where positive and negative parts of the wave function are given by Eq.
(37). The creation and annihilation operators of particles a+

τ,p, aτ,p, and
creation and annihilation operators of antiparticles b+

τ,p, bτ,p obey the
commutation relations:

[aτ,p, a
+
τ ′,p′ ] = δττ ′δpp′ , [aτ,p, aτ ′,p′ ] = [a+

τ,p, a
+
τ ′,p′ ] = 0,

[bτ,p, b
+
τ ′,p′ ] = δττ ′δpp′ , [bτ,p, bτ ′,p′ ] = [b+

τ,p, b
+
τ ′,p′ ] = 0, (50)

[aτ,p, bτ ′,p′ ] = [aτ,p, b
+
τ ′,p′ ] = [a+

τ,p, bτ ′,p′ ] = [a+
τ,p, b

+
τ ′,p′ ] = 0.

With the aid of Eq. (48)-(50), and normalization condition (39), we
obtain the Hamiltonian

H =
∫
Hd3x =

∑
τ,p

p0

(
a+

τ,paτ,p + bτ,pb
+
τ,p

)
. (51)

It is not difficult to find from Eq. (49)-(50) commutation relations as
follows:

[φτM(x), φτN (x′)] = [φτM (x), φτN (x′)] = 0, (52)

[φτM (x), φτN (x′)] = NτMN (x, x′), (53)

NτMN (x, x′) = N+
τMN (x, x′)−N−

τMN (x, x′),

N+
τMN (x, x′) =

∑
p

(
φ(+)

τ (x)
)

M

(
φ

(+)
τ (x′)

)
N

, (54)

N−
τMN (x, x′) =

∑
p

(
φ(−)

τ (x)
)

M

(
φ

(−)
τ, (x′)

)
N

.

One obtains from Eq. (49):

N±
τMN (x, x′) =

∑
p

m2
τ

p0V m
(vτ (±p))M (vτ (±p))N exp[±ip(x− x′)], (55)
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Taking into consideration Eq. (42), (45), and the relation p2 = −m2
τ , we

find from Eq. (55):

N±
τMN (x, x′) =

∑
p

{
i(m1 + m2)4m2

τ p̂ (ip̂∓m)
2p0V mm2

1m
2
2 (m4

τ −m2
1m

2
2)

[
p̂2 +

m4
τ

(m1 + m2)2

]}
MN

× exp[±ip(x− x′)] =
{

(m1 + m2)4m2
τ (±ρµ∂µ) (±ρµ∂µ ∓m)

mm2
1m

2
2 (m4

τ −m2
1m

2
2)

(56)

×
[

m4
τ

(m1 + m2)2
− (ρµ∂µ)2

]}
MN

∑
p

1
2p0V

exp[±ip(x− x′)],

With the help of the singular functions [16]

∆+(x) =
∑

p

1
2p0V

exp(ipx), ∆−(x) =
∑

p

1
2p0V

exp(−ipx),

∆0(x) = i (∆+(x)−∆−(x)) ,

we obtain from Eq. (54), (56)

NτMN (x, x′) = −i

{
(m1 + m2)4m2

τ (ρµ∂µ) (ρµ∂µ −m)
mm2

1m
2
2 (m4

τ −m2
1m

2
2)

(57)

×
[

m4
τ

(m1 + m2)2
− (ρµ∂µ)2

]}
MN

∆0(x− x′).

For the points x and x′, which are separated by the space-like interval
(x − x′) > 0, the commutator [φM (x), φN (x′)] equals zero due to the
properties of the function ∆0(x) [16]. If t = t′, [φM (x, 0), φN (x′, 0)] =
NτMN (x−x′, 0), and the function NτMN (x−x′, 0) can be obtained from
Eq. (57) with the help of equations

∂2n
0 ∆0(x)|t=0 = 0, ∂n

m∆0(x)|t=0 = 0, ∂0∆0(x)|t=0 = δ(x), (58)

where n = 1, 2, 3, .... One may verify, using Eq. (41), the validity of the
equation

(ρµ∂µ + m) N±
τ (x, x′) = 0. (59)

The propagator of scalar fields (the vacuum expectation of chronological
pairing of operators) can be defined in our formalism as

〈TφτM (x)φτN (y)〉0 = N c
τMN (x− y)
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(60)

= θ (x0 − y0) N+
τMN (x− y) + θ (y0 − x0) N−

τMN (x− y),

where θ(x) is the well known theta-function. We obtain from Eq. (56):

〈TφτM (x)φτN (y)〉0 =
{

(m1 + m2)4m2
τ (ρµ∂µ) (ρµ∂µ −m)

mm2
1m

2
2 (m4

τ −m2
1m

2
2)

(61)

×
[

m4
τ

(m1 + m2)2
− (ρµ∂µ)2

]}
MN

∆c(x− y),

and the function ∆c(x− y) is given by

∆c(x− y) = θ (x0 − y0) ∆+(x− y) + θ (y0 − x0) ∆−(x− y). (62)

Propagators (61) are finite only for m1 6= m2. It is seen from Eq. (61)
that propagators have different signs for τ = 1 and τ = 2. This means
that one of states of the scalar field is the ghost [9].

7 Conclusion

We have formulated the scalar field equation with higher derivatives in
the form of the 10-component first order relativistic wave equation. This
equation describes scalar particles possessing two mass states. It should
be noted that the second order equation for scalar fields with one mass
state is formulated in the 5-component matrix form [18], [19]. The rel-
ativistically invariant bilinear form, and the Lagrangian were obtained,
and this allowed us to find the canonical energy-momentum tensor and
density of the electromagnetic current by the standard procedure. We
found the quantum-mechanical Hamiltonian by the separation of dy-
namical and non-dynamical components of the wave function. The wave
function entering the Hamiltonian equation possesses four components
to describe two mass states of scalar fields with positive and negative
energies. The first order relativistic wave equation as well as the Hamil-
tonian equation are convenient for different applications. The density
matrix (matrix-dyad) found can be used for calculations of electromag-
netic possesses. The first order formalism allowed us to quantize HD
scalar fields in a simple manner. The HD scalar field theory considered
can by applied for a model of inflation of the universe, where one of
states of the scalar field is identified with Quintessence and another, the
ghost, with Phantom [20].
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8 Appendix

With the help of Eq. (4), we find useful products of matrices entering
the Hamiltonian (34):

ρ4ρm =
m

m1 + m2

(
σε4,m + ε̃4,m − ε4,m̃

)
, (63)

ρ3
4ρm =

(
m

m1 + m2

)2 [(
σ2 − 1

)
ε4,m + σε̃4,m − σε4,m̃ − ε̃4,m̃

]
, (64)

ρ4ρmΠρn = δmn

(
m

m1 + m2

)2 (
ε4,̃0 − ε̃4,0 − σε4,0

)
, (65)

ρ3
4ρmΠρn = δmn

(
m

m1 + m2

)3 [
ε̃4,̃0 + σε4,̃0 − σε̃4,0 +

(
1− σ2

)
ε4,0
]
,

(66)

ρ4Π = 0. (67)

Using the definition p̂ = pµρµ, we obtain:

p̂2 =
mp2

m1 + m2

(
σε0,0 + ε̃0,0 − ε0,̃0

)
(68)

− m

m1 + m2
pµpν

(
εµ,ν̃ − εµ̃,ν − σεµ,ν

)
,

p̂3 =
mp2

m1 + m2
pµ

[
σ
(
ε0,µ̃ − ε̃0,µ

)
+
(
1− σ2

)
ε0,µ + ε̃0,µ̃

]
(69)

+
m2p2

(m1 + m2)2
pµ

(
εµ,̃0 − εµ̃,0 − σεµ,0

)
,

p̂4 =
mp2σ

m1 + m2
p̂2 − m2p2

(m1 + m2)2
[
p2
(
ε0,0 + ε̃0,̃0

)
+ pµpν

(
εµ,ν + εµ̃,ν̃

)]
,

(70)

p̂5 =

(
m2

1 + m2
2

)
p2

(m1 + m2)
2 p̂3 − m2p4

(m1 + m2)
2 p̂, (71)
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