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ABSTRACT.In symmetric special relativity (SSR) Minkowski space-time 
is replaced by an expanding, spatially hyperbolic four-space. The light 
speed decreases with cosmological time and a new Hubble-Lorentz 

expansion constant 
  
! = c

0

2
H

0

"1  enters the theory. A number of changes in 

the fundamental constants of physics and cosmology follow: (1) The 
logarithmic time derivative of 

� 

c  measures the Hubble time, and is 

predicted to be 
  !3.65"10!11

y
!1 , a rate that may now be within reach of 

measurement. (2) The cosmologically decreasing light speed foreshortens 
the apparent time elapsed since the Big Bang when it is measured by light 
from remote sources, as compared to the historical look-back time 
measured locally in a some equivalent clock time. This allows ages as 
great as twice the Hubble time for local processes in the past history of 
objects such as stars or stellar clusters. (3) A number of former constants 
of physics lose their constancy, including energies and the Planck length 
and time. Among those remaining constant are masses, angular momenta 
and action, including Planck’s constant, and the fine structure constant. (4) 
A new fundamental mass constant of gravitation and cosmology is 

identified, 
   
m

*
= (!2

H
0

/ G
0
c

0
)1/3 , with the value 

 1.087(±0.010)!10"28  kg . 

The product 
  
!m

*
 of 

  
m

*
  with the electromagnetic fine structure constant 

!  is observed to account for 87% of the observed inertial mass 
 
m

e
 of the 

electron. This brings to light a new phenomenological relationship 
between the constants of electromagnetism and the electron on the one 
hand and those of gravitation and cosmology on the other. 
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1. Introduction 

A new symmetric extension of special relativity [1], based in expanding 
hyperbolic position space instead of Minkowski space, has as one of its 
important consequences the conclusion that the speed of light systematically 
decreases in the cosmological expansion. The Hubble red shift is then 

attributed to the symmetrical combination of a decreasing light speed 

  

c t( )  

and an expanding Hubble length scale 

  

! t( ) = c t( )H
"1

t( ) , while their product  

  

! = c t( )" t( ) = c0

2
H0

#1
 is a fundamental natural constant, the Hubble-Lorentz 

constant. Recent WMAP measurements establish the Hubble parameter 

  

H0  

and the age of the universe 

  

t0  to an accuracy of 1 to 2% and make it possible 

to evaluate 

  

! = 3.89 ±0.06( ) "10
34

m
2
s
#1

. 

This paper explores the consequences of this development for a number of 
the fundamental parameters of physics and cosmology. Some of these are 
currently within range of possible experimental testing, and others appear to 
provide theoretical support for astrophysical observations that have 
previously seemed to conflict with the prevailing models that rely on the 
constancy of 

  

c  in cosmological time. A number of important new results are 
reported in detail below: 

(a) The time dependence of 

  

c  at the present epoch is given by the 

logarithmic derivative 

  

! lnc

!t
= "

H t( )

2
, whose present value would measure 

  

H0  itself. The light speed 

  

c  is therefore predicted to be decreasing at a 

current rate of about 4 parts in 

  

10
11

 per year.  

(b) The time dependence of 

  

c  has the consequence that electromagnetic 
signals from a spatially remote source foreshorten the apparent time since an 
event at that source, as compared to the historical time elapsed since that 
event if it were measured locally. The local historical time scale is therefore 
longer than the cosmological time scale, providing a possible explanation for 
the apparently anomalous observed ages of some astrophysical objects.  

(c) The Planck length and time cease to be relativistic invariants, leaving 
the Planck mass together with   

  

! and !  as true invariants. Energies are not 
invariant, masses are. 

(d) The magnitudes of action 

  

A  and of angular momentum are invariant, 
with a mass equivalency 

  

m
A

= A /! . A quantum of angular momentum or 
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spin therefore carries a rest mass whose magnitude is a multiple of 

  

  

m
!

= ! /! = 2.71 ±0.04( ) "10
#69

kg . 

(e) The Newtonian gravitation constant as well as the electromagnetic 
permittivity and permeability of the vacuum all become time-dependent 

along with 

  

c t( ) , but the products 

  

G =: G t( ) / c t( ) = G0 / c0 , 

  

! o =:!o t( )c t( ) = !o 0( )
c0  and 

  

µ o =: µo t( )c t( ) = µ o 0( )
c0  are invariants. The fine 

structure constant 
  

  

! = e
2

/ 4"# o 0( )
c0!  remains invariant. 

(f) The time dependence of 

  

c t( )  and the newly established constancy of 

  

!  

and 

  

G = G / c  lead to the identification of a new fundamental constant of 
mass determined by the parameters of gravitation and the cosmological 

expansion, 
  

  

m
!

= !
2
H 0 /G0c0( )

1/ 3

. The recent WMAP measurements of the 

Hubble constant make it possible to evaluate this constant to 1% accuracy: 

  

m
!

= 1.087 ±0.010( ) "10
#28

 kg .  

(g) The product of this fundamental mass constant and the fine-structure 

constant 

  

!  of electrodynamics is the mass 

  

m
e!

= "m
!

= 7.94 #10
$31

 kg . This 

is seen to be very close to the observed inertial mass of the electron, 

  

m
e

= 1.148m
e!

 

Phenomenologically, this brings to light a new relationship connecting the 
constants of electromagnetism and the unit charge with the constants of 
gravitation and the cosmological expansion. This identity has important 
implications for the theory of the electromagnetic, gravitational and inertial 
properties of the electron. These are explored in a following paper. 

2.  Background 

Constancy of the speed of light has commonly been assumed to be an 
essential postulate of special relativity. Einstein’s original postulate, 
however, was not so constricting. It has been stated as: “The velocity of light 

is independent of the motion of the light source”. As early as 1921, Pauli said 
about this [2], “For conciseness, we denote this by ‘constancy of the speed of 
light’, although such a designation might give rise to misunderstandings. 
There is no question of a universal constancy of the velocity of light in 
vacuo, if only because it has the constant value 

  

c  only in Galilean systems of 
reference.” It is to be expected that 

  

c  will not be constant in an expanding, 
time-dependent, hyperbolic universe.  

The Einstein postulate permits the extension of special relativity to a 
broader domain of kinematics than that supported by Minkowski space. If 
the position space is taken as hyperbolic and expanding with the Hubble 
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relationship, the entire structure of Hamiltonian dynamics can be made 
explicitly covariant and the integration of quantum mechanics with relativity 
is broadened and simplified [1]. The result is an enlarged Symmetric Special 
Relativity (SSR) that conforms to the cosmological topology of the observed 
universe, eliminating the unlimited divergences that afflict the Minkowski 
world model at cosmologically remote distances and at times approaching 
the Hubble time. 

To accomplish these goals while preserving all the physical consequences 
of the Lorentz transformation and related procedures requires significant 
changes in the formalism of SR. One of the conclusions that stem from 
requiring improved agreement with the broad features of the Hubble 
expansion is that the velocity of light is not constant in cosmological time. 
Instead the apparent expansion is shared symmetrically between a decreasing 
light speed 

  

c t( )  and an increasing length scale in position space 

  

! t( ) = c t( )H
"1

t( )  in such a way that their product is a constant, the Hubble-

Lorentz constant, 

  

c t( )! t( ) = " .  

A. Geometry and Kinematics in Symmetric Special Relativity 

Einstein’s SR altered the kinematics of Galileo and Newton by 
introducing the scale parameter 

  

c  into velocity space. This converted the flat 
space of Galilean velocity and momentum into the negatively curved, 
hyperbolic space of velocity in SR. The simplest position-space geometry 
describing the observed Hubble expansion is also negatively curved and 

hyperbolic. It has a scale parameter that is time-dependent, 

  

! t( ) = cH
"1

t( ) . 

The new extension of SR incorporates this scale parameter in position space. 
A relativistic position-velocity symmetry can then be completed by 
recognizing a time-dependence in 

  

c t( )  as well. 

The symmetries of the extended form of special relativity are embodied in 
a new hyperbolic Poincaré group, which has the usual Lorentz and Poincaré 
groups as subgroups and also displays additional symmetries, including the 
symplectic symmetry of Hamiltonian dynamics. The new symmetry requires 
the cosmological expansion to be shared between a decreasing light speed 

  

c t( )  and the expanding length scale 

  

! t( )  in such a way that their product  

 
  
! = c(t)"(t) = c

0

2
H

0

#1.  (1) 

is a fundamental natural constant, the Hubble-Lorentz constant, while 
retaining the basic Hubble relationship 
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H t( ) = c t( ) / ! t( ) . (2) 

It follows that  

 
    
! t( )= "1/2

H
!1/2

t( )  and  c t( )= "1/2
H

1/2
t( ) . (3) 

Recent WMAP measurements of the Hubble constant 

  

H0  and the age of 

the universe 

  

t0  to an accuracy of 1 to 2% make it possible to evaluate 

  

! = 3.89 ±0.06( ) "10
34

m
2
s
#1

. 

The Symmetric Special Relativity (SSR) that results from these changes 
has not one but two Lorentzian symmetries. The first, ordinary Lorentz 
symmetry, describes the consequences for both position space and velocity-
momentum space of a boost in velocity, i.e., a hyperbolic translation in the 
rapidity vector 

  

!  whose magnitude is 

 
  
! = tanh"1

v / c( ) = tanh"1
v /# 1/2

H
1/2

t$% &'( ) . (4) 

The second Lorentz-like symmetry recognizes that the Hubble effect of a 
translational shift in hyperbolic position space on an observed velocity is the 
converse of the Lorentz effect of a velocity boost on an observed length, 
while its effect in position space is an Einstein-like addition. The hyperbolic 
position variables comparable to 

  

!  comprise the separation vector 

  

!, whose 

magnitude is 

 
  
! = sinh"1

r / # t$% &'( ) = sinh"1
r /( 1/2

H
"1/2

t$% &'( ) . (5) 

There results an important relativistic position-velocity symmetry,  

 

  

r ! u,   where  u = v 1" v
2

/ c
2

( )
"1/ 2

,  i.e., # ! $
. (6) 

This position-velocity symmetry is accompanied by an equivalent 
Hamiltonian coordinate-momentum symmetry, provided we use the 
generalized coordinates and momenta defined nonrelativistically by 

    q = m
1/2

r ! p = m
"1/2

p = m
1/2

u . (7) 
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The equivalent relativistic expressions of space and time can be written as 
four-vectors, 

 

     
X t,!( ) =

w

r

!

"
####

$

%

&&&&
= "1/ 2

H
'1/ 2

t( ) cosh!

sinh! !̂

!

"
####

$

%

&&&&
, (8) 

where  w  is the fourth, time-like, component of the space-time four-vector 

and reduces to 
  
c

0
H

0
!1

+ c
0
"  in the Minkowski limit. The relativistic velocity 

four-vector is  

 

� 

U t,!( ) =
c t( )cosh!

u

" 

# 
$ 

% 

& 
' = (1/2

H
1/ 2

t( )
cosh!
sinh! ˆ ! 

" 

# 
$ 

% 

& 
' 

. (9) 

For further details including the extension to four-by-four tensor 
expressions needed for full covariance under both boosts in velocity and 
shifts in hyperbolic position, see reference [1]. 

The integration of the Hubble expansion into special relativity brings the 
cosmic time 

� 

t as a new parameter into the structure of SSR. When 

� 

t is 
measured from its natural origin in the Big Bang, it is a variable orthogonal 
to the hyperbolic three-vectors 

� 

! and 

� 

! . The coordinate system 

� 

t,!( ) = t,!,"!,#!( )  is the natural one to describe relativistic covariance under 

both velocity boosts, which can be expressed by 

� 

!" , and position shifts, 
expressed by 

� 

!" ; these boosts and shifts alter both 

� 

! and 

� 

! , but leave 

� 

t 

invariant. This invariant cosmic proper time 

� 

t, synchronized at the big bang 
origin, stands in notable contrast to the local, frame-dependent relative times 
or observer times 

� 

!
n
 of Minkowski space and ordinary SR, 

 
  
!

n
= H

"1(t)cosh#
n
" H

0

"1  (10) 

that are associated with individual mass-points 

� 

n  and their position vectors  

 
   
r

n
= !(t)sinh"

n
 "̂

n
= # 1/2

H
$1/2 (t)sinh"

n
 "̂

n
 (11) 

in individual four-vectors of the form of Eq. (8).  

Both of these time variables, 

� 

t and 

� 

! , are important for the evaluation of 
the effects of the cosmological time-dependence of 

� 

c . The  system of 

cosmological coordinates 

� 

t,!( )  ensures relativistic covariance, and is the 

system in which basic principles can be established. To deal with practical 
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measurements, however, a system of coordinates 

  

!,r( )  must be used with a 

locally established origin and scale in both position and time (terrestrial or 
laboratory coordinates). The transformation between these two coordinate 
systems is given in the next Subsection. 

B. Cosmological and Laboratory Coordinates 

The cosmological time variable 

  

t has its natural origin at the big bang 
singularity of the observed Hubble expansion. Terrestrial measurements, 
however, require using a time variable 

  

!  with a recent origin 

  

!0 = 0 . A 

transformation of coordinates is required to go from the position and time 

coordinates 

  

r,!( )  of a local measurement to the covariant coordinates of the 

cosmological system, i.e., the cosmic time 

  

t and the dimensionless 

hyperbolic vector 

  

! = !,"!,#!( ) , supplemented by the curvature length 

  

! t( )  

of Eq. (3). The angular coordinates are not affected by the transformation, 
and we can confine our attention to the two-dimensional transformation 

  

!,t( ) " r,#( ) , with the Hubble length 

  

! t( ) = "
1/ 2

H
#1/2

t( )  as the auxiliary 

function.  

The Hubble function 

  

H t( )  can be left unspecified in establishing the 

general form and properties of the coordinate transformation, provided only 
that 

  

H  is a monotonic function of the time. The observed properties of the 
expansion at the present epoch are consistent with the simple reciprocal time 
approximation 

 

  

H t( ) ! t
"1

, (12) 

and this provides a convenient model and practical approximation useful 
everywhere except, probably, the very early stages of the cosmic expansion. 
When it is used the Hubble length and the light speed are given by 

   !(t) " # 1/2
t

1/2 ,         c(t) " # 1/2
t
$1/2.   (13) 

The cosmological-to-laboratory transformation of coordinates is derived 
in reference [1], and its essentials are summarized here. We first convert 
from a hyperbolic representation in the cosmological variables 

  

t,!  by an 

orthogonal transformation to the coordinates 

  

w,r :  

 

  

w = ! t( )cosh" , (14) 
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r = ! t( )sinh" . (15) 

The resulting position variable 

  

r  is now independent of the transformed 
time coordinate 

  

w . It follows that the cosmic expansion embodied in the 

function 

  

! t( )  does not affect the local measurement of lengths, which takes 

place in the physical three-space, orthogonal to 

  

w , of the three-vector 

  

r  with 
its magnitude 

  

r . 

If we define the cosmological time to be 

  

t0  when 

  

! = 0," = 0( ) , so that 

  

t = t0 +!t , the expanding curvature length is 

 
   
! t( ) = !

0
+ d! / dt( )

0
"t +….  (16) 

To introduce a purely local time variable 

  

!  we can write 

  

w  in the 
alternative form 

 

  

w = !0 + ac0"  (17) 

and require as a matching condition at 

  

t = t0  and 

  

r0 = 0  that the rate of a 

clock be the same whether measured in the local variable 

  

!  or the 
cosmological one 

  

t: 

 
  
!t / !"( )

t
0

,r
0

= 1, or !w / !t( )
t
0

,r
0

= !w / !"( )
t
0

,r
0

. (18) 

Comparing the expressions for 

  

w  in Eqs. (14) and (17) we find 

 
  
ac

0
= cosh! d" / dt( )

t
0

, and thence  (19) 

 
  
! = "t + d# / dt( )

0

$1

# t
0
+"t( )$ #

0
sech%&' () . (20) 

If we expand 
  
! t

0
+"t( )  about 

  

t0  this becomes: 

 

   

! = "t + d# / dt( )
0

$1

#
0

1$ sech%( ) +
1

2

d
2#

dt
2

&

'(
)

*+
0

"t
2
+…

,

-
.
.

/

0
1
1

. (21) 
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We can now apply Eqs. (20), and (21) to the simple approximation of Eq. 

(12) for the time dependence of the Hubble function, 

  

H t( ) = t
!1

. The 

transformation from 

  

!,t( )  to 

  

r,!( )  coordinates now takes the form 

 
  
! t,";t

0( ) = 2t
0

1/2
t

1/2
# 2t

0
sech" , (22) 

 

  

r t,!( ) = "
1/2

t
1/2

sinh! . (23) 

The inverse relationship between the two coordinates of time can be 
written as 

  

t ! ,r;t
0( ) = t

0
1+

r
2

" t
0

#

$%
&

'(

)1

+ ! 1+
r

2

" t
0

#

$%
&

'(

)1/2

+
! 2

4t
0

2
,where " t

0
= *

0

2 + c
0
H

0

)1
( )

2

 
  (24) 

and its partner 

  

! ",r;t0( )  follows by a simple substitution of (24) in (23), 

 

  

sinh! " ,r;t
0( ) =

r

#
1/2

t
1/2

" ,r;t
0( )

.  (25) 

C. Fundamental Data: The Hubble Expansion Rate. 

The simple linear approximation of Eq. (12) for the Hubble function has 
the consequence that the age of the universe since the Big Bang is identically 

the Hubble time, 

  

t0 = H0

!1
. In a more detailed cosmological model the 

estimated age 

  

t0  of the universe is not necessarily the same as 

  

H0

!1
, the 

reciprocal of the present value of the Hubble expansion rate, and both of 
them are often reported separately in the treatment of astrophysical data.  

The state of information with regard to the Hubble constant has become 
reassuringly consistent since the measurements from the Hubble Space 
Telescope [4,5] and the Wilkinson Microwave Anisotropy Probe [6] have 

become available. The HST measurements showed 

  

H0 ! 72 km s
"1

( )Mpc
"1

, 

with error limits of ±10%. The WMAP data have narrower error limits, and 

agree very closely with each other, with a central value of 

  

H0 ! 71 km s
"1

( )Mpc
"1

 and error limits varying between ±1% and ±5%.  
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The best WMAP estimates of these quantities at present are those 
compiled by Bennett et al. [6] in their Table 3. They show a Hubble constant 

of 

  

H0 = 71
!3

+4
km s

!1
( )Mpc

!1
. This is equivalent to a Hubble time of 

  

H0

!1
= 13.8

!0.8

+0.6
Gyr . They also give a separate best estimate of the age of the 

universe 

  

t0 . For this they report 

  

t0 = 1.37 ±0.02( ) !10
10

y . Their reported 

values of 

  

H0

!1
 and 

  

t0  are therefore essentially equal, within their error limits 

for 

  

t0 . I shall therefore use the same value for both time estimates, 

 
  
H

0

!1
" t

0
= 1.37(±0.02) #1010

y. . (26) 

We can then evaluate 

  

!  as 

 
  
! = c

0

2
H

0

"1
= 3.89(±0.06) #1034 m2s"1 . (27) 

3. Observational Consequences of the Time Dependent Light Speed 

A. The Rate of Change of 

  

c  

1. The Time Dependence of c as a Measure of the Hubble Parameter: 

It follows from Eq. (14) that the dependence of the speed of light on the 
cosmological time 

  

t should be directly related to the Hubble function, 

 
  

dc t( )

dt
! "c t( )

H t( )

2
. (28) 

The present magnitude of the logarithmic rate of change of 

  

c  is then 
predicted to be 

 

  

d ln c t( )

dt

!

"
#
#

$

%
&
&

0

' (
H

0

2
= (3.65 ±0.04( ))10(11 y(1 . (29) 

A rate of change of this magnitude, should it be detectible in a terrestrial 
measurement, would be approaching the range of observability at the present 
time. Such a measurement would both confirm the temporal behavior of 

  

c  
and provide a direct means of measuring the Hubble parameter in a 
laboratory system. To verify the applicability of the time dependence of 

  

c  as 
in Eq. (29) to a measurement in the laboratory system we can apply to the 
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time dependence of 

  

c  the transformation between cosmological and 
laboratory coordinates presented in Eqs. (22) to (25). 

B. Application to the Speed of Light 

Eq. (22) can be used to express the time dependence of the light speed 

  

c  

directly in terms of the local time variable 

  

!  based at 

  

t = t0,!0 = 0( )  instead 

of the cosmological time variable 

  

t: 

 

 

  

c t( ) = ! 1/2
t
"1/2

= c # ,$;t
0( ) = c

0
cosh$ 1+

# cosh$
2t

0

%

&'
(

)*

"1

.   (30) 

In the case of a local measurement of 

  

c  we are interested only in the 
spatial region near 

  

r = 0,! = 0 . To first order, then, 

 

  

!c

!"
#
$%

&
'()=0

= *
c

0

2t
0

= *
c

0

2H
0

*1
. (31) 

A local measurement of the dependence of 

  

c  on the locally observable 
time 

  

!  is therefore predicted to reflect the same secular decrease as was 
predicted in Eq.  with respect to the cosmological time variable 

  

t: 

 

  

! ln c " ,#$% &'
!"

(

)
*

+

,
-
#=0

=
d ln c t$% &'

dt

(

)
*

+

,
- = .

H
0

2
. (32) 

As discussed above in connection with Eq. (15), the cosmological 
expansion reflected in the Hubble length 

  

! t( )  is never detectible locally 

through the length variable 

  

r  accessible to terrestrial measurement. In 

contrast, the cosmological dependence of the light speed 

  

c t( )  on the 

cosmological time variable 

  

t is reflected in an equivalent dependence of 

  

c !,"( )  on the local observer’s time variable 

  

! . 

It can also be remarked that in SSR both the fundamental atomic 
frequencies that are used as the measuring standards for time and the 
fundamental constants such as the fine structure constant 

  

!  are predicted to 
be time-independent in terrestrial measurements. 
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C. The Possibility of Measurement 

The light speed c was measured in 1972 with a precision of 3.5 parts in 

10
9
 [3]. In the intervening 33 years, the present theory predicts it will have 

decreased by about 1 part in 10
9
. If renewed measurement can improve the 

precision in such measurement by a factor of 10 to 100, then this theory can 
be tested more conclusively in times of the order of a few years. It is worth 
noting that an absolute measurement of c will not be needed provided its rate 
of change can be measured with regard to a sufficiently stable standard of 
length. If c is found to decrease by a rate close to this prediction, it follows 
that the Hubble parameter H0 will be measurable directly in the laboratory. 

The detection of a rate of change of this magnitude in c will be of 
technological importance for applications of the GPS system in geodesy, 
because this theory suggests that apparent distances as measured with the 
present definition of the meter will result in a rate of change of close to a 
millimeter a year in an earth radius. 

4.  Local and Cosmological Measurements of Age 

A. The Effect of Velocity Boosts and Distance Shifts on the Connection between 
Cosmological and Local Time Scales 

The connection between the local time 

  

!  as measured by a stationary 
clock or by a local observer and the invariant cosmological time 

  

t as given in 
Eqs.  and  above can be used also at times and locations remote from the 

reference origin 

  

t = t0,r = 0;v / c = 0( )  or 

  

! = 0," = 0;# = 0( )  of local time. 

The cosmological time 

  

t is an invariant under spatial shifts measured in the 

hyperbolic variables 

  

! = !,"!,#!( )  as well as velocity boosts in 

  

! = !,"! ,#!( ) , but the local time variable 

  

!  depends on 

  

t0  as well as on a 

position shift 

  

!"  or a rapidity boost 

  

!" . To evaluate their effect on the local 

time observable 

  

!  we can use Eq. (22) with the replacement 

  

!" #! ˆ $ #% , 

where the subtraction is performed by using the law of cosines for the sides 
of the hyperbolic vector triangle (see ref. [1]). We then have  

 

  

! t,"#,"$;t0( ) = 2t0

1/ 2
t
1/ 2

% 2t0 sech"# ˆ % "$ .  (33) 
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B. Local Historical Time and Remote Cosmological Time 

We can use Eq. (3) and specialize to the local condition near 

  

r! 0,"! 0 , to illustrate how the local time  

 
  
!"=0

= 2t
0

1+#t / t
0( )

1/2

$1%
&'

(
)*

 (34) 

diverges from the cosmological time increment of time 

  

!t  increasingly as 
both depart from their reference point 

  

t0 . Looking back toward the origin of 

the cosmic expansion at 

  

t = 0, !t = " t0 , we see that local clocks will measure 

that remote origin as occurring at 

  

! = "2t0 . This permits a local historical 

time scale for the evolution of astronomical objects and radioactive materials 
that can be up to twice the available Hubble age of the universe when 
measured remotely through propagating radiation.  

5. The Time-Independent Fundamental Constants and Consequences 

The fact that 

  

c  is no longer to be treated as a constant of nature and that 
the Hubble-Lorentz constant 

  

!  is such a constant requires a new assessment 
of a number of the other fundamental constants of atomic physics and 
cosmology. Among its consequences is a new quantification of some of the 

famous dimensionless ratios with magnitudes of the order of 

  

10
40

 
constructed from the constants of cosmology and atomic physics. This brings 
to light a numerical identity between two of these numbers, and establishes a 
firm relationship connecting the gravitational and cosmological constants 

  

G0 / c0( )  and 

  

! = c0

2
H 0

"1
 and the atomic and electromagnetic constants 

  

  

!, m
e
 

and 

  

! .  

A. The Fundamental Natural Constants in SSR 
1. Mass and Energy 

The time dependence of 

  

c  in the doubly hyperbolic universe requires 
abandoning the conservation of energy on a cosmological time-scale, but 
allows the conservation of mass and the constancy of particle masses to 
remain unchanged. Planck’s constant 

  

h  or   

  

!  and the dimensionless fine 
structure constant 

  

!  remain among the fundamental constants and are joined 
by the new Hubble-Lorentz constant 

  

! .  
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2. Interactions: Newton’s and Coulomb’s Laws 

Interaction potentials become time-dependent like other energy terms, but 

the corresponding mass expressions 

  

!mCoul = VCoulc
"2

 and 

  

!mgrav = Vgravc
"2

 

must remain constant like other masses. It follows that the electrostatic 
permittivity 

  

!o  and the Newtonian gravitational constant 

  

G  both become 

time-dependent, but the product  

 
  
!

o
= !

o
t( )c t( ) = !

o 0( )
c

0
 (35)  

and its gravitational analog  

 
  
G = G t( ) / c t( ) = G

0
/ c

0
= 2.22574 ±0.00028( )!10"19 m2kg"1s"1  (36) 

are constant. Combining the electromagnetic identity 

  

!oµoc
2

= 1 and Eq. (35) 

we get the new velocity-corrected constant of magnetic permeability  

 
  
µ

o
= µ

o
(t)c(t) = µ

o(0)
c

0
.  (37) 

It follows from Eq. (35) that the fine structure constant is unaffected by 
the time variation in 

  

c t( ) : 

 

   

! =
e

2

4"#
o

t( )c t( )!
=

e
2

4"#
o
!

. (38) 

Its constancy has recently been confirmed by several ultraprecise 
frequency measurements in atomic spectra which show that it changes by 

less than two parts in 

  

10
15

 per year [7]. 

3. The Planck Units and Atomic Units 

The Planck mass 

 
   
m

Pl
= !c / G( )

1/2

= 2.17671(±0.00014) !10"8 kg  (39) 

remains constant because it in fact contains the new constant 

  

G = G / c , but 
the Planck units of length, time and energy become time-dependent and lose 
their role as natural constants.  
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In the same way, the atomic units of length and time vary with 
cosmological time, the Bohr radius 

  

a0  increasing cosmologically as 

  
(t / H

0

!1)1/2 ,  

 

   

a
0

= a
00

t

H
0

!1

"

#
$

%

&
'

1/2

=
!

m
e
(c

0

"

#$
%

&'
t

H
0

!1

"

#
$

%

&
'

1/2

. (40) 

and the atomic time increasing as 
  
t / H

0

!1
( ) , 

 

   

t
at

t( ) =
a

00

!c
0

"

#$
%

&'
t

H
0

(1

"

#
$

%

&
' =

!

m
e
! 2

c
0

2

"

#
$

%

&
'

t

H
0

(1

"

#
$

%

&
' . (41) 

All the atomic units are in fact time-varying except those of mass, 

  

m
e
, and 

of angular momentum and action,   

  

! . 

4. Constants and Semiconstants 

Many of the numbers we have been accustomed to think of natural 
constants can now be perceived to have a slow cosmological variation 

comparable to that of the Hubble parameter 

  

H t( ) . Their measured values at 

the present epoch are as important as ever, but their secular variation needs 
to be acknowledged. Such quantities I shall denote as “semiconstants”. The 
fundamental semiconstants include 

  

c, G,!o, and H .  

Many other accepted constants of physics including atomic constants such 
as the Rydberg constant, the Bohr radius and the Bohr magneton, can now be 
seen to be semiconstants. Each of them can be converted to a related 
cosmologically constant magnitude by using the appropriate power of 

  

c t( ) / c0( ) = t0 / t( )
1/ 2

 as a factor.  

B. The Mass of Quantized Action and Angular Momentum 

With the recognition of the Hubble-Lorentz constant 

  

!  as a fundamental 
constant, action 

  

A  and angular momentum become connected with a related 
mass 

  

M  as conserved quantities in the proportionality 

  A = M! . (42) 

It follows from this that a quantum of angular momentum or action 
possesses its own mass, a multiple of the extremely minute elementary mass 
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m
!

= ! /! = 2.71 ±0.04( )"10#69 kg . (43) 

This raises the possibility that photons themselves may carry a minute rest 
mass of this origin.  

C. Masses and Mass Ratios: The Cosmological Sequence 

With the help of 

  

!  as a fundamental constant, it becomes possible to 
construct a constant of mass which depends only on the macrocosmic 

constants 

  

G  and 

  

! , i.e. on the measured parameters 

  

G0,c0,H0

!1
( ) . Unlike 

the Planck mass it is independent of Planck’s constant   

  

!: 

 

  

m
G

=
!

G
=

c!

G
=

c
0

3

G
0
H

0

= 1.75 ±0.03( )"1051 kg . (44) 

This mass is just twice the mass of the universe of cosmological theory, 

the total mass within the Hubble horizon 

  

!0 = c0H 0

"1
, assuming a 

homogeneous distribution with the critical density 

  

d0 = 3H 0

2
/ 8!G0 . Under 

the usual assumptions, with 

  

c  and 

  

G  time-independent, the mass 

  

m
G

 

increases in time with 

  

H
!1

. In SSR, where 

  

G  and 

  

!  are now constant, but 

  

G  and 

  

c  are not, this universal mass 

  

m
G

 can also be recognized as constant 

in time. 

Comparing Eq. (44) with Eqs. (39) and (43) we see that the Planck mass 
is the geometric mean of this macrocosmic mass 

  

m
G

 and the quantal action 

mass 
  

  

m
!

: 

 
   
m

Pl

2
= m

!
m

G
. (45) 

From the masses 
  
m

G
, m

e
 and 

  
m
!
 we can create three mass ratios: 

 

   

!
1
=

m
!

m
e

=
!

"m
e

=2.98 ±0.04( )#10$39 , (46) 

 

  

!
2

=
m

e

m
G

= 5.22 ±0.07( )"10#84 , and (47) 
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!
3

= !
1
!

2
=

m
!

m
G

=
m
!

m
Pl

"

#$
%

&'

2

= 1.55 ±0.05( )(10)122 . (48) 

In the ratio 
  

  

!1 = m
!

/ m
e
, Eq. (46), which depends on the measured 

constants or semiconstants 
  

  

m
e
,!,c0,H 0( )  and is independent of 

  

G0
, we see an 

appearance of a number close to the famous gravitational and cosmological 

large number 

  

!10
"40

. A number roughly comparable to its square is seen in 
ratio 

  

!2 = m
e

/ m
G

 of Eq. (47). Naturally, their product, the ratio 

  

!3  in Eq. 

(48), shows a version of this cosmological number occurring to the third 
power. 

The suggestive impression of a geometrical sequence in the three numbers 

  

!
i
 can be improved to form a true geometric sequence based on the root 

value 

  

k = a!1 , where we can choose 

  

a  to satisfy the condition 

  

!3 = k
3

= a
3
!1

3
. Evaluating the number 

  

a  we find 

 
  
a = !

3

1/3 / !
1
= 8.4 "10#3

$ 1/ 119 . (49) 

This is close enough to the fine structure constant 

  

!  to suggest improving 
the sequence of the 

  

!
n

 by introducing not an arbitrary number 

  

a  but rather 

the known constant 

  

!  as a factor in the first two members of the sequence, 
replacing 

  

m
e
 by 

  

m
e

/!  in each case: 

 

   

k
1
=!"

1
=
! m

!

m
e

=
!!H

0

m
e
c

0

2
= 2.17 ±0.03( )#10$41 , (50) 

 

  

k
2

=!
"1
#

2
=

m
e
H

0
G

0

!c
0

3
= 7.15 ±0.10( )$10"82 , (51) 

 

   

k
3

= !
3

= k
1
k

2
=
!H

0

2
G

0

c
0

5
= 15.52 ±0.40( )"10#123 . (52) 

Two of the three ratios 

  

k
n
 are functionally independent, and the third is 

redundant. Obviously the geometric appearance of the sequence is greatly 
improved.  
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It is now natural to write this sequence in the form  

 
  
k

1
, k

2
= fk

1

2 ,   k
3

= fk
1

3 ,  (53) 

where 
  
k

1
 is given by Eq. (50) and  

 

   

f =
m

e

!!
"

#$
%

&'

3

!c
0
G

0

H
0

= 1.513 ±0.020( ) . (54) 

Because the accuracy of our knowledge of both 

  

k1 and 

  

f  is limited by the 

present error limits of 

  

H0 , it is also important to present separately the ratio 

  

k2 / k1, an important constant which will be denoted 

  

!
g

.  

 

   

!
g

=
k

2

k
1

=
"

2

# 2"
1

=
G

0
m

e

2

c
0

$

%
&

'

(
)

1

# 2
!

$
%&

'
()

= 3.28887 ±0.00042( )*10+41 . (55) 

It is independent of 

  

H0 . It can therefore be evaluated to the accuracy of 

five significant figures with which the gravitation constant 

  

G0 is known. 

The dimensionless ratio 

  

!
g
 is very close in magnitude to the ratio 

  

k1 of 

Eq. (50). Both their relationship and their significant difference can be 
emphasized by relabeling 

  

k1 as 

  

!
e
 and displaying it in the form 

 

   

!
e

= k
1
=
"!
m

e

=
e

2

4#$
o
c

%

&'
(

)*
1

+m
e

%

&'
(

)*
= 2.17 ±0.03( ),10-41 . (56) 

These two constants are related by the factor 

  

f  of Eq. (54), 

 
  
!

g
= f !

e
" 1.5!

e
. (57) 
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D. The Cosmological Large Numbers of Dirac 

The pattern shown in the sequence of Eqs. (50) to (52) now provides a 
new and quantitative confirmation of the long-suspected relationship 
between several large dimensionless ratios of cosmology and atomic physics, 

of the order of 

  

10
40

 in magnitude. These have been discussed in various 
ways since the work of Eddington and Dirac in the 1930s. Dirac’s 1937-38 
papers [8,9] provide a useful starting point to develop the connection. Dirac 
discussed this problem in the context of general relativity, but it already 
exists at the level of special relativity, and it can be clarified in the expanding 
hyperbolic space approximation of SSR. 

In his discussion, Dirac pays special attention to three dimensionless 
ratios of atomic physics and cosmology. These are the force ratio 

  

Rforce of the 

gravitational to electrostatic forces between two charged elementary 
particles, the mass ratio 

  

Rmass  of an elementary particle to that of the mass of 

the universe 

  

m
U

, and the time ratio 

  

Rtime of a characteristic time of atomic 

physics to the Hubble time 

  

H0

!1
 of the universal expansion.  

For the ratio 

  

Rforce of electric and gravitational forces, Dirac chose as the 

type pair an electron and a proton, but he also commented that other pairs 
such as two electrons could also be used. We can now prefer the two-
electron case, where this force ratio is 

 

   

R
force

e,e( ) =
Gm

e

2

e
2 / 4!"

o( )
=

G
0

c
0

#

$%
&

'(
m

e

2

)!
. (58)  

This ratio is a constant, both under the assumptions of ordinary SR and 
those of SSR. 

It can immediately be identified as the product of the fine structure 
constant 

  

!  and the dimensionless constant 

  

!
g

 of Eq. (55): 

 

  

Rforce e,e( ) = !"
g . (59) 

For the cosmological mass ratio 

  

Rmass , where Eddington and Dirac 

compared the mass of the universe 

  

m
U

= m
G

/ 2  with that of a proton, I shall 

use instead the electron as the comparison particle. The relevant mass ratio is 
then 
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R
mass

e,U( ) =
2m

e

m
G

= 2m
e

G

c

!
"#

$
%&

H

c
2

!
"#

$
%&

=
2m

e
G

0
H

0

c
0

3
, (60) 

a constant under SSR but time-dependent under SR. It can be recognized as a 
product of the constants 

  

!
e
 and 

  

!
g

, 

 
  
R

mass
e,U( ) = 2!"

e
"

g
. (61) 

For the purpose of the time comparison, Dirac [9] used an atomic time 

  

t
! Dir( )

 based on the electron charge and mass, in the form 

 

   

t
! Dir( )

=
e

2

4"#
o
m

e
c

3
=

$!

m
e
c

0

2
, (62) 

which provides a constant time scale as long as the constancy of 

  

c = c0  is 

unquestioned. Dirac’s time ratio 

  

Rtime compares this constant atomic time 

  

t
! Dir( )

 with the time-varying Hubble time 

  

H
!1

t( ) , and is therefore itself time-

dependent,  

 

   

R
time Dir( )

=

t
! Dir( )

H
"1

t( )
=

#!

m
e
c

0

2
H

"1
t( )
$

#!

m
e
c

0

2
t

. (63) 

Making use of Eq. (56), this can be written as 

 
  
R

time Dir( )
t( ) !

"
e
t
0

t
. (64) 

The problem which Dirac then faced was the appearance of an 
approximate coincidence in magnitude at the present epoch between the 
values of the apparently time-dependent time ratio 

  

Rtime Dir( )
 and the 

apparently time-independent force ratio 

  

Rforce as well as the square root of the 

electron-to-universe mass ratio, 

  

Rmass( )
1/ 2

. This led him to propose a time-

varying gravitational theory in which all these ratios would vary 
appropriately together. This proposal has never achieved much acceptance. 

In SSR, these difficulties disappear. When we acknowledge time variation 

of the velocity 

  

c t( ) = !
1/ 2

H
1/2

t( ) " c0 t0 / t( )
1/2

 and the constancy of 

  

!  instead, 
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the Dirac standard of atomic time becomes a time scale 

  

t
! SSR( )

t( )  which 

varies in proportion to the cosmic time itself:  

 

   

t
! Dir( )

" t
! SSR( )

t( ) =
#!

m
e
c

2
t( )

=
#!H

$1
t( )

m
e
%

&
#!t

m
e
%

. (65) 

This is to be compared with the equally time-dependent Hubble age. The 
time ratio is then a constant, and is in fact the very constant 

  

!
e
 of Eq. (56): 

 

   

R
time(SSR )

=

t
! SSR( )

t( )

H
"1

t( )
=

#!

m
e
$

= %
e
. (66) 

If we compare the ratio of forces, Eq. (59), to this ratio of times, we find 
in SSR that both ratios are constant, and connected by the simple equation 

 

  

R
force

e,e( ) = f!R
time SSR( )

"
3!
2

#
$%

&
'(

R
time SSR( )

. (67) 

We see from Eq. (67) that in SSR Dirac’s program of comparing the ratio 
of times, atomic to cosmic, with the ratio of forces, gravitational to 
electrostatic, when applied to an electron pair and combined with the factor 

  

! , leads to exactly the same numerical relationship between two very large 
numbers that is reached by the examination of mass ratios in Subsection C 
above.  

The recent great improvement in the accuracy of our knowledge of the 
Hubble constant is crucial to the change from the order-of-magnitude 

similarity of numbers in the range of 

  

10
40

, which was available to Dirac, to 
the precision which we now see in comparing Eqs. (55) and (56). This now 
establishes an important identity between two ratios made up of physical 
constants of, apparently, very different physical nature, having to do with 
electromagnetism and with gravitation respectively, as applied to the 
electron.  

There are distinct advantages now in being able to base the current work 
within the relativistic framework of SSR, where all the relevant ratios prove 
to be constant, and not in ordinary SR, where some of them appeared to be 
time-varying. The theoretical complications that Dirac faced in creating a 
self-consistent gravitational and cosmological dynamics in which the 
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gravitational constant became time-dependent [10] are now eliminated. 
Instead, what had appeared to be a numerical coincidence within a few 
powers of ten between two or more independent dimensionless ratios, 
complicated by the time-dependence problem, is now replaced by a cleanly 
time-independent relationship, the identity of Eq. ((7), with its coefficient 
1.5, defined in both partners to 1% accuracy.  

E. The Electrogravitational Connection 

The dimensionless constants 

  

!
g

 of Eq. (55) and 

  

!
e
 of Eq. (56) are related 

to each other both by a near equality in magnitude and by their similarity in 
physical structure. Each of them contains a factor that has the appearance of 
a potential energy term for a central field, electrostatic in one case and 
gravitational in the other, but with the separation length 

  

!r  replaced by the 
velocity 

  

c  in each case; the result in each case is a constant of self-action 
associated with the field. We can thus define the electrostatic action 
associated with a unit charge 

  

e  as  

 

   

A
es

e( ) =
e

2

4!"
o

t( )c t( )
=

e
2

4!"
o

t
0( )c

0

=#! . (68) 

Similarly the gravitational action associated with a mass 

  

m  can be 
constructed; because it is connected with an attractive interaction it has a 
negative sign: 

 

  

A
gr

(m) = !
G(t)m2

c(t)
= !

G
0
m

2

c
0

.  (69) 

Its absolute magnitude appears in Eq. (55), in the case where the central 
mass is that of the electron. 

To complete the similarity between Eqs. (55) and (56) we can convert the 

factor   

  

!
2
!  in the denominator of (55) into the product of a mass 

  

!m
g

 and the 

expansion constant 

  

! : 

 
   
!

2
! = "m

g
# . (70) 

This defines a mass-energy correction term 

  

!m
g

 associated with the 

gravitational field of the electron’s mass, just as 

  

m
e
 itself is a mass resulting 
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from the electrostatic field of the charge 

  

e . This mass can be seen to be a 

factor of 

  

!
2
 smaller than the angular momentum mass 

  

  

m
!

= ! /! , 

  

  

!m
g

= "
2
m
!
. 

The information from Eqs. (55) and (56) can now be displayed as follows: 

 

   

!
e

= k
1
=

e
2

4"#
o
c

$

%&
'

()
1

m
e
*

$

%&
'

()
=

+!
m

e
*

=
A

es
e( )

m
e
*

= 2.17 ±0.03( ),10-41 , (71) 

 

   

!
g

=
k

2

k
1

=
Gm

e

2

c

"

#
$

%

&
'

1

( 2
m
!( ))

"

#
$
$

%

&
'
'

=

A
gr

m
e

( )

*m
g
)

= 3.28887 ±0.00042( )+10,41.  (72) 

In each of these equations the structure of the product of natural constants 
on the left hand side can be analyzed into three constant factors, an action 
term representing an electrostatic or a gravitational field source, a mass 
factor, and the universal expansion rate 

  

! . The structural similarity on the 
left is matched on the right by their close but not perfect agreement in 
magnitude. 

The dominant feature of these numbers is obviously a very large common 
factor. Because of the precision with which the Hubble parameter

  

H0  and the 

age of the universe 

  

t0  are now known, the difference between them is also 

significant. Its influence can be expressed by the ratio 

  

f  of Eq. (54). With its 

help we can connect the expressions of Eqs. (71) and (72) as an identity 
connecting the constant 

  

!
g

 of the gravitational self-interaction of the electron 

with a comparable constant 

  

!
e
 of its electromagnetic self-interaction: 

 
  
!

g
= f !

e
" 1.5!

e
.  (73) 

This equation embodies an empirically established connection between 
the expressions of electromagnetics and of gravitation. It can be called an 
electrogravitational identity. 

A related identity can be generated if we define an electromagnetic 
structure constant of the electron with the same dimensions as the 
cosmological expansion constant 

  

! ; we can call this the electromagnetic 
expansivity of the electron:  



418  F. T. Smith 

 

   

!
e

= "#
e

=
$!

m
e

= 8.447974 ±0.000040( )%10&7  m2s&1 . (74) 

From an inspection of Eq. (74) it can be seen that it is useful to define also 
a cosmological expansivity constant  

 

   

!
G

= !G"( )
1/3

=
!G

0
c

0

H
0

#

$%
&

'(

1/3

= 9.70 ±0.10( ))10*7  m2s-1 . (75) 

A second form of electrogravitational identity is then 

 
  
!

G
= g!

e
,   where  g = f

1/3
= 1.148 ±0.010( ) . (76) 

This form of the identity can converted into an instructive relationship 
connected with the mass of the electron. The observed electron mass 

  

m
e
, an 

inertial mass, appears in Eq. (74). Rearranging Eqs. (74) to (76) we can write 

 

  

m
e

=
!!

"
e

=
g!!

"
G

= g!m
#
, where (77) 

 

   

m! =
!

"
G

=
!

2

G#
$

%&
'

()

1/3

=
!

2
H

0

G
0
c

0

$

%
&

'

(
)

1/3

= 1.087 ±0.010( )*10+28  kg . (78) 

In this expression 

  

m
!
 is a fundamental mass constant defined by a 

combination of the more general constants of gravitation and cosmology, and 
free of any connection with electricity and magnetism.  

The product of this fundamental mass with the dimensionless 
electromagnetic coupling constant 

  

! , 

 
  
m

e!
= "m

!
= 7.94 ±0.08( ) #10$31  kg,  (79) 

represents 87% of the measured inertial electron mass. If 

  

m
e!

 is a 

fundamental structural electron mass, then it may be asked whether the 
additional contribution making up the measured inertial mass, 
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!m

e"
= m

e
# m

e"
= 1.17 $10#31  kg , (80) 

may be attributable to a renormalization effect. 

F. Conclusions 

A reexamination of some of the fundamental constants of physics and 
cosmology in the light of the symmetric form of special relativity appropriate 
to the topology of a space-time with an open, expanding hyperbolic position 
space has brought to light a new relationship connecting some of the 
fundamental constants of electricity and magnetism, embodied in the mass of 
the electron and the fine structure constant, and a new fundamental mass 
constant 

  

m
!
 dependent only on Planck’s constant   

  

! , the Newtonian constant 

of gravitation corrected for the changing light speed of the universal 

expansion 

  

G = G0 / c0 , and the Hubble-Lorentz expansion constant 

  

! = c0

2
/ H0 . This empirical relationship connects some of the expressions of 

gravitation and cosmology with others from electromagnetic theory in a way 
that has been entirely unexpected.  

It can be conjectured that the fundamental mass 

  

m
!
 and a formula similar 

to (77) may play a part in the theory of the mass of some other fundamental 
particles. 

These electrogravitational relationships have rich implications for the 
fundamental theory of the electromagnetic, gravitational and inertial 
properties of the electron. These will be explored further in a following 
paper. 
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