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Effective Dynamics of Electric and Magnetic
Electroweak Bosons and Leptons with Partonic
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ABSTRACT . Based on the assumption that electroweak bosons, lep-
tons and quarks possess a substructure of elementary fermionic con-
stituents, in a previous paper it was demonstrated that under CP-
symmetry breaking “electric” and “magnetic” electroweak bosons co-
exist, where the latter transmit magnetic monopole interactions. In
this paper the calculation is extended to the derivation of the effective
theory for electroweak bosons and leptons. The dynamical law of the
fermionic constituents is assumed to be given by a relativistically in-
variant nonlinear spinor field theory with local interaction, canonical
quantization, selfregularization and probability conservation. The ef-
fective theory is derived by means of weak mapping theorems where
owing to CP-violation SU(2)-symmetry is simultaneously broken. An
associated effective Lagrangian yields a SU(2) ® U(1) gauge theory for
vanishing magnetic vector potential and boson masses.

1 Introduction

The concept of electric and magnetic electroweak bosons is employed to
formulate the electroweak theory for both electric and magnetic charges
without topological construction. In selfdual electrodynamics a distinc-
tion of electric and magnetic photons is impossible,[1]. But in nonabelian
gauge theories with broken symmetries selfduality cannot be defined. So
in this case one can proceed from the assumption that electric and mag-
netic electroweak bosons are independent quantities, where the difference
between both species manifests itself by different vector potentials.

While the electric electroweak bosons are those particles which ap-
pear in the conventional electroweak Standard Model, the magnetic elec-
troweak bosons are physical strangers. This depends on the fact that the
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sources of magnetic electroweak bosons, the magnetic monopoles and
dyons have not been discovered so far,[1],[2].

In spite of this negative result, in the last decades a great number
of theoretical papers was published, dealing with models of monopoles
with very large masses which experimentally are out of reach for their
production by accelerators,[2]. On the other hand low mass magnetic
monopoles have been assumed to participate in low energy nuclear reac-
tions,[3]. So one should look for monopole models, the effects of which
are accessible to ordinary experimental technique.

Indeed, two decades ago Lochak proposed a massless neutrino, car-
rying a magnetic charge in its ground state or in excited states,[4],[5],[6],
and he described the electro-magnetic action of it by means of a mag-
netic vector potential introduced by Cabibbo and Ferrari,[7] In this ap-
proach any topological property is avoided in contrast to the theory of
conventional monopoles. Furthermore Lochak demonstrated that in de
Broglie’s photon theory magnetic photons can be derived which are to
be associated with the magnetic vector potential,[8].

The latter approach has to be improved: In de Broglie’s photon the-
ory only magnetic or electric photon states can be calculated, i.e. theo-
retically these states cannot exist simultaneaously and the whole theory
is referred to single particle states,[9],chap.1. Thus a field theoretic ver-
sion of de Broglie’s and Lochak’s discoveries is required which leads to
an extended electroweak Standard Model as an effective theory for elec-
tric and magnetic electroweak bosons as well as for fermions. This was
advocated by Lochak,[6].

To treat these problems we use a model which is based on a rela-
tivistically invariant nonlinear spinor field theory with local interaction,
canonical quantization, selfregularization and probability interpretation.
This model implies that in the sense of de Broglie and of Heisenberg the
present “elementary” particles are assumed to possess a fermionic sub-
structure. The model is expounded in detail in [9].

As the appearance of magnetic bosons is closely related to the exis-
tence of magnetic monopoles or dyons, it is obvious that special efforts
are needed to theoretically as well as to experimentally detect these par-
ticles so far unknown.

By purely theoretical reasoning it was demonstrated in [10] that in
the above spinor field model electric and magnetic electroweak boson
states can coexist if the CP-symmetry of the vacuum is violated. This
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finding is in accordance with the phenomenological observation that
the existence of magnetic monopoles and dyons implies CP-symmetry
breaking,[7],[11],[12]. Therefore theoretically one can assume that CP-
symmetry breaking is a crucial condition for the discovery of magnetic
monopole effects and it is the task to propose scenarios to realize this
symmetry breaking in practice.

For instance in quantum electrodynamics one can directly observe
the influence and the modification of the physical vacuum in finite vol-
umes by the Casimir effect, [13]. A similar effect of the modification of
the vacuum may occur, if in finite volumes an electric discharge is set
off leading to a plasma state which generates symmetry breaking. Cor-
responding experiments have been carried out by Urutskoev et al.[3].
A theoretical discussion of this symmetry breaking mechanism will be
given elsewhere.

In the following we do not bother about the time intervall of the
discharge, but simply consider the field dynamics if CP-symmetry is
broken. With respect to the theoretical treatment of this case it has
to be emphasized that in our model the method of introducing CP-
violation is completely different from the corresponding method in the
conventional theory. While in the Standard Model the CP-symmetry
breaking is formally introduced by quark mass matrices with complex
parameters,cp. [14], chap.26, in our approach this symmetry breaking is
effected by an appropriate change of the vacuum. Mathematically this
indicates the transition to a new inequivalent field representation which
is a common method in algebraic field theory successfully applied in solid
state physics, cf. [15],[16].

In consequence of this difference of the methods, the results differ
considerably too. While the formal phenomenological method of the
Standard Model is intended to explain the decay of K-mesons, the alge-
braic method of the model under consideration leads to a completely new
formulation and structure of the whole theory due to the new inequiva-
lent vacuum. The physical consequences of this algebraic approach are
remarkable, but this will be discussed elsewhere.

As our exposition is based on the results of the preceding papers
[10],[17], it is unavoidable that for brevity we have to refer to these
results without giving renewed deductions. In particular we skip the for-
mulation of the algebraic representation of the basic spinor field itself,
a clear exposition of which was given in [18], sect. 2. Furthermore in
our calculations no use was made of the decomposition into left-handed
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and right-handed fermions for simplicity. Insofar the model under con-
sideration is a simplified version of the mathematical structure of the
Standard Model. This is justified as already in this version the crucial
effects of CP- symmetry breaking can be demonstrated.

2 Algebraic representation of effective theories

Effective theories are generated if in the functional formulation of the
algebraic Schroedinger representation of the spinor field [18], sect.2, map-
pings on other appropriate functional spaces are performed. The effec-
tive boson dynamics was treated in [18], sect.3, while the mathematical
foundation of the effective boson-fermion dynamics was developed in a
previous paper, [19]. Without going into details we refer to this paper
and give only the relevant final formulas.

In the spinor field model it is assumed that electroweak gauge bosons
possess a substructure consisting of two partons, while leptons and
quarks are formed by three partons. We will explicitly evaluate this
representation for the case of CP-symmetry breaking.

Let the functional states of the corresponding effective field theory
be defined by

oo o o0

| bf7 Zzzan2m+3r )( ')

n=2m=0r=0
o(k1..-km, q1---qr|a)br, - -br,, fo, - fq,10) BF

where b, 0° and f, 0/ are the functional sources of the phenomenolog-
ical bosons and fermions, respectively, while the g-functions represent
the matrix elements of the effective (phenomenological) boson-fermion
theory.

(1)

_ Then the mapping leads to an effective functional energy operator
H, [19], eq.(82) with the eigenvalue equation

E[P(b, f)) = H(b,8", f,07)[P(b, f)) (2)

The energy operator H can be decomposed into leading terms, higher
order terms and quantization terms which result from the quantization
terms in H g by the mapping. As we are only interested in the dynamical
structure of the effective theory, we exclude the quantization terms from
our discussion.
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With respect to the higher order terms, estimates were performed in
[9],sect.8.7 and [20]. For heavy spinor field masses m; these terms are
tiny and can be omitted from the physical discussion, in particular in
the low energy range. It would exceed the scope of this paper to discuss
this calculation scheme and its estimates explicitly. So in this paper we
treat only the leading terms which are physically relevant.

Decomposing H into

ﬂ:Hf—‘er—FHbf (3)

for the leading terms the following expressions result from the map-
ping theorems, [19]:

K, f40] + M}, £,0] (4)
Hb::Kklbkal + Mklbkalb + Wlkllbbkalblall;
Hopi=Wi5POP f,0f + W2 RE 1,07 9f

q1 Q2 pP17p2

with, see [19], eq.(66):

Kt{p::?’R?I’Il KIJZCZII’ (5)
qup::_gwfllﬂshFMK(RIKhC12131 R?I’Kcﬁlgl/)
Kp=2R}; K1,1,C%,;
Myy:=—6Wi, 1, 1,1, F1, x Ric1, Cl, 1,
Wklllz 4W11121314R111014101215
WP =3W1, 1,11, R 11, CY 11 Cly 1,

q192pP1p2 q2 P1 P2
W4 ~—_54WI1121314FI4KRH'11 RK1 KzKCI’Kl Ko 012131

In these expressions the quantities Cﬁ 1 and R}, symbolize the boson
states and their duals, while C;,;, and RY, ., are the fermion states
and their duals both of which will be explicitly introduced in section
3. The other quantities appearing in (5) are the terms of the original
spinor field which determine the structure and the numerical values of
the effective theory defined by the energy operator, see [18],sect.2.
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3 Boson and fermion basis states

For the evaluation of the effective theory the states of the composite par-
ticles are required. In order to get an optimal adaption to the structure
of the physical particles these states should be derived from correspond-
ing solutions of generalized de Broglie-Bargmann-Wigner (GBBW)-
equations. For details see [9],[21],[22].

For the bosons the exact vector boson state solutions of the GBBW-
equations have been derived for the case of CP-symmetry breaking in
a previous paper, [10]. Hence for the introduction of appropriate test
functions all group theoretical properties can be adopted from the exact
solutions.

For the fermion states no exact solutions of the corresponding
GBBW-equations are known. Thus an idea has to be borrowed from
phenomenology, how by CP-symmetry breaking these states should be
group theoretically modified.

If in the Standard model several generations of fermions are taken
into account then there is no reason for the fermion mass matrices to be
diagonal. Indeed suitable mass matrices lead to CP-symmetry breaking
effects. But, and this is very important: if the neutrinos are massless or
nearly massless, then the CP-symmetry breaking terms cannot affect the
lepton part of the mass matrix. Only the quark mass matrix is remark-
ably affected by these symmetry breaking terms, [23],p.116, [2],p.47.

Owing to this obvious difference in the behavior of lepton and quark
states under CP-symmetry breaking we confine ourselves to the treat-
ment of the lepton states only as for these states the full group theoretical
information of the CP-invariant theory can be used.

For electroweak bosons the superspin-isospin part is given by a singlet
and a triplet matrix representation and defined by the following sets of
symmetric and antisymmetric matrices:

St = <(_1)?+1Uz%l) D T = ((—10)lal%l> (6)

for the triplet, and

s@) () o

for the singlet.
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For CP-symmetry breaking an eigenfunction reads in the basis
(6),(7), see [10],
P (@1, @2 k, Diiy = (S + TN e as (21, 22[K)isi, (8)

where the superscript S characterizes the superspin-isospin repre-
sentation referred to the spinor fields ¢ and ¥°, see eq. (33) for the
phenomenological fields, while ¢ is given by

k
Paras (1, T2k, l)z‘n'z:@fﬂp[*lg(ffl +2)] ¥ 9)
{ALXE o, (@1 — T2l k)iyig + GLCh oy (31 — T2|K)iyi, }

With py :=p+k/2 and p_ := p — k/2 the following definition holds

2ig 4 .
Xovrao (1K) iyin = W)‘ﬁ)‘iz /d p exp(—ipz)

[SF(p+7 mil)V#SgP(p—a miz)c]t,naz

(10)

where SEF is the CP-symmetry breaking Feynman propagator and
where the function ¢* is obtained by replacing v* by v°+* in (10).

For the spin orbit parts (9) it can be shown that A, and G, have
to be identified with the phenomenological electric and magnetic vector
potential of the boson state. In addition in a free single particle state (8)
only the free electroweak field tensors can occur which can be identified
with terms of the kind

kyALSTEC = FLEC; ek, Gi%,,C = FUPS,, 00 (11)

If for simplified test functions all terms which contain p,, vectors are
neglected ( = s-wave approximation) then (9) can be replaced by the
expression

k
Paias (.1‘1, x2|k)i1i2 :exp[—2§(m1 + l‘g)]{AL (7“C)a1a2w(x1 - x2|k)i1i2
+Gﬁt(75’yuc)ala2’ﬂ(ml - x2|k)i1i2 (12)
+Fl€ﬂ<zuuc)ala2 Q('Tl - x2|k)7,'1i2}
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For solutions of the GBBW-equations the relations between the vec-
tors A, G and the field strength tensor F' are fixed. However, for test
functions we consider the quantities A, G and F' as unconstrained, freely
variable quantities which can be adapted to interactions described in
terms of the effective field equations. As a consequence the wave func-
tions (8) have to be decomposed into three independent parts, associated
to the field variables A, G and F.

For the evaluation of the effective theory the single time wave func-
tions are needed and owing to the independence of A, G and F' this leads
to three types of testfunctions

k

CH, 2y (r1,v2 |k, L p):=(S" + T3 ., eXp[—lg(rl +12)] (7 C)aras f A (r1 — T2)i14,
k

CG 2y (1, 12k, L p):=(S" + T2 ., eXP[—lg(l‘l +12)] (7’7 C)ayan f 7 (£1 — T2)iy 4

k y
Cglzz (r1,r2]k, 1, 1, V)::(Sl + Tl)flﬁz eXp[—’L§(I‘1 + r2)](2H C)ala2fp(r1 —T2)iyip
(13)

with Z := (i,a, k). According to [22] the duals are defined by R :=
>\i_11>\i_2 1C+ which need not be explicitly represented here.

Concerning the fermion states, their group theoretical analysis has
been performed in several papers for unbroken CP-symmetry.[22],[24-27].

In this case the permutation group representations play an essential
role in the construction of appropriate wave functions. For obtaining
lepton states we adopt the group theoretical representations of test func-
tions from Pfister, [26], being based on the theory of representations of
the permutation group elaborated by Kramer et.al., [28].

The group theoretical analysis of the three parton problem must guar-
antee that the resulting test functions possess quantum numbers which
coincide with those of the leptons in phenomenological theory. This
can only be achieved by using mixed representations of the permutation
group. Such mixed representations are generated by the application of
Young operators Cj. For two dimensional representations these opera-
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tors are defined by the relations, [26],[28]

cf2y .—%(1 - P12)%(2 + Py3 + Pa3)

c2Y .—%(1 + Pu)%@ — P15 — Pu3) (14)
c2! .:2(1 - P@?(Pz?, — Pys)

051]::%(1 + P12>§(P23 — Pi3)

where P;;, means transposition which interchanges arguments with index
i and k. These operators will be applied to superspin-isospin states and
separately to spin-orbit states.

The use of the Young operators allows to start with products of
test wave functions which are not antisymmetrized from the beginning.
For lepton states these products have to be formed by superspin-isospin
testfunctions ©7 and spin-orbit test functions  ® 1.

The superspin-isospin testfunctions are responsible for the definition
of the phenomenological quantum numbers for isospin and charge and
for the fermion number, while the spin orbit test- functions should lead
to the spin 1/2 of the leptons, to generation numbers and (or) internal
excitation levels. The latter two possibilities will not be further pursued
in this investigation.

After rearrangements the general expression of Young combinations
leads to the following antisymmetric test functions for leptons, [26], ow-
ing to [21] x [21] — [111] :

1
02122’;:; (I‘l7 ro,I's |k, j, n):exp[—zkg (1‘1 +ro + I‘3)] X (15)
[(C11O, ey ) Co2{ ¥ ppary V(T2 — T1, T3 — T2)}
—(Co10, 1yrs)C12{Q0  nyary V(T2 — 11,13 — T2)}]

A structurally transparent representation of the superspin-isospin
parts in (15) can be derived if charge conjugated spinors of the origi-
nal spinor field are transformed into G-conjugated spinors by

rat * ¢K&'L = GHK: ,l)Z)K e%) (16)

with G:=1® ¢ and ¢ = —io? .
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To avoid confusion with te magnetic vector potential G, the super-
script D (decomposition) is employed in (16). If one decomposes the
index k into the double index (A, A) the following scheme is obtained

(C11OP = X175 (r2) ® (1,1,1); (C1©) = x1/5(r) @ (1,1,1) = eT=: ¢y
(C110%)P := X7 (r2) ® (1,1,1);(Cn ©%)7 1= X2, (r1) ® (1,1, 1) = 7o =: ¢
(C110%)P = x1)5(12) ® (2,2,2); (C2n©*) 1= x1)5(r1) @ (2,2,2) = ve=: 1
(COMP = X2, (r2) @ (2,2,2);(C10M) 1= x1/2,(r1) @ (2,2,2)= ™= ¢4

(17)
with
2 1
X}ﬁ(rl)ii(g)l/%ml51A252A3 - (6)1/2[§2A151A2 + 014,024,014,
1
X}ﬁ(rz)ii(g)m[51A152A2 — 024,014,014, (18)

2 1
Xl,/f/g(7’1)1:—(5)1/252A152A251A3 + (6)1/2[52A151A2 + 614,024,024,

1
K a(r2)=(5) 614,624, — 24, 610,]020,
(1,1,1):=61A,01,01A4; (2,2,2) := d2a, 028,024,

The quantum numbers of these states coincide with the phenomeno-
logical quantum numbers and the last column in (17) corresponds to the
phenomenological spinor fields 1?,1611 afterwards. If the latter are trans-
formed into the phenomenological S-representation the positions of 7 and
e’ must be interchanged. Then (7,e™) is charge conjugated to (7,e7)
and these arrays in columns are in agreement with the phenomenological

notation. In the following we suppress the index “phen”.

In defining the spin tensor we expect to obtain lepton fields /% (x) in
the effective theory which are not eigenstates of the free Dirac operator
for definite k-vector, i.e. owing to the interactions these effective lepton
fields must be general spinor fields which excludes a representation by
free fields. Hence the spin tensor €2 is not allowed to be constructed by
means of eigensolutions to k-vectors.

Furthermore as the leptons are assumed to occupy the ground states
of the three-parton system, the spin tensor as well as the orbit functions
must show the highest possible invariance under symmetry operations,
which for these parts of the wave functions are the little group operations
with all discrete transformations. This leads to the spin tensor and its
charge conjugated counterpart
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QZ1O¢2(X3 = 00410625335 leagag = Ca10t2004301€2 (19)

where £ are the four unit spinors dan, n = 1,2,3,4 , while (' is invariant
under rotations and the discrete operation PC ,see [29],p.110 . The orbit
part is assumed to have s-wave character which automatically is invariant
under parity transformations.

4 Effective canonical equations of motion

By means of the test functions of section 3 the effective functional energy
operator H has been calculated in detail in [17]. Due to these calculations
it is convenient to replace the general decomposition in eq. (3) by

H=Hs+ My + M + M+ Hip + Hig (20)

where the various terms of (20) are defined by equations [17], (106), (45),
(48), (55), (73) and (104) in the order of equation (20).

In these terms the general functional (source) operators b and d° for
bosons are decomposed into a set of operators associated to the various
field quantities, i.e. b:= {b4,b%, b¥ bC}, etc.

To be in conformity with the phenomenological field definitions of
section 5, it is necessary to carry out a canonical transformation of the
functional algebra for the G-fields and E-fields which is defined by

bia (2) = ibf, (z)0); (2) = —id); (2)’ (21)
bia () = —bi; (2):0]4(2) = —0j4(2)'
while the other algebra elements for the A-fields and the B-fields remain
unchanged.

After having performed this transformation of (20) we omit the
primes of the new sources in (21) for brevity. With (21) the explicit
expressions for the various terms of (20) read

M} = /dSZf(Z|Blb10fl)[—i(Wovk)ai + MY ]aya.0 (2| Bibroz)  (22)
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Hizi/d?’z bﬁl(z)[c1€zkma§3§m(z) — 20 (2)] (23)
- / d*2 b, (z)[crekmOf O (2) — 301 (2)]
+i / a3z bf2 (2) [e1em 07 05 o (2) + 207 ()]

i / 02 B (@) ekmOF O . (2) + 308 (2)]

M= [ @2frctf 0 @) (24)
b / 0= f csbf (205 (2)

M =uscztion (6174 [ % b (21018, (2)05, (@) + bt (2)0(2)02, . (2)
KB, (20 (2)0E. . (2) — ksb, (2)07%, ()02 (2)] (25)
40479 [ &2 (ki ()0, (2093, (2) + b, ()0, ()95, (2
B0 (2) + kb 006 @0 D)

Hl%f:_Kl/dgz(’yo'yk)nm(Tofys)ljfnl(Z)alﬁ)(z)arj;j(z) (26)
+iK1/dgz(’}/o’)/k'}/g))nm(S075)ljfnl(Z)al%(z)arj;,j(z)
1 3
+§K1 Z/dSZ('YO’Yk)nm(Tb’Y5)ljfnl(Z)al?b(z)agzj(z)
~il Klz / 02195 ) (5971 s (206, (2)0,, (2)

M3, =iKt(0)* / B2 0%, 5 -2 PO WP k)  (27)

+fB (’75’7k0)u1p,2b3(z|n7 k)]af(Z|Bla blu ,ul)af(z|BQu bg,,U/Q)
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It should be emphasized that the input of equations (22)-(27) is solely
the spinor field model, [17], Sect.2 , [18], Sect.2 and its sets of single
bosonic and single fermionic bound states of the preceding section.

A physical interpretation of the associated effective functional energy
equation (2) can be achieved by considering the classical limit of this
equation. In this classical limit the system is described by its classical
equations of motion. These equations of motion can be exactly derived
from (2) if correlations in the matrix elements are suppressed. For details
of the corresponding deduction we refer to [18],sect.5 for instance.

In the field part of this set of equations the quantities E;, and By, , [
=1,2,3and a =0, 1, 2, 3, represent the SU(2) ® U(1) field strengths,
while A4;, and G;, are the "electric” and “magnetic” vector potentials
in temporal gauge. This “gauge” can be selfconsistently justified as a
general constraint, even if the original SU(2) invariance is broken. Such
vector potentials were introduced by Cabbibo and Ferrari, [7] in electro-
dynamics and the following set of equations represents an electroweak
generalization of this approach,

i A1q(2)=iC16 1m0 Gma(2) — ica Byq(2) (28)
+77abc€lkm [fAklAkb(Z>Gmc(Z) + kaéle:b(Z)Amc(Z)]

iG1a(2)=—1C1€1kmOf Ama(2) + ic3 Bia(2) (29)
+ﬁabc€lkzm[_fAkSAkb(Z)Amc(Z) + kaGGkb(Z)G’rnc(Zﬂ

i B (2)=i€13m 07 Bma (2) + i(ca — fA¢4) Ala(2) (30)
+TlabeEirm[f A k2 Ak (2) Bine(2) + fCksGip(2) Eme(2)]
_iK/@%ﬂ)l,szz fE (,YZC)ZIIQ wBlblNl (Z)w32b2“2 (Z)

iBla(Z)z—ielkmagEma(z) —i(cg — fGC4)Gla(z) (31)
Fabectbm|—F kb Ap(2) Epe(z) + FERLGrp(2) Bine(2))]
+Z(KI/2) (]131b1,32b2 fB (i’ySPle):lﬂg,l/}Blblﬂl (Z)'l/}BQbQ;Q (Z)

The factor 64 in (25) has been included in the definition of the con-
stants k; in (28)-(31)
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For the fermion fields the following equations of motion can be de-
rived

e (2)=[=i(1"7")apd% +vasmlis(2) (32)
—K1[(7°7")as (T7")in Aro(2) = i(7°7 1) as (S7”)in Giro (2)|105n (2)
3
1 .
+3K1 D10 7)as (T )i Ars (2) = i(1*7*1) e (8°77)in G (2)]3m (2)
b=1
where the indices [, n refer to the phenomenological numeration of the
lepton states. This means that the field quantities 1, ; are superspinors
of the phenomenological theory and ought not to be confused with the
spinor field operators of the basic spinor field model in the background.
The sets of antisymmetric and symmetric matrices 7% , S* a = 0, 1,
2, 3 represent the underlying SU(2) ® U(1) group structure. They are
given by equations (6) and (7).
In (30) and (31) the four dimensional index & is splitted into the dou-
ble index k = (B,b) and in the S-representation the phenomenological
superspinors are defined by

Sale) = (D ) (33

By technical reasons of the calculation in [17], aside from charge
conjugated spinors also G-conjugated spinors were introduced, see eq.
(16), and this definition is also applied to the phenomenological theory.
There it is likewise indicated by the superscript D (decomposition). For
instance the formula [17], eq.(92) of the superspin-isospin part of the
current calculation is formulated in D-representation. This formula is
central for the physical interpretation of the current expressions in egs.
(30), (31), but it is beyond the scope of this paper to give an outline of
its derivation. Therefore we only discuss the evaluation of this formula.

To calculate this D-representation we start with the S-representation.
According to the construction of formula [17], eq.(92), the tensor ©™ on
the left hand side of [17], eq.(92) is the superspin-isospin part of the

boson dual function R} . in [17], eq.(74). Thus we start first with

the superspin-isospin parts of the original boson functions C’f;l g0 COD-
struct their duals and transform these duals from the S- into the D-
representation. The original superspin-isospin basis set of the C’,’;m
functions reads for the case of CP-symmetry breaking, cp. [17], eq.(27),

or eq.(8), respectively.
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1 1
(Ga)glnz = §(Ta + Sa)glmg = 5@02 +01)B1Bz ®0-l(711b2 a = Oa 17 2; 3
(34)
Its dual set ©", n = 0, 1, 2, 3, is given by
an AN 1. n
(@ )§1I€2 = (9 )%1b132b2 = 7(20'2 +01)BlB2(U )Z;bz (35)

2

Owing to the properties of the Pauli-algebra one easily verifies that
the duality relations

(@n)flmz (@n/)glfcz = %(iUQ—’—Ul)Ble (i02+01)3152 (Un)lz;bg Ung/bQ = 2(57”1/

(36)
are satisfied. In eq. (36) the state normalization is omitted, because it
is irrelevant, see below. In the next step we transform the tensor (35)
from the S- into the D-representation.

The transformation law of the superspin-isospin part (34) of the bo-
son functions Cgl ¢, 18 defined by the relation

(0")3 ks = Gra, Greary (07) (37)

’ot
K1K2 KIRQ

with the transformation matrix

(1)

The duality relation (36) has to be invariant under the change of the
representation. This means that
(6")7,02(0" s = (6")7a (7)1 (39)

Ki1K2 K1K2 K1K2 Ki1Kk2
has to hold which leads to the transformation law for the dual set
An\S =1 —1 An\D
(6", = G, Gl (67D, (40)
Then one obtains with (35), (38) and the inverse of (40)

N 1 .
(@n)nDlrm = 5(20—2 + 0—1)3132[(0—n)TcT]blb2 = 531155’22[(0— )TCT]blb2
(41)
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In consequence of eq.(41) equation (92) of [17] must be corrected by
replacing (©")P by (©")P. This yields the revised formula

Sgllz?fg;zf(@") [A1]a1[As]as = (©™) B0y Babs = (©™) Byt Byt (42)
where ©" is an auxiliary tensor defined by ©" on the right hand side
of (42). Therefore in [17] all following equations have to be corrected
in accordance with this correction. This includes the correction of the
current expressions in equations (30) and (31). For instance, in eq. (30)
the electric current has to be replaced by

jla = (éaBlblBng) ('7 C)#lﬂszlbl'ule2b2#2 (43)

To evaluate this expression for the phenomenological Dirac spinors
(17), their definition by means of the quantum numbers B, b has to
be given. The decomposition into these two quantum numbers can be
formally applied, but their meaning depends on the representation. By
their construction the phenomenological spinors (17) are referred to the
D-representation. Therefore we formally introduce the B- b-numeration
by the definition

w%),l,u = e:«_; wlD,Zu = Vs w2D71,u =V ¢2D,2,u = e; (44)
Then with (41) and definition (42) equation (43) reads

1 .
] 252316132[( )TC ]b1b2 (’7 C)plﬂgwglblplengﬂg (45)
1

2 [(UG)TCT] bl b2 (’yl C)/j,_l 125 w2D171lL1 /IZ}EJQ/.LZ

The phenomenological fields in S-representation are defined by
VP, =08, = v, and P, , = ¢3, , = e, and their charge conju-
gated counterparts. The latter can be generated by the transformation

wfb, o= cab,wf p - Lherefore (45) can be rewritten into the form

1

]la:§ [(O. )TCTCT]blbz (’YIC);lugwibl,ul wibzltg (46)

1
:75 (O—a)abz (710)31/&1/}171#1 wgﬂm

With (7/C) its Hermitean conjugate is symmetric too. Thus (45)
reads equivalently

_(wgz}tz)T(Ua)bzbl (’710):2#1 wblm (47)
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In the last step one uses (/)7 = CT and obtains from (47) the
U(1) and SU(2)-currents

-Q,

1- a
= _§¢blltlab1bgvzlug¢b2lt2 (48)

In the same way one can proceed to get the magnetic currents J;'.
The factors (1/2) will be absorbed in the coupling constants, i.e. nor-
malization of the states is irrelevant.

In the next step we rearrange the Dirac equation (32) into the conven-
tional form. For the interpretation of (32) it is important to realize that
the (Ty%) and (S7°) matrices in (32) arise from matrix elements between
two three-parton states which characterize the superspin-isospin part of
the composite leptons, see [17], eqs.(68),(69). As the lepton states are
constructed in the D-basis of parton spinors, the latter matrix elements
have to be calculated in this basis. The calculation yields for a = 1, 2, 3

a “0 a “0
= (G ) k= (Ge) @
and for a =0
10 10
st = () @R (30) (50)

In this representation the indices I, n = 1,2, are referred to the spinors
PP = et and P := v, while [, n = 3,4, correspond to the G-conjugated
spinors Y2 1= v and ¥ :=e~.

The substitution of (49) and (50) into equation (32) shows that this
equation can be decomposed into two separate equations for 1, 12 and
3,14, In particular for (13,14) = (v,e”) one obtains after multiplica-
tion of eq. (32) with 4 in spin-space the following equation

. 1,
[—i7" 0, + miy + i[gUankAka + g'op, V" Agoltbn (51)

1
+i51907,(7"77) Gra + 601, (1" ) Groltbn = 0
where the Pauli matrices are referred to the two-dimensional state space
defined by (13,%4). The corresponding equation for (¢1,12) is redun-
dant and will not be explicitly given for the sake of brevity.
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It is interesting to note that the coupling of the magnetic vector-
potential G* in (51) coincides for @ = 0 with the coupling in Lochak’s
monopole equation, [6].

Finally we rearrange the field equations into their final form. Ne-
glecting for simplicity the coupling between SU(2)-fields and U (1)-fields
from [17] eq. (53) it follows fjape := i€qpe. Furthermore we define ¢; = 1,
fA=fC ke = Ky, ks = ki, (c2 — fAcs) =t pa and (c3 — fhes) = pa,
and express the current coupling constants g. and g,, by the original
constants in egs. (30) and (31).

Substitution of these definitions and canceling out 7 yields for equa-
tions (28)-(31) the following set of field equations
Ala(z):_glk'rnasza(Z) - CZEla(Z) (52)
teavcikmf k1 Ary(2) Gl (2) + kaGip(2) Arne(2)]

Gla(z):_glkmaliAma(z) + CZBla(z> (53)
_EabcglkmfA [kSAkb(Z)Amc<Z) - kGGkb(Z)Gma(Z)]

Ela (Z):glkmaliBma (Z) + gejla + ,UJAAla (54>
5abc£lkmfA[kQAkb(Z)B;nc(z) + k5Gkb(z)E;nc(Z)]

Bla(z>:_glkma]§Ema(Z) + ngJla - MGGla (55)
—apctkm [ ko Ary(2) Eme(2) — ksGirp(2) B, (2)]

For a = 0, all terms with e4p. vanish, i.e., one gets the U(1) field
equations.

To complete the theory of vector fields their constraints have to be
formulated ( electric and magnetic Gauss law ). In the canonical version
of the theory these constraints need not be postulated, but can be derived
from eqs. (52)-(55) in combination with the spinor equation (51), cf. for
instance [9], section 8.2. This will not be done here, because it is not
along the lines of our investigation.

5 Effective Lagrangian density

To draw physical conclusions from the above results it is advantageous to
express them in form of an effective Lagrangian as in phenomenology the
Lagrangians are the central quantities for the evaluation of the theory.
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To apply the Lagrange formalism the definition of the electroweak
field tensor in terms of the vector fields is required. In the literature this
definition is not uniform. We follow the definition used in the treatment
of gauge theories by differential forms, [30],eq.(4.6),[31],p.70, which reads
for antisymmetric Fjj,

a a a 1 a
Ey = —Fg; B = §5kz‘jFij (56)
where the metric is defined by n = diag(1, - 1, - 1, - 1).

This definition of the fields is consistent with that used in section 4.
Furthermore for the currents the following definitions hold

ju = Yoy = ()t Ji =90y = (J0)* a=0,1,2,3
57)

where the minus sign in (48) is absorbed in the coupling constant.

To describe the effective field dynamics we postulate the following
Lagrangian density

1 a Lo VK T rm 7 n 7 n
L= Fnen” Foe + S [00" 0, + (0up)y™ ] = mipyp - (58)
a; . a 1 a a 1 a a
_gXA,u,jg - ZgTFG,u,J{éL + 5”?4‘4”77#9‘49 + iuéGun#gGQ

where g, = gy, g~ takes the value g, for a = 0, and g, for a = 1, 2, 3.

In (58) the field strength tensor is given by

FSy::aMAZ - al/AZ - Euugongg 77{70 aQ'Gg/ (59)
+€ab6(glAZA5 + ggGﬁGi + ggé‘“ygangg’nag/Az/Ggl)

To compare equations (52)-(55) with equations resulting from (58),(59)
the constants in the former equations have to be fixed. In [17],eq.(54)
their values are expressed by the formation of various scalar products of
the space parts of the boson wave functions. As these scalar products
( with inclusion of their regularization) are defined in auxiliary space
they can adopt positive and negative values in contrast to the norm
expressions in physical state space.

While the algebraic structure of the boson wave functions ( and of
course of the fermion wave functions, too ) is strictly set up, the space
parts of these wave functions can be chosen only with a certain degree
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of arbitrariness which reflects the lack of information about the influ-
ence of the field theoretic vacuum on the space structure of these states.
Therefore without using selfconsistent calculation schemes for the boson
wave functions the corresponding scalar products [17], eq.(54) represent
parameters of the theory which can be adapted in order to get plausible
results. In the present case we define

g1 = fAki = fAks = fAks = ks = —fChs = fCk  (60)

Theorem1: If relations (60) are satisfied, and the masses and coupling
constants are adapted, then the set of equations (52)-(55) is identical
with the set resulting from (58),(59). The same holds for the corre-
sponding fermion equations.

For the sake of brevity we skip the proof.

Addendum: The effective field theory defined by the Lagrangian den-
sity (58) is limited to a finite range of energy. Above a certain energy
threshold it loses its meaning and has to be modified by formfactors
etc.. In this way one does not encounter the divergence difficulties of
conventional field theories with Lagrangian of the type (58) and fields
(59).

In the mean time a paper appeared which supplies this paper by
detailed calculations and application to nuclear reactions [32].

Furthermore one directly realizes that for vanishing G}, and vanishing
boson masses p4 and pg, one obtains the Lagrangian of a SU(2) @ U(1)
gauge theory. A discussion of the discrete Symmetries of (58) and (59)
will be given elsewhere.
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