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The ordinary linear quantum theory predicts the quantum correlations
at any distance (the universal superposition principle). It creates the
decoherence problem since quantum interactions entangle states into
non-separable combination. On the other hand the linear quantum
theory prevents the existence of the localizable solutions, and after
all, leads to the divergences problem in the quantum field theory. In
order to overcome these difficulties the non-perturbative nonlinearity
originated by the curvature of the compact quantum phase space has
been used.
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1 Introduction

Non-linearity in quantum theory has been invoked in order to build the
objective quantum theory and to prevent the unlimited spread out of the
observable fields by the gravitational self-potential [1, 2]. But Newtonian
quantum gravity in the present form is not effective for the shaping wave-
packets of elementary particle size since the characteristic scale of the
ground-state wave-packet obtained from the gravitational Schrödinger
equation for nucleon masses is around 1023m [2].

There is a different group of works that emphasize the formulation of
the standard quantum mechanics in quantum phase space (QPS) repre-
sented by the complex projective Hilbert space CP (N −1) [3, 4, 5, 6, 7].
I think, however, that a consistent and prolific theory based on such QPS
should be connected with serious deviations from the standard quantum
scheme. Such a modification must, of course, preserve all achievements
of de Broglie-Heisenberg-Schrödinger-Dirac linear theory in a natural



26 P. Leifer

way. One may think about attempts to establish a deductive approach
to the quantum theory.

Standard quantum mechanics (QM) treats the electron as a pointwise
particle but it is ‘wrapped’ in so-called de Broglie-Schrödinger fields of
probability. Quantum field theory (QFT) uses the same classical space-
time coordinates of the pointwise particle as ‘indices’ whereas the fields
are operators acting in some Hilbert state space (frequently in Fock
space). QM and QFT take account of the non-commutative nature of
the dynamical variables but the interaction between pointwise particles
and the relativistic invariance are borrowed from the classical theory.
These are the sources of the singular functions involved in QFT. It is
useful to understand the true reason of these difficulties.

The special and general relativity is based on the possibility to detect
locally the coincidence of two pointwise events of different nature. As
such the “state” of the local clock gives us local coordinates - the “state”
of the incoming train [8]. In the classical case the notions of the “clock”
and the “train” are intuitively clear. Furthermore, Einstein especially
notes that he did not discuss the inaccuracy of the simultaneity of two
approximately coinciding events which should be overcome by some ab-
straction [8]. This abstraction is of course the neglect of finite sizes (and
all internal degrees of freedom) of both the real clock and the train.
It gives the representation of these “states” by mathematical points in
space-time. Thereby the local identification of two events is the formal
source of the classical relativistic theory. But in the quantum case this is
impossible since the localization of quantum particles is state-dependent
[9, 10, 11]. Hence the identification of quantum events (transitions) re-
quires a physically motivated operational procedure with corresponding
mathematical description.

Therefore it is inconsistent to start the development of the quantum
theory from the space-time symmetries because just the space-time prop-
erties should be established in some approximation to internal quantum
dynamics, i.e. literally a posteriori. Namely, the quantum measurement
with help of the “quantum question” leads locally to the Lorentz trans-
formations of its spinor components, and, on the other hand, to dynami-
cal (state-dependent) introduction of space-time coordinates. Therefore,
instead of the representation of the Poincare group in some extended
Hilbert space, I use an “inverse representation” of the SU(N) by solu-
tions of relativistic quasi-linear partial derivative equations (PDE) in the
dynamical space-time. It is in fact one of the possible realizations of L.



Objective quantum theory based on the CP(N-1) affine . . . 27

de Broglie’s idea about the “wave with a hump” [12].
In the present article I propose a non-linear relativistic 4D field model

originated by the internal dynamics in QPS CP (N − 1) [13, 14]. This is
the development of the ideas used in [15]. There is no initial distinction
between ‘particle’ and ‘field’, and the space-time manifold is derivable.
Quantum measurements will be described in terms of parallel transport
of the local dynamical variables.

2 The Action Quantization

Schrödinger sharply denied the existence of so-called “quantum jumps”
during the process of emission/absorption of the quanta of energy (parti-
cles) [16, 17]. Leaving the question about the nature of quantum particles
outside of consideration, he thought about these processes as a resonance
of the de Broglie waves that phenomenologically may look like “jumps”
between two “energy levels”. The second quantization method formally
avoids these questions but there are at least two reasons for its modifi-
cation:

First. In the second quantization method one formally assumes par-
ticles the properties of which are defined by some commutation relations
between creation-annihilation operators. Note, that the commutation
relations are only the simplest consequence of the curvature of the dy-
namical group manifold in the vicinity of the group’s unit (in algebra).
Dynamical processes require, however, finite group transformations and,
hence, the global group structure. In this paper the main technical idea
is to use vector fields over a group manifold instead of Dirac’s abstract q-
numbers. This scheme therefore tries to elucidate the dynamical nature
of the creation and annihilation processes of quantum particles.

Second. The quantum particles (energy bundles) should gravitate.
Hence, strictly speaking, their behavior cannot be described as a lin-
ear superposition. Therefore the ordinary second quantization method
(creation-annihilation of free particles) is merely a good approximate
scheme due to the weakness of gravity. Thereby the creation and anni-
hilation of particles are time consuming dynamical non-linear processes.
So, linear operators of creation and annihilation (in Dirac sense) do exist
as approximate quantities.

POSTULATE 1.

There are elementary quantum states |~a >, a = 0, 1, ... belonging to the
Fock space of an abstract Planck oscillator whose states correspond to
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the quantum motions with given number of Planck action quanta.
One may imagine some “elementary quantum states” (EAS) |~a >

as a quantum motion with entire number a of the action quanta. These
a, b, c, ... replace of the “principal quantum number” serving as discrete
indices 0 ≤ a, b, c... < ∞. Since the action itself does not create gravity,
it is possible to form linear superpositions of |~a >= (a!)−1/2(η̂+)a|~0 >
constituting SU(∞) multiplets of the Planck’s action quanta operator
Ŝ = ~η̂+η̂ with the spectrum Sa = ~a in the separable Hilbert space
H. Therefore, we shall primarily quantize the action, and not the en-
ergy. The relative (local) vacuum of some problem is not necessarily the
state with minimal energy, it is a state with an extremal of some action
functional.

The space-time representation of these states and their coherent su-
perposition is postponed to the dynamical stage as it will be described
below. We shall construct non-linear field equations describing energy
(frequency) distributions between EAS’s |~a >, the soliton-like solution
of which provide the quantization of the dynamical variables. Presum-
ably, the stationary processes are represented by stable particles and
quasi-stationary processes are represented by unstable resonances.

Generally the coherent superposition

|F >=
∞∑
a=0

fa|~a >, (1)

may represent a ground state or a “vacuum” of some quantum system
with the action operator

Ŝ = ~A(η̂+η̂). (2)

Then one can define the action functional

S[|F >] =
< F |Ŝ|F >

< F |F >
, (3)

which has the eigen-value S[|~a >] = ~a on the eigen-vector |~a > of
the operator ~A(η̂+η̂) = ~η̂+η̂ and that deviates in general from this
value on superposed states |F > and of course under a different choice
of Ŝ = ~A(η̂+η̂) 6= ~η̂+η̂. In order to study the variation of the action
functional on superposed states one needs more details on geometry of
their superposition.
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In fact only a finite member N of elementary quantum states (EQS’s)
(|~0 >, |~1 >, ..., |~(N − 1) >) may be involved in the coherent superpo-
sition |F >. Then H = CN and the ray space CP (∞) will be restricted
to finite dimensional CP (N − 1). Hereafter we will use the indices as
follows: 0 ≤ a, b ≤ N , and 1 ≤ i, k,m, n, s ≤ N − 1. This superposi-
tion physically corresponds to the complete amplitude of some quantum
motion. Sometimes it may be interpreted as a extremum of the action
functional of some classical variational problem.

The global vacuum |~0 > corresponds to the zero number of action
quanta in the places of the Universe far enough from stars with pseudo-
Euclidean metric in accordance with the

POSTULATE 2.

‘Mach’s quantum principle’: the Universe generates the omnipresent av-
erage self-consistent cosmic potential coinciding with the fundamental
constant g00 = ΦU = c2.

Matter exists in the motion of a finite number of the action quanta.
The mass of some quantum particle gives the rate of variation of the
Universe potential ΦU in accordance with the de Broglie frequency ω =
mc2

~ . Therefore omnipresent ΦU = c2 serves as a “spring” of the “local
internal clock” showing the state-dependent time τ instead of the “world
time” of Newton-Stueckelberg-Horwitz-Piron [18].

Since any ray of the action amplitude has isotropy group H = U(1)×
U(N) only the coset transformations G/H = SU(N)/S[U(1) × U(N −
1)] = CP (N − 1) effectively act in H. Therefore the ray representation
of SU(N) in CN , in particular, the embedding of H and G/H in G,
is a state-dependent parametrization. Hence, there is a diffeomorphism
between the space of the rays marked by the local coordinates in the
map Uj : {|G >, |gj | 6= 0}, j > 0

πi(j) =


gi

gj , if 1 ≤ i < j

gi+1

gj if j ≤ i < N − 1

(4)

and the group manifold of the coset transformations G/H =
SU(N)/S[U(1)×U(N − 1)] = CP (N − 1). This diffeomorphism is pro-
vided by the coefficient functions Φiα of the local generators (see below).
The choice of the map Uj means, that the comparison of quantum am-
plitudes refers to the amplitude with the action ~j. The breakdown
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of SU(N) symmetry on each action amplitude to the isotropy group
H = U(1)× U(N − 1) contracts the full dynamics down to CP (N − 1).
The physical interpretation of these transformations is given by the

POSTULATE 3.

The unitary transformations of the action amplitudes may be iden-
tified with physical fields; i.e., transformations of the form U(τ) =
exp(iΩαλ̂ατ), where the field functions Ωα are the parameters of the
adjoint representations of SU(N). The coset transformation G/H =
SU(N)/S[U(1) × U(N − 1)] = CP (N − 1) is the quantum analog of a
classical force; its action is equivalent to some physically distinguishable
variation of generalized coherent states (GCS) in CP (N − 1).

Thus the quantum dynamics in the CP (N − 1) manifold is similar
to general relativity dynamics, where due to the equivalence principle,
gravity is locally non-distinguishable from an accelerated reference frame
[19]. But in general relativity one has the distinction (by definition)
between gravity (curvature) and its ‘matter’ source. In quantum physics,
however, all physical fields are ‘matter’ and variation of these fields leads
to the variation of the basis in the state space.

3 Non-linear treatment of the eigen-problem

The quantum mechanics assumes the priority of the Hamiltonian given
by some classical model which henceforth should be “quantized”. It is
known that this procedure is ambiguous. In order to avoid the ambiguity,
I intend to use a quantum state itself and the invariant conditions of its
conservation and perturbation. These invariant conditions are rooted
in the global geometry of the dynamical group manifold. Namely, the
geometry of G = SU(N), the isotropy group H = U(1) × U(N − 1) of
the pure quantum state, and the coset G/H = SU(N)/U(1)×U(N − 1)
geometry, play an essential role in the quantum state evolution (the
super-relativity principle [20]). The stationary states (some eigen-states
of the action operator, i.e. the states of motion with the least action)
may be treated as initial conditions for GCS evolution. Particulary they
may represent a local minimum of energy (vacuum).

Let me assume that {|~a >}N−1
0 is the basis in Hilbert space H.

Then a typical vector |F >∈ H may be represented as a superpo-
sition |F >=

∑N−1
0 fa|~a >. The eigen-problem may be formu-

lated for some hermitian dynamical variable D̂ on these typical vectors
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D̂|F >= λD|F >. This equation may be written in components as
follows:

∑N−1
0 Da

b f
b = λDf

a, where Da
b =< a|D̂|b >= FαDλ̂α,(ab),

D̂ =
∑
a,b≥0

< a|D̂|b > P̂ab =
∑
a,b≥0

DabP̂ab =
∑
a,b≥0

FαDλ̂α,(ab)P̂ab, (5)

where P̂ab is projector. In particular, the Hamiltonian has a similar
representation with FαH = ~Ωα [21].

One has the spectrum of λD : {λ0, ..., λN−1} from the equation
Det(D̂ − λDÊ) = 0 , and then one has the set of equations D̂|Dp >=
λp|Dp >, where p = 0, ..., N − 1 and |Dp >=

∑N−1
0 gap |~a > are eigen-

vectors. It is worthwhile to note that the solution of this problem gives
rays and not vectors, since eigen-vectors are defined up to the complex
factor. In other words we deal with rays or points of the non-linear
complex projective space CP (N − 1) for a N × N matrix of the linear
operator acting on CN . The Hilbert spaces of the infinite dimension will
be discussed later.

For each eigen-vector |Dp > corresponding λp it is possible to chose
at least one such component gjp of the |Dp >, that |gjp| 6= 0. This choice
defines in fact the map Uj(p) of the local projective coordinates

πij(p) =


gi

p

gj
p
, if 1 ≤ i < j

gi+1
p

gj
p

if j ≤ i < N − 1
(6)

in CP (N−1) for each eigen-vector |Dp > of the ray. Note, if all πij(p) = 0
it means that one has the “pure” state |Dp >= gjp|j > (without sum-
mation in j). Any different points of the CP (N − 1) corresponds to the
GCS’s. They will be treated as self-rays of some deformed action opera-
tor. Beside this I will treat the superposition state |G >=

∑N−1
a=0 ga|a~ >

as “analytic continuation” of the of eigen-vector for an arbitrary set of
the local coordinates.

People frequently omit the index p, assuming that λ := λp, for j = 0.
Then they have, say, for the N × N Hamiltonian matrix Ĥ the eigen-
problem (Ĥ − λ)|ψ >= 0 where I put ψa := ga0 .

In accordance with our assumption the λ is such that ψ0 6= 0. Let
then divide all equations by ψ0. Introducing local coordinates πi = ψi

ψ0 ,
we get the system of the non-homogeneous equations

(H11 − λ)π1 + ...+H1iπ
i + ...+H1N−1π

N−1 = −H10
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H21π
1 + (H22 − λ)π2 + ...+H2iπ

i + ...+H2N−1π
N−1 = −H20

.

.

.
HN−11π

1 + ...+HN−1iπ
i + ...+ (HN−1N−1 − λ)πN−1 = −HN−10, (7)

where the first equation

H01π
1 + ...+H0iπ

i + ...+H0N−1π
N−1 = −(H00 − λ) (8)

is omitted. If D = det(Hik − λδik) 6= 0, i 6= 0, k 6= 0 then the single
defined solutions of this system may be expressed through Cramer’s rule

π1 =
D1

D
, ..., πN−1 =

DN−1

D
. (9)

It is easy to see that these solutions being substituted into the first
omitted equation give us simply the reformulated characteristic equation
of the eigen-problem. Therefore one has the single valued ray solution
of the eigen-problem expressed in local coordinates instead of the vector
solution with additional freedom of a complex scale multiplication.

This approach does not offer an essential advantage for a single op-
erator, it only shows that the formulation in local coordinates is quite
natural. But if one tries to understand the multi-dimensional variation
of a hermitian operator included in a parameterized family, the local
formulation is inevitable. First of all it is interesting to know the in-
variants of such variations. In particular, the quantum measurement of
a dynamical variable represented by a hermitian N × N matrix should
be described in the spirit of typical polarization measurement of the
coherent photons [22].

The initial state of the coherent photons |x > is modulated passing
through an optically active medium (for instance the Faraday effect in
YIG film magnetized along the main axes in the z-direction by a har-
monic magnetic field with frequency Ω and the angle amplitude β). For-
mally this process may be described by the action of the unitary matrix
ĥos3 belonging to the isotropy group of |R > [15]. Then the coherence
vector will oscillate along the equator of the Poincaré sphere. The next
step is the dragging of the oscillating state |x′(t) >= ˆhos3 |x > with fre-
quency ω up to the “north pole” corresponding to the state |R >. In
fact this is the motion of the coherence vector. This may be achieved by
the variation of the azimuth of the linear polarized state from θ

2 = −π
4
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up to θ
2 = π

4 with help of the dense flint of appropriate length embed-
ded into the sweeping magnetic field. Further this beam should pass the
λ/4 plate. This process of variation of the ellipticity of the polarization
ellipse may be described by the unitary matrix b̂os′1 belonging to the
coset homogeneous sub-manifold U(2)/[U(1) × U(1)] = CP (1) of the
dynamical group U(2) [22]. This dragging without modulation leads to
the evolution of the initial state along the geodesic of CP (1) and the
trace of the coherent vector is the meridian of the Poincaré sphere be-
tween the equator and one of the poles. The modulation deforms both
the geodesic and the corresponding trace of the coherence vector on the
Poincaré sphere during such unitary evolution.

The action of the λ/4 plate depends upon the state of the incom-
ing beam (the relative orientation of the fast axes of the plate and the
polarization of the beam). Furthermore, only relative phases and am-
plitudes of photons in the beam have a physical meaning for the λ/4
plate. Neither the absolute amplitude (intensity of the beam), nor the
general phase affect the polarization character of the outgoing state. It
means that the device action depends only upon the local coordinates
π1 = Ψ1

Ψ0 ∈ CP (1). Small relative re-orientation of the λ/4 plate and
the incoming beam leads to a small variation of the outgoing state. This
means that the λ/4 plate re-orientation generates the tangent vector to
CP (1). It is natural to discuss the two components of such a vector: ve-
locities of the variations of the ellipticity and of the azimuth (inclination)
angle of the polarization ellipse. They are examples of local dynamical
variable (LDV). The comparison of such dynamical variables for differ-
ent coherent states requires that the affine parallel transport agrees with
the Fubini-Study metric.

As far as I know the generalized problem of the quantum measure-
ment of an arbitrary hermitian dynamical variable Ĥ = Eαλ̂α, λ̂α ∈
AlgSU(N) in the operational manner given above was never done. It is
solved here by the exact analytical diagonalization of a hermitian matrix.
Previously this problem was partly solved in the works [23, 24, 25]. Ge-
ometrically it looks like embedding “the ellipsoid of polarizations” into
the iso-space of the adjoint representation of SU(N). This ellipsoid is as-
sociated with the quadric form < F |Ĥ|F >=

∑N2−1
1 Eα < F |λ̂α|F >=

Hab(Eα)fa∗f b depending on N2 − 1 real parameters Eα. The shape of
this ellipsoid with N main axes is given by the 2(N−1) parameters of the
coset transformations G/H = SU(N)/S[U(1)×U(N −1)] = CP (N −1)
which are related to the (N − 1) complex local coordinates of the eigen-
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state of Ĥ in CP (N − 1). Its orientation in iso-space RN
2−1 is much

more complicated than in the case of R3. It is given by generators of the
isotropy group containing N − 1 = rank(AlgSU(N)) independent pa-
rameters of “rotations” about commutative operators λ̂3, λ̂8, λ̂15, ... and
(N − 1)(N − 2) parameters of rotations about non-commutative opera-
tors. All these (N − 1)2 = (N − 1) + (N − 1)(N − 2) gauge angles of
the isotropy group H = S[U(1) × U(N − 1)] of the eigen-state giving
orientation of this ellipsoid in iso-space RN

2−1 will be calculated now
during the process of analytical diagonalization of the hermitian matrix
Hab =< a|Ĥ|b > corresponding to some dynamical variable Ĥ.
Stage 1. Reduction of the general Hermitian Matrix to three-
diagonal form. Let me start from general hermitian N ×N matrix Ĥ.
One should choose some basis in CN . I will take the standard basis

|1 >=



1
0
0
.
.
.
0


, |2 >=



0
1
0
.
.
.
0


, ..., |N >=



0
0
0
.
.
.
1


. (10)

For instance for N = 3 the set of Gell-Mann λ̂ matrices can be de-
composed into the two sets with respect to the state |1 > : B-set
λ̂1, λ̂2, λ̂4, λ̂5 the exponents of which act effectively on the |1 >, and
the H-set λ̂3, λ̂8, λ̂6, λ̂7 , the exponents of which leave |1 > intact. For
any finite dimension N one may define the “I-spin” (1 ≤ I ≤ N) as an
analog of the well known “T-,U-,V- spins” of the SU(3) theory using the
invariant character of the commutation relations of B-and H-sets

[B,B] ∈ H, [H,H] ∈ H, [B,H] ∈ B. (11)

Let me to represent our hermitian matrix in following manner

Ĥ =



H01 ...H0i ...H0N−1

H10 0 ...0 ...0
H20 0 ...0 ...0
.
.
.

HN−10 0 ...0 ...0


B
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+



H00 0 ...0 ...0
0 H11 ...H1i ...H1N−1

0 H21 ...H2i ...H2N−1

.

.

.
0 HN−11 ...HN−1i ...HN−1N−1


H

. (12)

With respect to the ket |1 > one may to classify the first matrix as
B−type and the second one as a matrix of the H−type. I will apply now
the “squeezing ansatz” [20, 25]. The first “squeezing” unitary matrix is

Û1 =



1 0 0 . . . 0
0 1 0 . . . 0
. . . . . . .
. . . . . . .
0 . . . 1 0 0
. . . . 0 cosφ1 eiψ1 sinφ1

0 0 . . 0 −e−iψ1 sinφ1 cosφ1


. (13)

The transformation of similarity being applied to our matrix gives Ĥ1 =
Û+

1 ĤÛ1 with the result for ĤB shown for simplicity in the case N = 4

ĤB1 =


0 H01 H̃02 H̃03

H∗
01 0 0 0

H̃∗
02 0 0 0

H̃∗
03 0 0 0

 , (14)

where H̃02 = H02 cosφ − H03 sinφe−iψ and H̃03 = H02 sinφeiψ +
H03 cosφ. Now one has solve two “equations of annihilation” of
<(H02 sin(φ)eiψ+H03 cos(φ)) = 0 and =(H02 sin(φ)eiψ+H03 cos(φ)) = 0
in order to eliminate the last element of the first row and its hermitian
conjugate [20, 25]. This gives us φ′1 and ψ′1. I will put H02 = α02 + iβ02

andH03 = α03+iβ03, then the solution of the “equations of annihilation”
is as follows:

φ′1 = arctan

√
α2

03 + β2
03

α2
02 + β2

02

,

ψ′1 = arctan
α03β02 − α02β03√

(α2
02 + β2

02)(α
2
03 + β2

03)
. (15)
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This transformation acts of course on the second matrix ĤH too but
it is easy to see that its structure remains intact. The next step is
the similarity transformations given by the matrix with the diagonally
shifted transformation block

Û2 =



1 0 0 . . . 0
0 1 0 . . . 0
. . . . . . .
0 . . . 1 0 0
. . . . 0 cosφ2 eiψ2sinφ2

0 0 . . 0 −e−iψ2sinφ2 cosφ2

0 . . . 0 0 1


(16)

and the similar evaluation of ψ′2, φ
′
2. Generally one should make N − 2

steps in order to remove the N − 2 elements of the first row. The next
step is to represent our transformed Ĥ1 = Û+

1 ĤÛ1 as follows:

Ĥ1 =



0 H̃01 0 ...0
H̃10 0 H̃12 ...H̃1N−1

0 H̃21 0 ...0
.
.
.

0 H̃N−1,1 ...0 ...0


B

+



H00 0 ...0 ...0
0 H̃11 ...0 ...0
0 0 ...H̃2i ...H̃2N−1

.

.

.

0 0 ...H̃N−1,i ...H̃N−1,N−1


H

. (17)

Now one should applied the squeezing ansatz in N − 3 steps for second
row, etc., generally one has (N − 1)(N − 2) orientation angles. Thereby
we come to the three-diagonal form of the our matrix.

Stage 2. Diagonalization of the three-diagonal form. The eigen-
value problem for the three-diagonal hermitian matrix is well known,
but I will do it for the sake of completeness. The eigen- problem
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( ˆ̃H − λÊ)|ξ >= 0 for the three-diagonal matrix has the following form

H̃00ξ
0 H̃01ξ

1 0 . . . 0
H̃∗

01ξ
0 H̃11ξ

1 H̃12ξ
2 0 . . 0

0 H̃∗
12ξ

1 H̃22ξ
2 H̃23ξ

3 . . 0
0 0 H̃∗

23ξ
2 . . . 0

0 0 . . . . 0
0 0 . . . . H̃N−1,N−2ξ

N−1

0 0 . . . . H̃N−1,N−1ξ
N−1


=



λξ0

λξ1

λξ2

.

.

.
λξN−1


.(18)

Since ξ1 = λ−H̃00

H̃01
ξ0, etc., one has the recurrent relations between all

components of the eigen-vector corresponding to given λ. Thereby only
N − 1 complex local coordinates (π1 = ξ1

ξ0 , ..., π
N−1 = ξN−1

ξ0 ) which
characterize the shape of the ellipsoid of polarization are relevant.

Stage 3. The coset “force” acting during a measurement The
real measurement assumes some interaction of the measurement device
and incoming state. If we assume for simplicity that the incoming state
is |1 > (modulation, etc. are neglected), then all transformations from
H-subalgebra will leave it intact. Only the coset unitary transformations

T̂ (τ, g) =0BBBBBBBB@

cos gτ −p1∗
g sin gτ −p2∗

g sin gτ . −pN−1∗
g sin gτ

p1

g sin gτ 1 + [
|p1|

g ]2(cos gτ − 1) [ p1p2∗
g ]2(cos gτ − 1) . [ p1pN−1∗

g ]2(cos gτ − 1)

. . . . .

. . . . .

. . . . .
pN−1

g sin gτ [ p1∗pN−1

g ]2(cos gτ − 1) . . 1 + [
|pN−1|

g ]2(cos gτ − 1)

1CCCCCCCCA
,

(19)

with g =
√
|p1|2+, ...,+|pN−1|2 will effectively influence this state drag-

ging it along one of the geodesic in CP (N−1) [20]. This matrix describes
the process of the transition from one pure state to another, in particular
between two eigen-states connected by the geodesic. This means that
these transformations deform the ellipsoid. All possible shapes of these
ellipsoids are distributed along a single geodesic.

Generally, in the dynamical situation this “stationary” global pro-
cedure is not applicable and one should apply the local analog of λ̂-
matrices, i.e. SU(N) generators and related dynamical variables should
be parameterized by the local quantum states coordinates (π1, ..., πN−1).
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4 Local dynamical variables

The state space H with finite action quanta is a stationary construction.
We introduce dynamics by the velocities of the GCS variation represent-
ing some “elementary excitations” (quantum particles). Their dynamics
is specified by the Hamiltonian, giving time variation velocities of the
action quantum numbers in different directions of the tangent Hilbert
space T(π1,...,πN−1)CP (N−1) which takes the place of the ordinary linear
quantum state space as will be explained below. The rate of the action
variation gives the energy of the “particles” whose expression should be
established by some wave equations.

The local dynamical variables correspond to the internal SU(N)
group of the GCS and the breakdown of this group should be expressed
now in terms of the local coordinates πk. The Fubini-Study metric

Gik∗ = [(1 +
∑

|πs|2)δik − πi
∗
πk](1 +

∑
|πs|2)−2 (20)

and the affine connection

Γimn =
1
2
Gip

∗
(
∂Gmp∗

∂πn
+
∂Gp∗n
∂πm

) = −δ
i
mπ

n∗ + δinπ
m∗

1 +
∑
|πs|2

(21)

in these coordinates will be used. Hence the internal dynamical variables
and their norms should be state-dependent, i.e. local in the state space
[20].

Without the application of (20) the local dynamical variables realize
a non-linear representation of the unitary global SU(N) group in the
Hilbert state space CN . Namely, N2 − 1 generators of G = SU(N)
may be divided in accordance with the Cartan decomposition: [H,H] ∈
H, [B,H] ∈ B, [B,B] ∈ H. The (N − 1)2 generators

Φih
∂

∂πi
+ c.c. ∈ H, 1 ≤ h ≤ (N − 1)2 (22)

of the isotropy group H = U(1) × U(N − 1) of the ray (Cartan sub-
algebra) and 2(N − 1) generators

Φib
∂

∂πi
+ c.c. ∈ B, 1 ≤ b ≤ 2(N − 1) (23)

are the coset G/H = SU(N)/S[U(1)×U(N−1)] generators realizing the
breakdown of the G = SU(N) symmetry of the GCS. Furthermore, the
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(N − 1)2 generators of the Cartan sub-algebra may be divided into the
two sets of operators: 1 ≤ c ≤ N − 1 (N − 1 is the rank of AlgSU(N))
Abelian operators, and 1 ≤ q ≤ (N − 1)(N − 2) non-Abelian operators
corresponding to the non-commutative part of the Cartan sub-algebra
of the isotropy (gauge) group. Here Φiσ, 1 ≤ σ ≤ N2 − 1 are the coef-
ficient functions of the generators of the non-linear SU(N) realization.
They give the infinitesimal shift of the i-component of the coherent state
driven by the σ-component of the unitary multipole field Ωα rotating the
generators of AlgSU(N) and they are defined as follows:

Φiσ = lim
ε→0

ε−1

{
[exp(iελσ)]img

m

[exp(iελσ)]
j
mgm

− gi

gj

}
= lim
ε→0

ε−1{πi(ελσ)− πi}, (24)

[20, 25]. Then the sum of theN2−1 energies associated with the intensity
of deformations of the GCS is represented by the local Hamiltonian vec-
tor field ~H which is linear in the partial derivatives ∂

∂πi = 1
2 ( ∂
∂<πi−i ∂

∂=πi )
and ∂

∂π∗i = 1
2 ( ∂
∂<πi + i ∂

∂=πi ). In other words it is the tangent vector to
CP (N − 1)

~H = ~Tc + ~Tq + ~Vb = ~ΩcΦic
∂

∂πi
+ ~ΩqΦiq

∂

∂πi
+ ~ΩbΦib

∂

∂πi
+ c.c. (25)

In order to express some eigen-vectors in the local coordinates, I put

|Dp(π1
j(p), ..., π

N−1
j(p) ) >=

N−1∑
0

ga(π1
j(p), ..., π

N−1
j(p) )|~a >, (26)

where
∑N−1
a=0 |ga|2 = R2, and

g0(π1
j(p), ..., π

N−1
j(p) ) =

R2√
R2 +

∑N−1
s=1 |πsj(p)|2

. (27)

For 1 ≤ i ≤ N − 1 one has

gi(π1
j(p), ..., π

N−1
j(p) ) =

Rπij(p)√
R2 +

∑N−1
s=1 |πsj(p)|2

, (28)

i.e. CP (N − 1) is embedded in the Hilbert space H = CN . Hereafter I
will suppose R = 1.
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Now we see that all eigen-vectors corresponding to different eigen-
values (even under the degeneration) are applied to different points
(π1
j(p), ..., π

N−1
j(p) ) of the CP (N − 1). Nevertheless the eigen-vectors

|Dp(π1
j(p), ..., π

N−1
j(p) ) > are mutually orthogonal in H = CN if Ĥ is a her-

mitian Hamiltonian. Therefore one has the “splitting” or delocalization
of degenerated eigen-states in CP (N −1). Thus the local coordinates πi

give a convenient parametrization of the SU(N) action as one will see
below.

Let me assume that |G >=
∑N−1
a=0 ga|a~ > is a “ground state” of

some least action problem. Then the velocity of the ground state evolu-
tion referred to the world time is given by the formula

|H >=
d|G >

dτ
=
∂ga

∂πi
dπi

dτ
|a~ >= |Ti >

dπi

dτ
= Hi|Ti >, (29)

where

|Ti >=
∂ga

∂πi
|a~ >= T ai |a~ > (30)

is the tangent vector to the evolution curve πi = πi(τ), and

T 0
i =

∂g0

∂πi
= −1

2
π∗i(√∑N−1

s=1 |πs|2 + 1
)3 ,

Tmi =
∂gm

∂πi
=

 δmi√∑N−1
s=1 |πs|2 + 1

− 1
2

πmπ∗i(√∑N−1
s=1 |πs|2 + 1

)3

 .(31)

Then the “acceleration” is as follows

|A >=
d2|G >

dτ2
= |gik >

dπi

dτ

dπk

dτ
+ |Ti >

d2πi

dτ2
= |Nik >

dπi

dτ

dπk

dτ

+(
d2πs

dτ2
+ Γsik

dπi

dτ

dπk

dτ
)|Ts >, (32)

where

|gik >=
∂2ga

∂πi∂πk
|a~ >= |Nik > +Γsik|Ts > (33)
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and the state

|N >= Na|a~ >= (
∂2ga

∂πi∂πk
− Γsik

∂ga

∂πs
)
dπi

dτ

dπk

dτ
|a~ > (34)

is the normal to the “hypersurface” of the ground states. Then the
minimization of this “acceleration” under the transition from point τ to
τ + dτ may be achieved by the annihilation of the tangential component

(
d2πs

dτ2
+ Γsik

dπi

dτ

dπk

dτ
)|Ts >= 0, (35)

i.e. under the condition of the affine parallel transport of the Hamilto-
nian vector field

dHs + ΓsikH
idπk = 0. (36)

We saw that SU(N) geometry gives the shape and the orientation of
the ellipsoid associated with the “average” of dynamical variable given
by a quadric form < F |D̂|F >, i.e. this form constitutes an ordinary
eigenvalue problem. But if one rises the question about the real opera-
tional sense of the quantum measurement of this dynamical variable or
the process of the transition from one eigen-state to another, one sees
that the corresponding quantum state and its dynamical variables are
in a in much more complicated relation than in the orthodox quantum
scheme. The simple reason for this is that the decomposition (repre-
sentation) of the state vector of a quantum system strongly depends on
the spectrum and eigen-vectors of its dynamical variable. Overloaded
system of the GCS’s supplies us by enough big “reserve” of functions
but their superposition should be local and they span a tangent space
at any specific point of CP (N − 1) marked by the local coordinates.

The “probability” may be introduced now in a pure geometric way
by cos2φ in tangent state space according to the following argument.

For any two tangent vectors Di
1 =< D1|Ti >,Di

2 =< D2|Ti > one
can define the scalar product

(D1, D2) = <Gik∗Di
1D

k∗

2 = cosφ1,2(D1, D1)1/2(D2, D2)1/2. (37)

Then the value

P1,2(π1
j(p), ..., π

N−1
j(p) ) = cos2 φ1,2 =

(D1, D2)2

(D1, D1)(D2, D2)
(38)
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may be treated as a relative probability of the appearance of two states
during the measurements of two different dynamical variables.

Some LDV ~Ψ = Ψi ∂
∂πi +c.c.may be associated with the “state vector”

|Ψ >∈ H which has tangent components Ψi =< Ti|Ψ > in TπCP (N−1).
Thus the scalar product

(Ψ, D) = <Gik∗ΨiDk∗ = cosφΨ,D(Ψ,Ψ)1/2(D,D)1/2 (39)

gives the local correlation between two LDV’s at same GCS. The cosines
of directions

PΨ,i(π1
j(p), ..., π

N−1
j(p) ) = cos2 φΨ,i =

(Ψ, Di)2

(Ψ,Ψ)(Di, Di)
(40)

may be identified with “probabilities” in each tangent direction of
TπCP (N − 1). The conservation law of “probability” is given by the
simple identity

N−1∑
i=1

PΨ,i =
N−1∑
i=1

cos2 φΨ,i = 1. (41)

The notion of the “probability” is of course justified by our expe-
rience since different kinds of fluctuations prevent the exact knowledge
of any quantum dynamical variable. That is not only because the un-
certainty relation between two canonically conjugated dynamical vari-
ables puts the limit of accuracy, but also because any real measurement
of a single dynamical variable or the process of preparation of some
state are not absolutely exact. It is easy to see from the relation be-
tween the velocity V i = dπi

dτ in CP (N − 1) and the energy variance
(∆H)2 through the Aharonov-Anandan relationship dS

dτ = 2∆H
~ [26],

where ∆H =
√
< Ĥ2 > − < Ĥ >2 is the uncertainty of the Hamilto-

nian Ĥ. Indeed, the quadric form in the local coordinates is as follows:
dS2 = Gik∗dπ

idπk∗ = 4(∆H)2

~2 dτ2 and, therefore,

(∆H)2 =
~2

4
Gik∗

dπi

dτ

dπk∗

dτ
, (42)

i.e. velocity V i in CP (N − 1) defines the variance of the Hamiltonian.
But it is not the reason to deny a possibility to know any dynamical

variable with an acceptable accuracy.
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5 Objective Quantum Measurement

The CP (N − 1) manifold takes the place of the “classical phase space”
since its points, corresponding to the GCS, are most close to classical
states of motion. These points may be interpreted as the “Schrödinger’s
lump” [27]. It is important that in this case the “Schrödinger’s lump”
has the exact mathematical description and clear physical interpretation:
points of CP (N − 1) are the axis of the ellipsoid of the action operator
Ŝ, i.e. extremals of the action functional S[|F >]. Then the velocities of
variation of these axis correspond to local Hamiltonian or different local
dynamical variables.

Let me assume that GCS described by local coordinates (π1, ..., πN−1)
corresponds to the original lump, and the coordinates (π1+δπ1, ..., πN−1+
δπN−1) correspond to the lump displaced due to measurement. I will use
a GCS (π1

j(p), ..., π
N−1
j(p) ) of some action operator Ŝ = ~A(η̂+η̂) represent-

ing physically distinguishable states. This means that any two points of
CP (N −1) define two ellipsoids which differ at least by the orientations,
if not by the shape, as it was discussed above. As such, they may be
used as “yes/no” states of some two-level detector.

Local coordinates of the lump give a firm geometric tool for the de-
scription of quantum dynamics during interaction which used for a mea-
suring process. The question that I would like to raise is as follows:
which “classical field”, i.e. field in space-time, corresponds to the tran-
sition from the original to the displaced lump? In other words I would
like to find the measurable physical manifestation of the lump , which
I called the “field shell”, its space-time shape and its dynamics. The
lump’s dynamics will be represented by energy (frequencies) distribu-
tions that are not a priori given, but are defined by some field equations
where the latter should be established by means of a new variation prob-
lem. Before its formulation, we wish to introduce a differential geometric
construction.

I assume that there is a expectation state |D >: D̂|D >= λp|D >,
associated with the “measuring device” tuned for the measurement of
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the dynamical variable D̂ at some eigen-state (π1
j(p), ..., π

N−1
j(p) )

|D > = |Dp(π1
j(p), ..., π

N−1
j(p) ) >=

N−1∑
a=0

ga(π1
j(p), ..., π

N−1
j(p) )|~a >

=
N−1∑
a=0

ga|~a > .

(43)

Hereafter I will omit indices j(p) for a simplicity. Now one should build
the spinor of the “logical spin 1/2” in the local basis (|N >, |D̃ >)
for the quantum question with respect to the measurement of the local
dynamical variable ~D at corresponding GCS which may be marked by
the local normal state

|N >= Na|~a >= (
∂2ga

∂πi∂πk
− Γsik

∂ga

∂πs
)
dπi

dτ

dπk

dτ
|~a > . (44)

Since in general |D > it is not a tangent vector to CP (N − 1), the
deviation from GCS during the measurement of D̂ will be represented
by tangent vector

|D̃ >= |D > − < Norm|D > |Norm >= |D > − < N |D >
|N >

< N |N >
(45)

defined as the covariant derivative on CP (N − 1). This operation is the
orthogonal projector Q̂. Indeed,

|̃D̃ > = ˜(|D > − < Norm|D > |Norm >)
= |D > − < Norm|D > |Norm >

− < Norm|(|D > − < Norm|D > |Norm >)|Norm >

= |D > − < Norm|D > |Norm >= |D̃ > . (46)

This projector Q̂ takes the place of dichotomic dynamical variable (quan-
tum question) for the discrimination of the normal state |N > (it rep-
resents the eigen-state at GCS) and the orthogonal tangent state |D̃ >
that represents the velocity of deviation form GCS. The coherent super-
position of two eigen-vectors of Q̂ at the point (π1, ..., πN−1) forms the
spinor η with the components

α(π1,...,πN−1) =
< N |D >

< N |N >
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β(π1,...,πN−1) =
< D̃|D >

< D̃|D̃ >
. (47)

Then from the infinitesimally close GCS (π1+δ1, ..., πN−1+δN−1), whose
shift is induced by the interaction used for a measurement, one gets a
close spinor η + δη with the components

α(π1+δ1,...,πN−1+δN−1) =
< N ′|D >

< N ′|N ′ >

β(π1+δ1,...,πN−1+δN−1) =
< D̃′|D >

< D̃′|D̃′ >
, (48)

where the basis (|N ′ >, |D̃′ >) is the lift of the parallel transported (|N >

, |D̃ >) from the infinitesimally close point (π1 + δ1, ..., πN−1 + δN−1)
back to the (π1, ..., πN−1). It is clear that such parallel transport should
be somehow connected with the variation of the coefficients Ωα in the
dynamical space-time.

The covariant relative transition from one GCS to another

(π1
j(p), ..., π

N−1
j(p) ) → (π1

j′(q), ..., π
N−1
j′(q) ) (49)

and the covariant differentiation (relative Fubini-Study metric) of vec-
tor fields provides the objective character of the “quantum question” Q̂
and, hence, the quantum measurement. This serves as a basis for the
construction of the dynamical space-time.

Two infinitesimally close spinors may be expressed as functions of
θ, φ, ψ,R and θ + ε1, φ+ ε2, ψ + ε3, R+ ε4, and represented as follows

η = R

(
cos θ2 (cos φ−ψ2 − i sin φ−ψ

2 )
sin θ

2 (cos φ+ψ
2 + i sin φ+ψ

2 )

)
= R

(
C(c− is)
S(c1 + is1)

)
(50)

and

η + δη = R

(
C(c− is)
S(c1 + is1)

)
+R

(
S(is− c)ε1 − C(s+ ic)ε2 + C(s+ ic)ε3 + C(c− is) ε4R

C(c1 + is1)ε1 + S(ic1 − s1)ε2 − S(s1 − ic1)ε3 + S(c1 + is1) ε4R

)
.

(51)
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They may be connected by the infinitesimal “Lorentz spin transforma-
tions matrix” [28]

L =
(

1− i
2τ(ω3 + ia3) − i

2τ(ω1 + ia1 − i(ω2 + ia2))
− i

2τ(ω1 + ia1 + i(ω2 + ia2)) 1− i
2τ(−ω3 − ia3)

)
.(52)

Then accelerations a1, a2, a3 and angle velocities ω1, ω2, ω3 may be found
in the linear approximation from the equation

η + δη = Lη (53)

as functions of the “logical spin 1/2” spinor components depending on
local coordinates (π1, ..., πN−1).

Hence the infinitesimal Lorentz transformations define small “space-
time” coordinates variations. It is convenient to take Lorentz transfor-
mations in the following form ct′ = ct+ (~x~a)dτ, ~x′ = ~x+ ct~adτ + (~ω×
~x)dτ , where I put ~a = (a1/c, a2/c, a3/c), ~ω = (ω1, ω2, ω3) [28] in order
to have for τ the physical dimension of time. The expression for the
“4-velocity” vµ is as follows

vµ =
δxµ

δτ
= (~x~a, ct~a+ ~ω × ~x). (54)

The coordinates xµ of points in dynamical space-time serve in fact merely
for the parametrization of deformations of the “field shell” arising under
its motion according to non-linear field equations [13, 14].

6 Field equations in the dynamical space-time

Now our aim is to find field equations for Ωα included in the local Hamil-
tonian vector field ~H = ~ΩαΦiα

∂
∂πi +c.c. These field equations should be

established in the dynamical space-time intrinsically connected with the
objective quantum measurement of the “elementary lump” associated
with a quantum particle. At each point (π1, ..., πN−1) of the CP (N − 1)
one has an “expectation value” of the ~H defined by a measuring de-
vice. But a displaced GCS may by reached along one of the continuum
paths. Therefore the comparison of two vector fields and their “expec-
tation values” at neighboring points requires some natural rule. The
comparison for the same “particle” may be realized by “field shell” dy-
namics along some path in CP (N − 1). For this reason one should have
an identification procedure. The affine parallel transport in CP (N − 1)
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of vector fields is a natural and the simplest rule for the comparison of
corresponding “field shells”.

The dynamical space-time coordinates xµ may be introduced as the
state-dependent quantities, transforming in accordance with the local
Lorentz transformations xµ+δxµ = (δµν +Λµν δτ)x

ν depend on the trans-
formations of local reference frame in CP (N − 1) as it was described in
the previous paragraph.

Let us discuss now the self-consistent problem

vµ
∂Ωα

∂xµ
= −(ΓmmnΦ

n
β +

∂Φnβ
∂πn

)ΩαΩβ ,
dπk

dτ
= ΦkβΩ

β (55)

arising under the condition of the affine parallel transport

δHk

δτ
= ~

δ(ΦkαΩα)
δτ

= 0 (56)

of the Hamiltonian field. I will discuss the simplest case of CP (1) dy-
namics when 1 ≤ α, β ≤ 3, i, k, n = 1. This system in the case of the
spherical symmetry being split into the real and imaginary parts takes
the form

(r/c)ωt + ctωr = −2ωγF (u, v),
(r/c)γt + ctγr = (ω2 − γ2)F (u, v),

ut = βU(u, v, ω, γ),
vt = βV (u, v, ω, γ),

(57)

It is impossible of course to solve this self-consistent problem ana-
lytically even in this simplest case of the two state system, but it is
reasonable to develop a numerical approximation in the vicinity of the
following exact solution. Let me put ω = ρ cosψ, γ = ρ sinψ, then, as-
suming for simplicity that ω2 + γ2 = ρ2 = constant, the two first PDE’s
may be rewritten as follows:

r

c
ψt + ctψr = F (u, v)ρ cosψ. (58)

The one of the exact solutions of this quasi-linear PDE is

ψexact(t, r) = arctan
exp(2cρF (u, v)f(r2 − c2t2))(ct+ r)2F (u,v) − 1
exp(2cρF (u, v)f(r2 − c2t2))(ct+ r)2F (u,v) + 1

,

(59)



48 P. Leifer

where f(r2 − c2t2) is an arbitrary function of the interval.

In order to obtain the physical interpretation of these equations I will
find the stationary solution for (58). Let me put ξ = r − ct. Then one
will get the ordinary differential equation

dΨ(ξ)
dξ

= −F (u, v)ρ
cos Ψ(ξ)

ξ
. (60)

Two solutions

Ψ(ξ) = arctan(
ξ−2Me−2CM − 1
ξ−2Me−2CM + 1

,
2ξ−Me−2CM

ξ−2Me−2CM − 1
), (61)

where M = F (u, v)ρ are concentrated in the vicinity of the light-cone
look like solitary waves, see Fig.1. Hence one may treat them as some
“potentials” for the local coordinates of GCS (u = <π1, v = =π1). The
character of these solutions should be discussed elsewhere.
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Figure 1: Two solutions of (60) in the light-cone vicinity.
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Conclusion

1. The generalized (in comparison with “2-level” case [22]) geometric
scheme of the quantum measurement of an arbitrary Hermitian “N-level”
dynamical variable has been proposed. The interaction arising from the
breakdown of the G = SU(N) symmetry is used for such measurement
and it is represented by the affine gauge “field shell” propagated in the
dynamical state-dependent space-time.

2. The concept of “super-relativity” [20] is in fact a different kind
of attempts of “hybridization” of internal and space-time symmetries.
In contrast to supersymmetry where a priori the extended space-time -
“super-space” is introduced, in my approach the dynamical space-time
arises under “yes/no” quantum measurement of SU(N) local dynamical
variables.

3. The pure local formulation of quantum theory in CP (N−1) leads
seemingly to the decoherence [22]. We may, of course, make mentally the
concatenation of any two quantum systems living in direct product of
their state spaces. The variation of one of them during a measurement
may lead formally to some variations in the second one. Unavoidable
fluctuations in our devices may even confirm predictable correlations.
But the introduction of the state-dependent dynamical space-time evokes
a necessity to reformulate the Bell’s inequalities which may lead then to
a different condition for the coincidences.

4. The locality in the quantum phase space CP (N − 1) leads to
extended quantum particles - “field shell” that obey the quasi-linear PDE
[13, 14]. The physical status of their solutions is the open question. But
if they are somehow really connected with “elementary particles”, say,
electrons, then the plane waves of de Broglie should not be literally refer
to the state vector of the electron itself but rather to covector (1-form)
realized, say, by electrons in a periodic cristall lattice. The fact that the
condition for diffraction is in nice agreement with experiments may be
explained that for this agreement it is important only relative velocity of
electron and the lattice.
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