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ABSTRACT. We want to prove Bell’s theorem using Fourier series expan-
sion analysis. Comparing to already known algebraic methods, this is a new 
calculus-based model. Although the notation and procedure we use here is 
based on the Clauser-Horne model, the corresponding Fourier series method 
can be simply applied to different versions of Bell’s theorem.. 

 
KEYWORDS. Bell’s theorem, Fourier series. 

1 Introduction 

The main idea leading to Bell's Theorem originates in Einstein's attempt 
to find an objective meaning to the local properties of a quantum system. 
Einstein, along with Podolski and Rosen (EPR) [1], proposed a special type 
of experiment (in which an initially correlated system is separated into two 
parts) to show the incompleteness of the standard quantum theory for the 
description of the concept of local realism. After about two decades, Bohm 
introduced the "spin" version (today known as Bohm version) of EPR that 
involves, compared to the EPR argument on the position/momentum of the 
system, the spin components of the correlated system [2]. 

Three decades after EPR, Bell introduced some supplementary parameters 
and worked on them algebraically to find an inequality that cannot be gener-
ally satisfied by quantum mechanical predictions [3]. Today we know Bell's 
theorem as: there isn't a full consistency between quantum theory and local 
realism. The advantage of Bell's work was that the non-classical correlations 
between pairs of particles could be experimentally tested. Such experiments 
have been repeated many times and come down firmly in favor of quantum 
mechanics [4]. 
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After the work of Bell in 1964, a number of generalizations/models of 
Bell's theorem have been introduced. Some examples are: Clauser and Horne 
model [5] that is a  stochastic (free of the assumption of determinism) and 
well proposed model for real experiments, and the work introduced by H. 
Stapp [6] who has claimed Bell's theorem can be proved even without con-
sidering the assumption of hidden variables. 

Recently, Bell's theorem, in addition to be known as a theorem on the 
fundamental concepts concerning modern physics, it has taken the attention 
of engineers and mathematician to its applications in the hot subjects of 
quantum information and quantum computing [7]. 

Almost, all different versions of Bell's theorem, including the original 
work of Bell and the Clauser-Horne model, deal with some algebraic ine-
qualities, and the other ones involve simple algebra of probability and/or 
mean value functions. Here, we want to prove Bell's theorem using Fourier 
series expansion analysis. In other words, we want to introduce a calculus-
based version of Bell's theorem. 

 

2 Bell’s theorem based on Fourier series analysis 

Consider a composite system with total zero angular momentum (J=0) 
disintegrating spontaneously into two spin 1/2 particles with no relative 
orbital angular momentum (e.g. proton-proton scattering at low kinetic ener-
gies that is a process in which the interacting protons are in singlet state 
(zero orbital angular momentum) and the spin states of the scattered protons 
are correlated even after they get separated by a macroscopic distance). 

 
Particle 2 

 
 
 
 

Particle 1 
Figure 1 : spin correlation in a singlet state 

 
Each particle goes through a Stern-Gerlach apparatus and is then ob-

served by one of the observers A or B (see fig. 1). The Stern-Gerlach appara-
tus receiving particle 1 can take the arbitrary orientation   â , and the one 
receiving particle 2 can take arbitrary orientation   b̂ . Denote by   P1(â,!)  and 

  P2 (b̂,!) the probability for the observation of particles 1 and 2 respectively, 

B A 
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and by   P12 (â, b̂,!)   the correlation probability that both particles are ob-
served. Here ! denotes the collection of (hidden) variables characterizing 
the state of each particle with a normalized probability distribution  !(") . 

 
  

d!"(!) = 1#  (1) 

The probability functions   P1(â), P2 (b̂)  and   P12 (â, b̂)  are the probabili-
ties, after averaging over probability distribution  !(") , of  an observation 
by A, B, and a coincident observation at both A and B respectively: 

 
  
P1(â) = d!"(!) P# 1

(â,!)  (2) 

 
  
P2 (b̂) = d!"(!) P# 2

(b̂,!)  (3) 

 
  
P12 (â, b̂) = d!"(!) P12# (â, b̂,!)  (4) 

Since the experiments involve dichotomic  (±)  parameters (spin 1/2 

states), the probability functions   P1(â,!) ,   P2 (b̂,!) , and   P12 (â, b̂,!)  are 

short hand notations for the probability functions 
   P1(
!
!1 " â = +1,#)  as the 

probability for the observation of particle 1 in its up (+) state, 

   P2 (
!
! 2 " b̂ = +1,#)  as the observation probability for particle 2 in its up (+) 

state, and 
   P12 (
!
!1 " â = +1,

!
! 2 " b̂ = +1,#)  as the probability for simultaneous 

observation of both particles in their up (+) states respectively. 
 
To ensure that there is no action at a distance between observers A and B, 

the following locality condition is used 

   P12 (â, b̂,!) = P1(â,!)P2 (b̂,!)  (5) 
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Applying the locality condition (5) to the relation (4), the joint probability 
function   P12 (â, b̂,!)  is found as the following integral expression 

 
  
P12 (â, b̂) = d!"(!) P1(â,!) P2 (b̂,!)#  (6) 

Assuming   P1  and   P2  are continuous functions of the angle parameters, 
we can write the following Fourier series expansions in the interval  [0,2! )  
[8] 

 

  

P1(â,!) = A0 (!) + [A
n
(!)cos n"

a
+ B

n
(!)sin n"

a
]

n=1

#

$

P2 (b̂,!) = C0 (!) + [C
n
(!)cos n"

b
+ D

n
(!)sin n"

b
]

n=1

#

$

 (7) 

where 
 
!

a
 and 

 
!

b
 are the corresponding angles to the directions   â  and   b̂  

respectively. 
 
From the experimental configuration of the model, it is clear that we have 

a full symmetry under the following (simultaneous) interchanges 

 
  

1! 2 & 2!1
"

a
!"

b
&"

b
!"

a

 (8) 

This helps us to write the Fourier series expansions (7) as 

 

  

P1(â,!) = A0 (!) + [A
n
(!)cos n"

a
+ B

n
(!)sin n"

a
]

n=1

#

$

P2 (b̂,!) = A0 (!) + [A
n
(!)cos n"

b
+ B

n
(!)sin n"

b
]

n=1

#

$

 (9) 

Using (6) and (9), the joint probability function   P12 (â, b̂,!) is found as 



A new proof of bell’s theorem based on Fourier series analysis 73 

  

P12 (â, b̂) = d!"(!)# {[A0 (!) + A
n
(!)cos n$

a
+ B

n
(!)sin n$

a
]

n=1

%

& [A0 (!) +

A

m=1

%

& m
(!)cos m$

b
+ B

m
(!)sin m$

b
]}

(10) 

Now, let see what happens if we consider quantum mechanical results. In 
quantum theory we have [9] 

 
   
P12 (â, b̂) = P12 (

!
!1 " â = +1,

!
! 2 "
!
b = +1) =

1
2

sin2 (
#

ab

2
)  (11)  

where 
 
!

ab
= !

a
"!

b
. 

 
We can also write (11) in the following form 
 

  
P12 (â, b̂)

Q.M . =
1
2

sin2 (
!

ab

2
) =

1
4
"

1
4

cos!
ab

=
1
4
"

1
4

cos!
a

cos!
b
"

1
4

sin!
a

sin!
b

(12) 
 
Is quantum theory in full consistency with the above-introduced local re-

alistic model (i.e. can quantum theory reproduce all the predictions of the 
above-introduced local realistic model)? To answer this question, we should 
check if the right hand sides of the relations (12) and (10) can be set equal to 
each other for all possible configurations. Since the complete set of the func-
tions   (cos n! ,sin n! )  are linearly independent (orthogonal) [8], the right 
hand sides of the relations (12) and (10) are generally equal if  

 
  

d!"(!)[A0(!)]2# =
1
4

 (13) 

 
  

d!"(!)A
n
(!)A

m
(!)# = 0

(for all values of n and m except when n = m = 0,1)
  14 
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d!"(!)A
n
(!)B

m
(!)# = 0 (for all values of n and m)  (15) 

 
  

d!"(!)B
n
(!)B

m
(!)# = 0

(for all values of n and m except when n = m = 1)
 (16) 

 
  

d!"(!)[A1(!)]2# = $
1
4

 (17) 

 
  

d!"(!)[B 1(!)]2# = $
1
4

 (18) 

The particular cases (  n = m ! 0,1 ) of the relation (14) and (  n = m ! 1 ) of 
the relation (15) are 

 

 
  

d!"(!)[A
n
(!)]2# = 0 (for n $ 2)  (19) 

 
  

d!"(!)[B
n
(!)]2# = 0 (for n $  2)  (20) 

Since all the integrands in the integral equations (17) to (20) are positive 
definite1, these equations cannot be satisfied unless 

                                                                    

1 The distribution function  !(")  is a weighting function ( !(") > 0 ). Note:  !(") = 0 corres-
ponds to trivial cases that can be excluded just at the first phase of calculations. If  !(")  vanis-
hes for all values of !  then we shall result in this fact that the model is trivial (it isn't a realistic 
model). 
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   An
(!) = B

n
(!) = 0 (for n "  1)  (21) 

This means that 

   P1(â,!) = P2 (b̂,!) = A0(!)  (22) 

which is clearly incorrect; therefore, the primary assumption of the equal-
ity of the right hand sides of the joint probabilities (10) and (12) is not possi-
ble (Bell's theorem is proved). 

Finally, we should mention that although we have used the subject of lin-
ear independency (orthogonality) to show that the right hand sides of the 
joint probability functions (10) and (12) cannot be generally set equal to 
each other, this doesn't mean that one cannot find particular configurations 
of equality. As we know, the well-known algebraic methods of proving 
Bell's theorem involve some inequalities that can be satisfied by a wide 
range of configurations; but, they aren't satisfied generally.  

3 Conclusion 

We have proved Bell's theorem using Fourier series expansion analysis. 
Comparing to already known algebraic methods, this is a new calculus-based 
model. Although the notation and procedure we have used here is based on 
the Clauser-Horne model which is one of the best (both theoretically and 
experimentally) models of Bell's theorem, the corresponding Fourier series 
method can be simply applied to a wide variety of other models. This is 
because different models of Bell's theorem deal with some discrete and/or 
continuous functions (e.g. probability functions, mean value functions, or 
dichotomic functions) that have angle parameters of detection/observation as 
their arguments; thus, one can always expand these functions based on Fou-
rier series expansions of the angles. Occasionally, one of the advantages of 
the method introduced here, in addition to being based on a new analyti-
cal/calculus procedure, is in its applicability to different versions of Bell's 
theorem based on the above-mentioned Fourier series expansion; because, to 
the best of our knowledge, other well- known models involve some mathe-
matical procedures that are not simply/necessarily applicable to each other. 
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