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ABSTRACT. The possible variation of the fine-structure constant, «,
has inspired many people to work on modifications and/or generaliza-
tions of the current “standard” theories in which the electromagnetic
field is involved. Here we first point out the amazing similarity be-
tween Bekenstein’s model, describing the variation of a by a varying
charge, and the Hojman-Rosenbaum-Ryan-Shepley torsion potential
model. This observation invites us to consider a geometric theory of
gravity in which a varying « originates from another kind of dynamic
quantity of spacetime, i.e., vector torsion. Since the vector torsion field
is weak and also not strongly coupled with fermions it is difficult to
detect it directly. The detection of a time-varying « could thus provide
some promising evidence for the existence of torsion.
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There has been a long history of people searching for the variation of
various constants, see eg, [1]. By checking how constant those constants
are, it in fact questions the correctness of the theories where those con-
stants are defined. The variation of a constant implies new degrees of
freedom or dynamical variables which have been ignored in the theory.
Thus it indicates either that a modification and/or a generalization for
the related theory is needed, or that the theory is only an effective one
which should come from some more fundamental theory.

The fine-structure constant, «, is one of the constants which has been
examined extensively. The different measurements appear to converge to
the conclusion: a was smaller in the past, i.e., Aa/or < 0 [2]. This result
fueled the effort of establishing new models incorporating the variation
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of «, as well as the examinations of the possible variation of the other
constants.

Among various theoretical models leading to the prediction of such
a variation, Bekenstein [3] proposed the following framework to incor-
porate a varying «. With a certain set of assumptions, the Maxwell
equations are modified to account for the effect of the variation of the
elementary charge, e = €(Z)eg where €(Z) is a dimensionless scalar
field. The vector potential A, follows the gauge transformation law
A, — A, + e x ,, rather than the usual A), < A, + x .. The electro-
magnetic tensor generalizes to

Fyu = £l(ed) 0~ (eA,).) 1)

The dynamics of € is given from the action:

Se = 7/{/67267“6,#‘/79(14% (2)

where k is a parameter, and the electromagnetic action is the the usual
quadratic form of F),, from eqn (1):

1
Sgy = ——— /FWF’“’\/—g d*z. (3)
167

It has been shown to be a viable theory for explaining the « variation
[4].

However, three conventionally fundamental concepts which are deeply
believed in science are violated and/or modified in this model: (a) charge
conservation, (b) local gauge invariance, and (c) minimal coupling. At
a first glance, it is not obvious why one has to change so many physi-
cal laws only to obtain a varying «. Assuming that this idea is on the
right track, here we would like to exploit the possible linkage of Beken-
stein’s model with the geometry of spacetime. If one considers this idea
from a geometric point of view, it is easy to recognize how similar the
structure of this model is with the Hojman-Rosenbaum-Ryan-Shepley
(hereafter HRRS) torsion potential model[5]. In the HRRS model, the
Einstein-Cartan theory of gravity is considered. This theory allows non-
symmetric connection coefficients I'*,,;, therefore it has a nonzero torsion
tensor T,,* [10]

Tuau = FHO’V - Fuwr (4)
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The torsion tensor field, T},,” = Tj,,)?, is then determined by the gra-
dient of a scalar field ¢(&),

v o 2 (e 1 o o
T, =Tw" = ¢7/u T = gT[u‘sy] = g(au (b,u - 5;4¢,V)7 (5)

where T}, is the vector torsion. With such an assumption the Einstein-
Cartan theory of gravity, is now allowed to propagate. In torsion field,
which plays originally an algebraic role in the order to be compatible
with torsion, the form of local gauge invariance in the HRRS model is
modified—exactly into the one in Bekenstein’s model. Such a similarity
suggests to us a bold assumption, i.e., = Ine. Then the electromag-
netic field tensor F),,,, which is defined as the covariant derivative of the
the vector potential A, with the affine connection including Christoffel
symbol and torsion, in the HRRS model is identical to the definition (1),
as follows:

Fo=Au,—Apy = Ay —App + 1,4, —T,)A, = %[(EAV),/J - (GA/J),V]'

(6)
It is noteworthy that a similar situation has happened when the variation
of the gravitational constant was considered as evidence for the existence
of torsion [6], which also leads to the possibility of re-interpreting the
Brans-Dicke theory using the torsion potential idea [7].

The HRRS model has been shown to conflict with the result of the
E6tvos-Dicke-Braginsky experiments in our solar system [8]. However,
the failure probably comes from its restrictive form of the gravitational
Lagrangian density L4, not necessarily from the concept of torsion poten-
tial. Some generalizations of the HRRS have been proposed by adding a
potential term of ¢ in the Lagrangian density, in order to be compatible
with the experiments, eg, see [9]. Here we would like to point out an-
other possibility. In the HRRS model, only the affine scalar curvature in
the Einstein-Cartan theory is considered in L,. The affine scalar curva-
ture is decomposed into one Riemannian scalar curvature term and three
quadratic torsion terms (plus a total derivative of torsion term which can
be neglected in the action.) Therefore, the torsion terms and the Rie-
mannian scalar curvature in fact share the same parameter in L, i.e.,
the gravitational constant. The situation looks like a coincidence when
a new type of dynamic field is introduced into a theory. In general, we
will expect that a new parameter is assigned to this new field for its
strength. This is the case in the Poincaré gauge theory of gravity [10], in
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which the gravitational Lagrangian is a combination of one scalar curva-
ture, three quadratic torsion terms, and six quadratic curvature terms:
L, ~ R+3xT?+6x R?, schematically. There are totally ten parameters
in the theory, one for each term. Therefore, for the HRRS model, we
would like to propose a new type of its generalization, i.e.,

Ly=R+aT,T"+V(s), (7)

where T, T* is the kinetic part of ¢ and a is the assigned parameter, and
V(@) is the potential term of ¢. This type of gravitational Lagrangian
is the same as the one in the model of a varying o [4].

With the new Lagrangian density (7), it becomes possible for the
torsion potential theory to be consistent with the solar experiments. In
[8], it argues that in the HRRS model the acceleration difference due to
the torsion potential effect is at least about 10* ~ 10° times larger than
the solar experiments. With our relaxed version of HRRS torsion po-
tential model, we can make a quick fix on the inconsistency by allowing
the parameter a > 10° and neglecting the potential term. Here we only
point out that a torsion potential model could be viable by adding the ki-
netic term a7}, 7" and the potential term V(¢). The detailed comparison
between this model and the experiments needs further investigations.

Once the Bekenstein’s model and the generalization of the HRRS
model (7) are merged together, analogous to the metric tensor which
dynamically determines the value of the interval, the torsion potential
could be understood as dynamically determining the vacuum impedance!
Q of spacetime, with Q o e>?. The physical meaning of a dynamic £
is interpreted to a varying charge in Bekenstein’s model. The usual
gauge transformation law of electromagnetic field (which might imply
the premetric character of electromagnetism [11]) is incompatible with
the Einstein-Cartan theory. The usual type of definition means that
photons are decoupled from torsion. Since torsion is a geometric quantity
of spacetime generated by the spin of matter, we would rather argue
that spinning particles, including photon, should interact with torsion.
Moreover a form of minimal coupling is preserved in our model, with the
vector torsion defined as the gradient of the torsion potential.

It is generally believed that the source of torsion comes from spin.
Thus a torsion field could be generated in the early Universe in which a

Tthe vacuum impedance Q = /uo/ep where pg is the permeability of free space,
and €q is the permittivity of free space



The Fine-structure Constant and the Torsion Potential 387

strong spin field was formed by the highly aligned matter of high density.
Due to the property of isotropy and homogeneity of the Universe, once
the primordial torsion was produced, and evolved with the expansion of
the Universe, it should be weak and mainly time-dependent at present,
this is just what we expect of the torsion potential, ¢ = ¢(¢). Thus
the temporal component of the vector torsion will be dominant: T}, ~
52T0(t). Therefore, we expect the time variation of the torsion and the
torsion potential will be much larger than their spatial variation, and
likewise for a.

It will make a big difference if the scalar field in Bekenstein’s model
is regarded as the torsion potential, i.e., ¢ = Ine. Since torsion is a
geometrically intrinsic character of spacetime, its existence will affect the
definition of parallel transport, and consequently affect the physical laws,
i.e., the behavior of matter and fields in spacetime. However, as we know,
a fermion is strongly coupled to the totally antisymmetric torsion but
only indirectly linked with vector torsion 7}, [12], thus most of the matter
in the Universe will be relatively insensitive to the existence of T},, only a
boson like a photon could be coupled to T},. This should explain why the
vector torsion is so elusive. However, with the technological improvement
in precision measurements, the tiny variations of the physical constants
might shed a light and show us how to establish a new theory of gravity
with torsion.
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